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Abstract. Let J be a Jacobi matrix defined in l2 as ReW , where W is a
unilateral weighted shift with nonzero weights λk such that limk λk = 1. De-

fine the seqences: εk :=
λk−1

λk
− 1, δk := λk−1

λk
, ηk := 2δk + εk. If εk =

O(k−α), ηk = O(k−γ), 2
3

< α ≤ γ, α + γ > 3/2 and γ > 3/4, then J has an

absolutely continuous spectrum covering (−2, 2). Moreover, the asymptotics
of the solution Ju = λu, λ ∈ R is also given.

1. Introduction

Let W be a unilateral weighted shift defined in l2 by the formula Wen =
2λnen+1, for some real sequence {λn}. In this paper we consider the operator
J = Re W which has the matrix form given by

J =


0 λ1 0 0 · · ·
λ1 0 λ2 0 · · ·
0 λ2 0 λ3 · · ·
...

...
...

 .

The matrix structure of operator J will be used to obtain information about ab-
solutely continuous component of its spectrum. In what follows we always assume
that λk 6= 0, for all k and moreover that limk λk = 1. Then J is a compact per-
turbation of 2 ReU , where U is the unilateral shift, Uen = en+1. In other words J
is a compact perturbation of a discrete Schrödinger operator with zero potential,
i.e. λk = 1. One can call this subclass of Jacobi matrices discrete string operators
by analogy with the continuous case; see (2.1). Preservation of the absolutely con-
tinuous spectrum of Re U under certain assumptions on the rate of convergence of
{λk} to 1 will be given.

The methods used in the analysis of the above problem combine the standard
theory of subordinacy due to Gilbert-Pearson [5], a slight modification of the Harris-
Lutz method [6] and a recent Kiselev approach to absolute continuity of discrete
Schrödinger operators [9].
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Let us explain briefly how these techniques and notions will be used below.
Consider the system of equations

λn−1un−1 + λnun+1 = λun, n > 1,(1.1)

for a generalized solution eigenfunction u = (un)∞n=2 which does not belong to l2 in
general [1]. Following [5] we call u 6= 0 a subordinate solution of (1.1) if for every
solution v of (1.1) which is not a constant multiple of u we have

lim
n→∞

∑n
n=1 |uk|2∑n
k=1 |vk|2 = 0.

As a consequence of the Gilbert-Pearson theory we know that if for almost all
λ ∈ (a, b) there is no subordinate solution of (1.1), then (a, b) ⊂ σ(J) and the
spectrum of J has absolutely continuous component filling (a, b). It is well known
that boundedness of all solutions of (1.1) implies that no solution of (1.1) is subor-
dinate [12]. Therefore the only point remaining concerns finding when all solutions
of (1.1) are bounded. This point is analysed by applying a modified Harris-Lutz
transform which linearly changes the coordinates and replaces the equation (1.1) by
an equivalent one. The same strategy has been successfully used by Kiselev in his
work [9] devoted to one-dimensional Schrödinger operator (discrete or continuous)
with absolutely continuous spectrum.

One also could consider more general tridiagonal matrices with nonzero main
diagonal (discrete potential) by combining our approach with the above mentioned
Kiselev’s results. We concentrate on the discrete string operator however, because
its analysis brings new algebraic and analytic difficulties in comparison with the
Discrete Schrödinger Operator (DSO). This is related to a more complicated alge-
braic structure of J ; see formula (2.7) for the transfer matrix. For earlier works
devoted or related to the question we consider in this paper we refer the reader to
[2], [4], [7], [8], [11], [13]. The authors thank A. Kiselev for sending them his papers
prior to publication.

2. Preliminaries

Let {en}∞n=1 be the standard orthonormal basis in l2. For a bounded sequence
{λk} of positive numbers denote by Λ the diagonal operator given by
Λen = λnen. If U is the unilateral shift, Uen = en+1, then the operator

J = (UΛ)∗ + UΛ.(2.1)

Here we always assume that limk λk = 1. We introduce the new parameters εn, δn

by
λn−1

λn
= 1 + εn, 1− 1

λn
= δn.(2.2)

Then one can easily check that

εk = δk−1 − δk + O(δk−1(δk−1 − δk)) k ≥ 2.(2.3)

The next parameter which will naturally appear later (see (2.8)) is:

ηk := 2δk + εk.(2.4)

We have the relation

ηk = δk−1 + δk + O(δk−1(δk−1 − δk)).(2.5)
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In what follows we always assume that the parameters εn, δn, and ηn satisfy the
following growth conditions:

εn = O(n−α), α > 0, δn = O(n−β), β >
1
2
, and ηn = O(n−γ), γ > 0.

By (2.3) and (2.5) one can easily check that

β ≥ min(α, γ) and α ≥ β ≤ γ.(2.6)

We have two possibilities:
(a) if min(α, γ) = α, then α = β,
(b) if min(α, γ) = γ, then α ≥ β ≥ γ ≥ β and so β = γ.

Therefore we only have two independent parameters α and γ.
As we mentioned in the Introduction, Kiselev’s results (the discrete Kiselev

Lemma) will be used in the analysis of absolute continuity of J . Therefore for
convenience to the readers we formulate this lemma.

Lemma (Kisielev). If a sequence {rn} belongs to l2, then
N∑

k=1

rkeikΘ = O(log N)

for almost all Θ ∈ (−π, π).

The next result is a slight extension of Lemma 3.4 in [9]. Actually it was proved
by Kiselev for ρ = 1/4. Formally it is not contained in [9], however.

Lemma 2.1. For any complex sequence {qk} such that {qkkρ} is square summable
for some ρ > 0 we have

|
∞∑

k=n

qke−ikΘ| = O(n−ρ ln n),

for almost all Θ ∈ (−π, π).

Proof. Applying the Abel summation formula we have
∞∑

k=n+1

qke−ikΘ = n−ρ
∞∑

k=n+1

qkkρe−ikΘ

+
∞∑

k=n+1

[k−ρ − (k − 1)−ρ]
∞∑

j=k

qjj
ρe−ijΘ = O(n−ρ log n).

In the last equality, Kiselev’s lemma and the Carleson theorem on almost every-
where convergence of Fourier series with square summable coefficients have been
used.

In particular we have

Corollary 2.2. If εk = O(k−α), α > 1
2 , then

|
∞∑

k=n

εkeikΘ| = O(k−α+ 1
2+ω), for all ω > 0,

and almost all Θ ∈ (−π, π).
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The next result can be called a Levinson type theorem and will also be needed
below.

Lemma 2.3. Let Bn be a sequence of s× s matrices such that {‖Bn‖} ∈ l1. Then
for a sequence An of s× s matrices the product

∏n
k=1(I + Ak + Bk) and its inverse

is uniformly bounded from above in norm provided that the product∏n
k=1(I + Ak) has the same property.

We do not prove this simple result because its proof is very close to the continuous
case, see [3, Chap.III, Exer.4].

For λ ∈ (−2, 2) consider a solution u of the equation (1.1).
Let

Bn :=
(

0, 1
−λn−1

λn
, λ

λn

)
(2.7)

be the transfer matrix, i.e.(
un

un+1

)
= Bn

(
un−1

un

)
, n ≥ 2.

Applying Stolz result [12, Cor.2] we look for criteria (restrictions on α and γ )
which guarantee that {un} is bounded. Actually his theorem was proved only for
DSO but the same proof also works in our case.

Let λ = 2 cosΘ. Denote

µ =
λ

2
+ i

√
1− λ2

4
= cosΘ + i sin Θ.

Note that the matrix W =
(

1 0
Re µ Im µ

)
is invertible and

B′
n := W−1BnW =

(
I −

(
O O

ηn ctg Θ −εn

))
P,(2.8)

where P = exp
[
Θ

(
0 1
−1 0

)]
is the rotation matrix.

Let

U =
1
2

(
1 −i
1 i

)
.

We have P = U−1eiΘBU, where B =
(

1 0
0 −1

)
.

The matrix B′
n can be expressed as follows:

U−1

[
(1 +

εn

2
)I − εn

2

(
0 1
1 0

)
+

iηn

2
ctg Θ

(
B +

(
0 1
−1 0

))]
eiΘBU.

Denote by

B̃n :=
[
(1 +

εn

2
)I − εn

2

(
0 1
1 0

)
+

iηn

2
ctg Θ

(
B +

(
0 1
−1 0

))]
eiΘB.

(2.9)
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Note that (
un

un+1

)
= Bn · Bn−1 · · ·B2

(
u1

u2

)
is uniformly bounded, iff B̃n · B̃n−1 · · · B̃2UW−1

(
u1

u2

)
is uniformly bounded.

3. Absolutely continuous spectrum of J

As we mentioned in the Introduction the methods used in the analysis of the
boundedness of solutions of (1.1) consist in repeated use of the Harris-Lutz (HL)
transform and Kiselev’s lemma as well.

We shall analyse the case β = α, i.e. situation (a) mentioned above.
Define the product

Zn = eiϕnB(I + Γn)(I + Ωn),

where ϕn ∈ R , Ωn, Γn are suitable 2× 2 matrices of small norm. We shall describe
precisely the choice of parameters ϕn, Ωn, Γn below.

Take N0 so large that Zk are invertible for all k ≥ N0. Consider the identity

B̃n · · · B̃2 = Zn+1(Z−1
n+1B̃nZn) · · · (Z−1

N0+1B̃N0ZN0)Z
−1
N0

B̃N0−1 · · · B̃2.

We concentrate on the factor Z−1
n+1B̃nZn.

We proceed step by step by constructing ϕn, Γn and Ωn.

Step 1 (the choice of ϕn). Put ϕn = nΘ and note that

e−iϕn+1B

(
0 1
1 0

)
eiϕn+1B =

(
0 exp(−2i(n + 1)Θ)

exp(2i(n + 1)Θ) 0

)
and

e−iϕn+1B

(
0 1
−1 0

)
eiϕn+1B =

(
0 exp(−2i(n + 1)Θ)

− exp(2i(n + 1)Θ) 0

)
.

Hence (using (2.9)) we have

e−iϕn+1BB̃neiϕnB = (1 +
εn

2
)I − εn

2

(
0 exp(−2i(n + 1)Θ)

exp(2i(n + 1)Θ) 0

)

+
iηn

2
ctg Θ

[
B +

(
0 exp(−2i(n + 1)Θ)

− exp(2i(n + 1)Θ) 0

)]
.

Step 2 (the choice of Γn). In this step we assume that γ > 3/4 and α + γ > 3/2.
Denote

Qn :=
(

0 exp(−2i(n + 1)Θ)
exp(2i(n + 1)Θ) 0

)
,

Tn :=
(

0 exp(−2i(n + 1)Θ)
− exp(2i(n + 1)Θ) 0

)
, ρn :=

iηn

2
ctg Θ.

Now, according to a slightly modified Harris-Lutz Ansatz we look for Γn in the

form
(

0 an

−an 0

)
.
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Since (I + Γn+1)−1 = (1 + |an+1|2)−1(I − Γn+1) we have

(I + Γn+1)−1[(1 +
εn

2
)I − εn

2
Qn + ρnB + ρnTn](I + Γn)

= (1 + |an+1|2)−1[(1 +
εn

2
)I − εn

2
Qn + ρnB + ρnTn

−(1 +
εn

2
)Γn+1 +

εn

2
Γn+1Qn − ρnΓn+1B

−ρnΓn+1Tn + (1 +
εn

2
)Γn − εn

2
QnΓn + ρnBΓn

+ρnTnΓn − (1 +
εn

2
)Γn+1Γn +

εn

2
Γn+1QnΓn

−ρnΓn+1BΓn − ρnΓn+1TnΓn].
Now, choose Γn to satisfy

(1 +
εn

2
)(Γn − Γn+1) = −ρnTn.(3.1)

It follows that

Γn = −
∞∑

k=n

ρk(1 +
εk

2
)−1Tk.

Corollary 2.2 ensures that

‖Γn‖ = O(n
1
2−γ+ω), for almost all Θ ∈ (−π, π),(3.2)

where ω > 0 is arbitrary small.
Since (1 + εn

2 )Γn+1Γn = −|an+1|2(1 + εn

2 )I − ρnΓn+1Tn, equalities (3.1), (3.2)
and our assumptions α + γ > 3/2, γ > 3/4 imply

(I + Γn+1)−1e−iϕn+1BB̃neiϕnB(I + Γn)(3.3)

= (1 +
εn

2
)I − εn

2
(1 + |an+1|2)−1Qn + ρn(1 + |an+1|2)−1B + Rn,

where {‖Rn‖} ∈ l1.

Indeed, the norms of matrices ρnBΓn and εnΓn+1Qn are of order O(n
1
2−2γ+ω)

and O(n
1
2−α−γ+ω), respectively. Here ω > 0 is arbitrary small. The other matrices

which have been included in the Rn term have the same or higher orders of decay.
But εn|an+1|2 = O(n1−α−2γ+2ω) and ρn|an+1|2 = O(n1−3γ+2ω), ω > 0, and the

right hand side of (3.3) can be written as

(1 +
εn

2
)[I − εn

2
Qn + ρnB + R̃n],(3.4)

where {‖R̃n‖} ∈ l1.

Step 3 (the choice of Ωn). In this step we assume that α > 2/3.

Let Ωn =
(

0 bn

bn 0

)
and denote ε̃n := εn

2 ,

Since (I + Ωn+1)−1 = (1− |bn+1|2)−1(I − Ωn+1) we have

(I + Ωn+1)−1[I − ε̃nQn + ρnB](I + Ωn)(3.5)

= (1− |bn+1|2)−1[I − ε̃nQn + ρnB − Ωn+1

+ε̃nΩn+1Qn − ρnΩn+1B + Ωn − ε̃nQnΩn

+ρnBΩn − Ωn+1Ωn + ε̃nΩn+1QnΩn − ρnΩn+1BΩn].
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Define Ωn by the relation

Ωn − Ωn+1 = ε̃nQn.(3.6)

Thus

Ωn =
∞∑

k=n

ε̃kQk.

Again by Corollary 2.2 we know that

‖Ωn‖ = O(n1/2−α+ω), ω > 0, a.e. in Θ ∈ (−π, π).

Similarly as above using (3.6) and the assumption α > 2/3 we can write the right
hand side of (3.5) as

(1− |bn+1|2)−1[I + ρnB − ε̃n(QnΩn − Ωn+1Qn)− Ωn+1Ωn + Hn],
(3.7)

where {‖Hn‖} ∈ l1. This can be easily checked by observing that matrices ρnΩn+1B

have norms of order O(n
1
2−α−γ+ω), ω > 0. The other matrices absorbed in the Hn

term have the same or higher order estimations of their norms.
But Ωn+1Ωn = Ω2

n+1 + ε̃nΩn+1Qn and the right hand side of (3.7) equals

I + (1− |bn+1|2)−1[ρnB − ε̃nQnΩn + Hn](3.8)

= I + ρnB − ε̃nQnΩn + H̃n, where {‖H̃n‖} ∈ l1

by using the estimation |bn| = O(n1/2−α+ω) a.e. in Θ ∈ (−π, π).
Therefore the problem of boundedness of the solution {un} of (1.1) has been

reduced to the question of uniform boundedness from above and below (in a proper
way) of the matrix product

n∏
k=2

(I + ρnB − ε̃nQnΩn).

This is immediate consequence of Lemma 2.3.
Here we meet new obstacles in contrast to the DSO case. This is one situation

where the discrete string operator displays its character.
Note that the matrix ρnB − ε̃nQnΩn is of diagonal form given by(

ρn − ε̃nznbn 0
0 ρn − ε̃nznbn

)
,

where zn = exp(−2i(n + 1)Θ).
Due to the above constructions and definition of Bn we have (see (3.4))

λ1

λn
= det(B̃n · · · B̃2) = det(I + Γn+1)·(3.9)

n∏
k=2

(1 + ε̃k) det
n∏

k=2

(I − ε̃kQk + ρkB + R̃k) · det(I + Γ2)−1.

Combining (3.4) and (3.8) we have

I − ε̃nQn + ρnB + R̃n

= (I + Ωn+1)(I + ρnB − ε̃nQnΩn + H̃n)(I + Ωn)−1 + R̃n

= I + ρnB − ε̃nQnΩn + ˜̃Hn, where {‖ ˜̃Hn‖} ∈ l1.

Since {εk} ∈ l2 and
∑

k εk is convergent, the product
∏n

k=2(1 + ε̃k) converges also.
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Therefore (3.9) and the above equalities imply that

det
n∏

k=No

(I + ρkB − ε̃kQkΩk + ˜̃Hk)

is convergent. Hence

det
n∏

k=No

(I + ρkB − εkQkΩk) =
n∏

k=No

|1 + ρk − ε̃kzkbk|2

is convergent!
It follows (remember that ρk and εk belong to l2) that the series

∑
k ε̃k Re(zkbk)

is convergent (because Re ρk = 0). Finally we infer (by Lemma 2.3) that the ma-
trix product

∏n
k=No

(I+ρkB−ε̃kQkΩk) is uniformly bounded from below and above.

This proves the following

Theorem 3.1. Let εn = O(n−α), ηn = O(n−γ), where α and γ satisfy the following
inequalities: γ ≥ α > 2/3, γ > 3/4 and α+γ > 3/2. Then the absolutely continuous
component of the spectrum of J fills the interval (−2, 2).

Hence Theorem 3.1 exhibits an interesting interplay (α + γ > 3/2) between
parameter α (which measures local behaviour of λk) and γ (related to the local
oscillation property of λk); see (2.2) and (2.4). By analysing the proof of Theorem
3.1 we can even obtain the asymptotics of the solution {un} of (1.1).

Indeed, transforming back via (3.8), (3.7) and (3.3) we have

(
un

un+1

)
= WU−1Zn+1

˜̃Bn · · · ˜̃BN0Z
−1
N0

B̃N0−1 · · · B̃2UW−1

(
u1

u2

)
.

(3.10)

where ˜̃Bk = Z−1
k+1B̃kZk. Again by (3.8) we know that for k ≥ N0

˜̃Bk = I + ρkB − ε̃kQkΩk + H̃k, where {‖H̃k‖} ∈ l1

and I + ρkB − ε̃kQkΩk is the diagonal matrix given by(
1 + ρk − ε̃kzkbk 0

0 1 + ρk − ε̃kzkbk

)
.

Now formula (3.10) implies that (for a suitable choice of u1 and u2)

un = einΘ
n∏

k=N0

(1 + ρk − ε̃kzkbk)(d + cn), d 6= 0

where cn = o(1) as n tends to infinity. This equality can be checked using the forms
of matrices WU−1, Zn+1 and the uniform boundedness of

n∏
k=N0

(1 + ρk − ε̃kzkbk).

Since
∑

k εk<(zkbk) is a.e. convergent, we can rewrite the above equality (after a
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renormalization of un) as

un = einΘ exp
n∑

k=N0

(ρk − iε̃k=(zkbk))(3.11)

· exp[−
n∑

k=N0

ε̃k<(zkbk)](1 + c̃n),

where c̃n = o(1) as n →∞.
Summing up, we have

Theorem 3.2. If the weights {λk} satisfy all assumptions of Theorem 3.1, then
we have two linearly independent solutions {u}, {u} of the equation (1.1) with the
asymptotics given for almost all λ ∈ (−2, 2) by

un = einΘ exp{ i

2

n∑
k=2

[(2δk ctg Θ− εk

∞∑
s=k

εs

2
sin 2(s− k)Θ]}(1 + o(1)),

(3.12)

where λ = 2 cosΘ.

Formula (3.12) shows that asymptotics of the solution u contain besides the
WKB factor

exp i[nΘ + ctg Θ
n∑

k=2

δk]

the additional term

exp
i

2
[−

n∑
k=2

εk

∞∑
s=k

εs

2
sin(s− k)Θ]

which has many more complicated characters in comparison with the first one. On
the other hand it is remarkable that the non-oscillating factor

exp(
n∑

k=2

εk<(bkzk))

disappears due to the a.e. convergence of the series
∑

k εk<(bkzk). Again we can
observe an interesting feature of the discrete string operator.

Despite the above theorem we have no information concerning the set in R+ on
which the singular part of the spectral measure might be supported. In our earlier
paper [7] some sufficient conditions were found implying the absence of the point
spectrum of J in (−2, 2), however.

Remark 3.3. Recently Kiselev [10] found a beautiful new technique for dealing with
absolute continuity of the Discrete Schrödinger Operator

un → un+1 + un−1 + V (n)un, provided V (n) = O(n−2/3−ε), ε > 0.

His method combined with our approach looks promising to allow us to extend
results of the present paper to a more general class of perturbation.
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