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FACTORIZATION OF FUNCTIONS
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Abstract. For functions in the classical Nevanlinna class analytic projection
of log |f(eiθ)| produces log F (z) where F is the outer part of f ; i.e., this projec-
tion factors out the inner part of f . We show that if log |f(z)| is area integrable
with respect to certain measures on the disc, then the appropriate analytic pro-
jections of log |f | factor out zeros by dividing f by a natural product which
is a disc analogue of the classical Weierstrass product. This result is actually
a corollary of a more general theorem of M. Andersson. Our contribution is
to give a simple one complex variable proof which accentuates the connection
with the Weierstrass product and other canonical objects of complex analysis.

A function f analytic in the unit disc U is said to belong to the Nevanlinna class
N if

sup
0<r<1

∫ 2π

0

log+ |f(reiθ)|dθ < ∞.

By a classical result, every f ∈ N has a canonical factorization f = IO where I is
an inner function and O is an outer function. As is well known log |O(z)| is just
the Poisson integral of the boundary function log |f(eiθ)|. In other words log O(z)
is the analytic projection of log |f(eiθ)|. Qualitatively, the analytic projection of
log |f(eiθ)| “divides out” the inner part of f.

We wish to consider an analogous process in the generalized Nevanlinna classes
Ap,α(U) (1 ≤ p < ∞, 0 ≤ α < ∞) of functions analytic in U such that

‖f‖p
Ap,α

=
1
π

∫
U

| log |f(z)| |p(1 − |z|2)αdA(z) < ∞.

Here dA(z) is just the regular Lebesgue measure on U. For p = 1, it is easily verified
that the defining condition is equivalent to the condition∫

log+ |f(z)|(1− |z|2)αdA(z) < ∞.

The classes Ap,α have been considered by several authors (see [4], [5], [6], [8]). In
particular, in [6], the authors give a complete description of zero sets for the classes
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Ap,0. For our purposes it will suffice to use the following weaker necessary condition:
(0) For f analytic in U let {zk} denote the zero set of f ; each zero is re-

peated according to its multiplicity. Then if f ∈ Ap,α (0 ≤ α, 1 ≤ p < ∞),∑
k(1− |zk|)2+α < ∞.
In [8] and [9] this was proved for p = 1 and all α. For general p > 1 it follows

from the inclusion Ap,α ⊂ A1,α.
In [10] it was proved that for every α > 0

K̂α(z, ζ) =
α + 1

π

(1− |ζ|2)α

(1− ζz)α+2
(1)

is a reproducing kernel for analytic functions in U. It follows easily that the kernel

Re
α + 1

π

(
2

(1− ζz)α+2
− 1
)

provides an orthogonal projector from the space L2((1 − |ζ|2)α)dA(ζ) onto the
subspace of harmonic elements, and that the kernel

Kα(z, ζ) =
(α + 1)

π

(
2

(1 − ζz)α+2
− 1
)

(2)

projects real functions in L2((1−|ζ|2)αdA(ζ)) onto the analytic completion of their
harmonic projection. See also [3] and [7] for generalizations of these facts.

In this note we shall show that if f belongs to Ap,n for some p ≥ 1 and integer
n ≥ 0, then the projection of log |f | using the kernel Kn in (2) divides f by a
natural product which is a disc analogue of the classical Weierstrass product. This
result can be obtained as a corollary of a more general theorem of M. Andersson
([1] and [2]). Our contribution is to give a simple one complex variable proof which
accentuates the connection with Weierstrass products, Blaschke products, and other
canonical objects of complex analysis.

This note was originally written without knowledge of Andersson’s work. The
author is indebted to the referee and also to Professor J. Bruna for drawing his
attention to Andersson’s important results.

Our main result will be developed through a series of lemmas. The first is well
known and follows directly from Green’s theorem.

Lemma 1. Let g ∈ C2(U) such that g(z) = O((1 − |z|)2) as |z| → 1. Let f be
analytic in a neighborhood of U and nonvanishing on |z| = 1. Then if z1 . . . zn are
the zeros of f in U, repeated according to multiplicity,

1
2π

∫
U

∆g(z) log |f(z)|dA(z) =
n∑

k=1

g(zk).

In terms of distributions Lemma 1 is essentially equivalent to the statement
∆ log |z − z0| = 2πδz0 . We shall need the following generalization of Lemma 1.

Lemma 2. Let f be analytic in U such that for some m ≥ 0 (1−|z|2)m log |f(z)| is
integrable, i.e., f ∈ A1,m, and let {zk} designate the zeros of f, repeated according
to multiplicity. Now assume that g ∈ C2(U) satisfies

g(z) = O((1 − |z|2)m+2).
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Then

1
2π

∫
U

∆g(z) log |f(z)|dA(z) =
∑

k

g(zk).(3)

Proof. Choose a sequence r` ↗ 1 such that on the circles |z| = r`, f is nonvanishing.
Thus by Lemma 1 we have for each `

1
2π

∫
U

∆g(z) log |f(r`z)|dA(z) =
∑
|zk|≤r`

g

(
zk

r`

)
.(4)

Now by our hypotheses log |f(z)| is integrable with respect to the measure

|∆g(z)|dA(z).

Since translation is continuous in the L1 norm the left side of (4) tends to the left
side of (3) as ` →∞.

Turning to the right side of (4), in view of (0), our hypotheses ensure that∑
k

(1−|zk|)m+2 < ∞, which implies that
∑
k

|g(zk)| < ∞. Now it follows easily from

the continuity of g that

lim
`→∞

∑
|zk|<r`

g

(
zk

r`

)
=
∑

k

g(zk),

completing the proof of the lemma.

Definition 1. For z, w ∈ U define Bz(w) = z (z−w)
1−zw .

Definition 2. For z, w ∈ U and an integer n ≥ 0 let

hn(z, w) =
n+1∑
k=1

(1−Bz(w))k

k
,

gn(z, w) = Bz(w) exp hn(z, w).

Lemma 3. For every z, w and n the following properties hold:
(a) Bz(w) ∂2

∂z∂z Bz(w) = ∂
∂z Bz(w) ∂

∂z Bz(w).

(b) ∂2

∂z∂z hn(z, w) = −(n + 1)
(

1−|z|2
1−zw

)n
1

(1−zw)2 .

(c) For each fixed w and n, log |gn(z, w)| = O((1 − |z|)n+2) as |z| → 1.

Proof. (a) By calculation,

∂

∂z
Bz(w) =

z

1− zw
;

∂

∂z
Bz(w) =

z − w

(1− zw)2

and

∂

∂z

∂

∂z
Bz(w) =

1
(1− zw)2

,

from which (a) follows immediately.
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(b) From the definition of hn(z, w), if Bz(w) 6= 0, then

∂

∂z
hn =

[
n+1∑
k=1

[1−Bz(w)]k−1

](
− ∂

∂z
Bz(w)

)
= (by summing a geometric series)

1− [1−Bz(w)]n+1

Bz(w)

(
− ∂

∂z
Bz(w)

)
.

So
∂2

∂z∂z
hn(z, w) =

1− [1 −Bz(w)]n+1

Bz(w)

(
− ∂2

∂z∂z
Bz(w)

)
+

(n + 1)Bz(w)[1 −Bz(w)]n+1 − 1 + [1−Bz(w))]n+1

B2
z (w)

(
−∂Bz(w)

∂z

∂Bz(w)
∂z

)
.

By (a) this reduces to

∂2

∂z∂z
hn(z, w) = −(n + 1)(1−Bz(w))n ∂2

∂z∂z
Bz(w)

= −(n + 1)
(

1− |z|2
1− zw

)n 1
(1 − zw)2

.

When Bz(w) = 0 the same result follows by continuity.
(c) Since hn(z, w) is just a Taylor expansion of − log Bz(w) for Bz(w) near 1 and

since 1−Bz(w) = 1−|z|2
1−zw , Taylor’s theorem with remainder implies (c).

Proposition 1. Let f be an analytic function in U such that for some integer
n ≥ 0 and some p > 0 f ∈ Ap,n, and let {zk} be the zeros of f in U, repeated
according to their multiplicities. Assume f(0) 6= 0, and define

P (w) =
∞∏

k=1

gn(zk, w) (gn as in Definition 2).(5)

Then P (w) is a well-defined analytic function in U as is f(w)/P (w) and we have

log

∣∣∣∣∣f(w)

√
P (o)

P (w)

∣∣∣∣∣
=

n + 1
π

∫
U

[
1

(1− zw)n+2
+

1
(1− zw)n+2

− 1
]

log |f(z)|(1− |z|2)ndA(z).

(6)

Proof. Since f ∈ Ap,n we have by (0) that∑
(1 − |zk|)n+2 < ∞.

Using the result of Lemma 3(c) together with standard estimates, we then prove
the absolute and locally uniform convergence of the product in (5) from which the
assertions given after (5) follow.

To verify (6) first recall that by Definition 2

gn(z, w) = Bz(w) exp hn(z, w),

so

log |gn(z, w)| = log |Bz(w)|+ Re hn(z, w).
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Using Lemma 3 together with the remark following Lemma 1 we conclude that

∆z log |gn(z, w)| = 2π(δ0 + δw)− 4(n + 1)Re
(1− |z|2)n

(1− zw)n+2

(where δa denotes the Dirac-δ measure at a).
Now Lemma 2 together with (c) yields that for all w ∈ U∑

k

log |gn(zk, w)| = 1
2π

∫
U

∆z log |gn(z, w)| log |f(z)|dA(z)

= log |f(0)|+ log |f(w)| − 2(n + 1)
π

Re
∫

(1− |z|2)n

(1− zw)n+2
log |f(z)|dA(z).(7)

Putting w = 0 in this formula we find that

log |f(0)| = 1
2

∑
k

log |gn(zk, 0)|+ n + 1
π

∫
log |f(z)|(1− |z|2)ndA(z).

Inserting the last equality in (7) we quickly arrive at the conclusion of the proof,
namely (6).

Note that analytic completion of (6) gives the natural factorization

f(w) = eiα P (w)√
P (0)

exp
{∫

Kn(w, z) log |f(z)|(1− |z|2)nd(A(z)
}

(8)

where 0 ≤ α < 2π and Kn is as in (2). This is clearly an analogue of the classi-
cal inner-outer factorization, where the inner part of f has been replaced by the
Weierstrass-type product P (w).

In order to treat the more general case where we allow f(0) = 0, and also to
recover the result of Andersson ([1], page 147), we proceed as follows. Using the
notation of Proposition 1 we note that by Definition 2 and (5)

√
P (0) =

∞∏
k=1

(
|zk| exp

n+1∑
`=1

(1− |zk|2)`

2`

)
.

Thus

P (w)√
P (0)

=
∞∏

k=1

zk

|zk|
zk − w

1− zkw
exp

(
n+1∑
`=1

(1− |zk|2)`

`

(
1

(1− zkw)`
− 1

2

))
.(9)

Letting zk → 0 in the general term of the above product we find that the appropriate
factor for a zero at the origin is

w exp
n+1∑
`=1

1
2`

.

This function can also be obtained by directly calculating the integral in (6) for the
function f(z) = z.

Proposition 2. Let f ∈ Ap,n for some p > 0 and some integer n ≥ 0. Assume
that f has a zero of order m ≥ 0 at the origin and that {zk} denotes the remaining
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zeros of f in U , repeated according to their multiplicities. Now define

Q(w) =

(
wm exp

n+1∑
`=1

m

2`

) ∞∏
k=1

z̄k

|zk|
zk − w

1− z̄kw

· exp

(
n+1∑
`=1

(1 − |zk|2)`

`

(
1

(1− z̄kw)`
− 1

2

))
.

Then
f(w)
Q(w)

= −eiα exp
{∫

U

Kn(w, z) log |f(z)|(1− |z|2)ndA(z)
}

,

where

Kn(w, z) =
n + 1

π

(
2

(1− zw)n+2
− 1
)

,

is the analytic projector for L2((1− |z|2)ndA(z)).

Proof. In light of (9) this follows directly from (8).

Corollary. Let f ∈ Ap,n for some p > 1 and some integer n ≥ 0. Define Q as in
the theorem. Then we have a factorization

f(z) = g(z)Q(z)

where g(z) = f(z)
Q(z) . Both g and Q belong to Ap,n and for p = 2

‖f‖2
A2,n

= ‖g‖2A2,n
+ ‖Q‖2A2,n

.(10)

Proof. By our theorem, log g is just the projection of log |f | by the kernel Kn. In
[3] it was shown that Kn induces a bounded operator on Lp((1−|z|2)ndA(z)) when
1 < p < ∞. It follows that if f ∈ Ap,n (1 < p < ∞), then g ∈ Ap,n and consequently
Q ∈ Ap,n also. For p = 2 we need only remark that just as log g is the analytic
projection of log |f |, so is log |g| the harmonic projection of log |f |, as seen in (6).
Since this is an orthogonal projection, (10) follows from the definition of the norm
in A2,n.
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3. D. Bekolle, Inégalités à poids pour le projecteur de Bergman dans la boule unité de Cn, Studia
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