A κ-NORMAL, NOT DENSELY NORMAL TYCHONOFF SPACE

WINFRIED JUST AND JAMAL TARTIR
(Communicated by Alan Dow)

Abstract. We give an example of a κ-normal space which is not densely normal.

In [2] Arhangelskii introduced the definition of a densely normal topological space and noted that every densely normal space is κ-normal. The definition of a κ-normal topological space was introduced by Stchepin in [1]. Problem 25 of [2] asked whether every κ-normal space is densely normal. Here we show that the answer is negative. ${ }^{1}$
Definition 1. A space X is κ-normal if whenever E, F are disjoint canonical closed subsets of X there exist disjoint open subsets of X, U and V, such that $E \subseteq U$ and $F \subseteq V$.

Recall that a canonical closed set is a set which is equal to the closure of its interior.

One version of relative normality is the idea of X being normal on a subspace Y, which was introduced by Arhangelskii in [2]. If A and Y are subsets of a space X, A is concentrated on Y if $A \subseteq \overline{A \cap Y}$. A space X is normal on a subspace Y if whenever E and F are disjoint closed subsets of X concentrated on Y, then there are disjoint open $U, V \subseteq X$ such that $E \subseteq U$ and $F \subseteq V$.
Definition 2. A space X is densely normal if there exists a dense subspace Y of X such that X is normal on Y.

Theorem 1. There is a Tychonoff space which is κ-normal but not densely normal.
Let $C_{\mathbf{R}}$ denote the Cantor set. For each bounded $I \subseteq \mathbf{R}$, let $l(I)$ denote the infimum of I and let $r(I)$ denote the supremum of I. Let $D \subseteq \mathbf{R} \backslash\left(\mathbf{Q} \cup C_{\mathbf{R}}\right)$ be a countable dense subset of \mathbf{R}. Let $X=\mathbf{R} \backslash\left[D \cup\left(C_{\mathbf{R}} \cap \mathbf{Q}\right)\right]$ and let $\tau_{\mathbf{R}}$ be the subspace topology on X inherited from \mathbf{R}. We will define a topology τ on X such that $\tau_{\mathbf{R}} \subseteq \tau$. In order to distinguish $\left(X, \tau_{\mathbf{R}}\right)$ from (X, τ) we will write $X_{\mathbf{R}}$ when considering X as a subspace of \mathbf{R}. For each $x \in X$ we will describe the basic open neighborhoods of x and define a local base \mathcal{B}_{x} at x. If $x \in \mathbf{Q}$, an open neighborhood of x is any element of $\tau_{\mathbf{R}}$ that contains x. Thus, if $x \in \mathbf{Q}$, let $\mathcal{B}_{x}=\{U \subseteq X: U$ is open in $\left.X_{\mathbf{R}}, x \in U\right\}$. We must go to some length to describe \mathcal{B}_{x} for $x \notin \mathbf{Q}$.

[^0]Let $C_{0}=\left[0, \frac{1}{3}\right]$ and let $C_{1}=\left[\frac{2}{3}, 1\right]$. Let $q_{0}=\frac{1}{6}$ and let $q_{1}=\frac{5}{6}$. Also, let $I_{0}=I_{1}=$ $(0,1)$. Define open intervals $I_{00}, I_{01}, I_{10}, I_{11}$ of $X_{\mathbf{R}}$ as follows. Let $I_{00}, I_{01} \subseteq\left(\frac{1}{9}, \frac{2}{9}\right) \cap$ X such that $l\left(I_{00}\right)<l\left(I_{01}\right)<\frac{1}{6}<r\left(I_{00}\right)<r\left(I_{01}\right)$ and $l\left(I_{00}\right), r\left(I_{00}\right), l\left(I_{01}\right), r\left(I_{01}\right) \in$ D. Choose $I_{10}, I_{11} \subseteq\left(\frac{7}{9}, \frac{8}{9}\right) \cap X$ such that $l\left(I_{10}\right)<l\left(I_{11}\right)<\frac{5}{6}<r\left(I_{10}\right)<r\left(I_{11}\right)$ and $l\left(I_{10}\right), r\left(I_{10}\right), l\left(I_{11}\right), r\left(I_{11}\right) \in D$. Let $n \in \omega \backslash\{0\}$ and let $s \in^{n}\{0,1\}$, and suppose C_{s} has been defined. Suppose $C_{s}=[a, b]$, and let $C_{s \frown 0}=\left[a, a+\frac{b-a}{3}\right]$ and $C_{s \frown 1}=$ $\left[b-\frac{b-a}{3}, b\right]$. Also, let q_{s} be the midpoint of C_{s} and choose open intervals of $X_{\mathbf{R}}, I_{s \frown 0}$ and $I_{s \frown 1}$, such that $I_{s \frown 0}, I_{s \frown 1} \subseteq C_{s} \backslash\left(C_{s \frown 0} \cup C_{s \frown 1}\right)$ and $l\left(I_{s \frown 0}\right)<l\left(I_{s \frown 1}\right)<q_{s}<$ $r\left(I_{s \frown 0}\right)<r\left(I_{s \frown 1}\right)$ and $l\left(I_{s \frown 0}\right), r\left(I_{s \frown 0}\right), l\left(I_{s \frown 1}\right), r\left(I_{s \frown 1}\right) \in D$. For each $f \in{ }^{\omega}\{0,1\}$, let $x_{f}=\lim _{n \rightarrow \infty} q_{\left.f\right|_{n}}$ and let $\mathbf{C}=\left\{x_{f}: f \in{ }^{\omega}\{0,1\}\right\} \cap X$.

Note that \mathbf{C} is perfect, $|\mathbf{C}|=2^{\aleph_{0}}$, and \mathbf{C} with the subspace topology inherited from \mathbf{R} is a G_{δ} subspace of \mathbf{R}. Hence, \mathbf{C} is a Polish space and the Baire Category Theorem applies.

Now partition \mathbf{C} into two disjoint sets A_{0} and A_{1} (which are not of first Baire category in \mathbf{C}) as follows. Let $\left\{I_{n}\right\}_{n \in \omega}$ be an indexing of all open intervals of $X_{\mathbf{R}}$ with endpoints in D such that $I_{n} \cap \mathbf{C} \neq \emptyset$. For each $n \in \omega$, let $\left\{\mathcal{K}_{\alpha}^{n}\right\}_{\alpha<2^{\aleph_{0}}}$ be an indexing of all countable collections of closed nowhere dense subsets of $I_{n} \cap \mathbf{C}$. For each $\alpha<2^{\aleph_{0}}$ and for each $n \in \omega$, choose

$$
\begin{aligned}
x_{(\alpha, n, 0)}, x_{(\alpha, n, 1)} \in\left(\mathbf{C} \cap I_{n}\right) \backslash\left[\left(\bigcup \mathcal{K}_{\alpha}^{n}\right) \cup\right. & \left(\bigcup_{\beta<\alpha} \bigcup_{j \in \omega}\left\{x_{(\beta, j, 0)}, x_{(\beta, j, 1)}\right\}\right) \\
\cup & \left.\left(\bigcup_{k<n}\left\{x_{(\alpha, k, 0)}, x_{(\alpha, k, 1)}\right\}\right)\right]
\end{aligned}
$$

such that $x_{(\alpha, n, 0)} \neq x_{(\alpha, n, 1)}$. Let $A_{0}=\left\{x_{(\alpha, n, 0)}: \alpha<2^{\aleph_{0}}, n \in \omega\right\}$ and let $A_{1}=$ $\mathbf{C} \backslash A_{0}$.

Let $\left\{\left\langle U_{\alpha}, V_{\alpha}\right\rangle\right\}_{\alpha<2^{\aleph_{0}}}$ be an indexing of all pairs of disjoint open subsets of $X_{\mathbf{R}}$ with $\left\langle U_{0}, V_{0}\right\rangle$ chosen such that $\left|c l_{X_{\mathbf{R}}}\left(U_{0}\right) \cap c l_{X_{\mathbf{R}}}\left(V_{0}\right)\right|=2^{\aleph_{0}}$ and $\left[c l_{X_{\mathbf{R}}}\left(U_{0}\right) \cup\right.$ $\left.c l_{X_{\mathbf{R}}}\left(V_{0}\right)\right] \cap \mathbf{C}=\emptyset$. Let $z_{0} \in\left[c l_{X_{\mathbf{R}}}\left(U_{0}\right) \cap c l_{X_{\mathbf{R}}}\left(V_{0}\right)\right]$. For $1 \leq \alpha<2^{\aleph_{0}}$, if $\left|c l_{X_{\mathrm{R}}}\left(U_{\alpha}\right) \cap c l_{X_{\mathrm{R}}}\left(V_{\alpha}\right)\right| \leq \aleph_{0}$, let $z_{\alpha}=z_{0}$; otherwise choose $z_{\alpha} \in\left[c l_{X_{\mathrm{R}}}\left(U_{\alpha}\right) \cap\right.$ $\left.c l_{X_{\mathrm{R}}}\left(V_{\alpha}\right)\right] \backslash \bigcup_{\beta<\alpha}\left\{z_{\beta}\right\}$. The construction of $\left\{z_{\alpha}\right\}_{\alpha<2^{\aleph_{0}}}$ and the neighborhoods of the elements of $\left\{z_{\alpha}\right\}_{\alpha<2^{\aleph_{0}}}$ will result in the following property which will be used to prove that (X, τ) is κ-normal:
\dagger Whenever E, F are disjoint canonical closed subsets of $X, \mid c l_{X_{\mathbf{R}}}\left(i n t_{X} E\right) \cap$ $c l_{X_{\mathrm{R}}}\left(i n t_{X} F\right) \mid \leq \aleph_{0}$.

Now we describe the basic open neighborhoods of elements of $X \backslash \mathbf{Q}$. This construction will prevent the separation of A_{0} and A_{1} by disjoint open subsets of X. For each $x \in X \backslash \mathbf{Q}$ and for each $n \in \omega$, we will define a set I_{n}^{x} and let $\mathcal{B}_{x}=\left\{\{x\} \cup \bigcup_{n \geq k} I_{n}^{x}: k \in \omega\right\}$ 。

Case 1: $x \notin\left(\left\{z_{\alpha}\right\}_{\alpha<2^{\aleph_{0}}} \cup A_{0} \cup A_{1}\right)$.
Let $\left\{q_{n}\right\}_{n \in \omega} \subseteq \mathbf{Q} \cap X$ such that $q_{n} \rightarrow x$. Also, let $\left\{I_{n}^{x}\right\}_{n \in \omega}$ be a sequence of pairwise disjoint open intervals of $X_{\mathbf{R}}$ with endpoints in D such that $q_{n} \in I_{n}^{x}$.

Case 2 : $x \in\left\{z_{\alpha}\right\}_{\alpha<2^{\aleph_{0}}} \backslash\left(A_{0} \cup A_{1}\right)$.
Then $x=z_{\beta}$ for some $\beta<2^{\aleph_{0}}$. Choose a sequence $\left\{q_{n}\right\}_{n \in \omega} \subseteq \mathbf{Q} \cap X$ such that $q_{n} \rightarrow x$ and $q_{n} \in U_{\beta}$ if n is even and $q_{n} \in V_{\beta}$ if n is odd. Also, let $\left\{I_{n}^{x}\right\}_{n \in \omega}$ be a sequence of disjoint open intervals of $X_{\mathbf{R}}$ with endpoints in D such that $q_{n} \in I_{n}^{x}$.

Case 3 : $x \in A_{0} \backslash\left\{z_{\alpha}\right\}_{\alpha<2^{\aleph_{0}}} .\left[x \in A_{1} \backslash\left\{z_{\alpha}\right\}_{\alpha<2^{\aleph_{0}}}\right]$.
Then there exists $f \in{ }^{\omega}\{0,1\}$ such that $x=x_{f}$. Let $I_{0}^{x}=\left((0,1) \cap X_{\mathbf{R}}\right) \backslash\left(C_{0} \cup C_{1}\right)$. For $n \in \omega \backslash\{0\}$, let $I_{n}^{x}=I_{f \mid \widetilde{ }{ }^{\widehat{ }} 0}\left[I_{n}^{x}=I_{f \mid \overparen{ }}{ }_{n} 1\right]$.

Case 4 $: x \in A_{0} \cap\left\{z_{\alpha}\right\}_{\alpha<2^{\aleph_{0}}}\left[x \in A_{1} \cap\left\{z_{\alpha}\right\}_{\left.\alpha<2^{\aleph_{0}}\right]}\right]$.
Then $x=x_{f}$ for some $f \in^{\omega}\{0,1\}$ and $x=z_{\beta}$ for some $\beta<2^{\aleph_{0}}$.
Subcase 4a $:\left.I_{f}\right|_{n} 0 \cap U_{\beta} \neq \emptyset \quad\left[\left.I_{f}\right|_{n}{ }_{n} \cap U_{\beta} \neq \emptyset\right]$ for infinitely many $n \in \omega$ and
$I_{\left.f\right|_{n} ^{\overparen{ }} 0} \cap V_{\beta} \neq \emptyset \quad\left[\left.I_{f}\right|_{\overparen{n}} 1 \cap V_{\beta} \neq \emptyset\right]$ for infinitely many $n \in \omega$.
For each $n \in \omega$, let $I_{n}^{x}=I_{\left.f\right|_{n} 0}\left[I_{n}^{x}=\left.I_{f}\right|_{n} 1\right]$.
Subcase 4b : $\left.I_{f}\right|_{n} 0 \cap U_{\beta} \neq \emptyset\left[\left.I_{f}\right|_{{ }_{n}} 1 \cap U_{\beta} \neq \emptyset\right]$ for infinitely many $n \in \omega$ and
$I_{f}{ }_{{ }_{n}} 0 \cap V_{\beta}=\emptyset\left[\left.I_{f}\right|_{\overparen{n}}{ }_{1} \cap V_{\beta}=\emptyset\right]$ for all but finitely many $n \in \omega$.
Choose a sequence $\left\{q_{n}\right\}_{n \in \omega} \subseteq \mathbf{Q} \cap V_{\beta}$ such that $q_{n} \rightarrow x$. Also, choose a sequence $\left\{I_{n}^{\beta}\right\}_{n \in \omega}$ of pairwise disjoint open intervals in $X_{\mathbf{R}}$ with endpoints in D such that $q_{n} \in I_{n}^{\beta}$ and $I_{n}^{\beta} \cap\left(\bigcup_{m \in \omega} I_{\left.f\right|_{m} 0}\right)=\emptyset\left[I_{n}^{\beta} \cap\left(\bigcup_{m \in \omega} I_{\left.f\right|_{m} 1}\right)=\emptyset\right]$. Let $N_{3} \subseteq\left\{3^{n}\right.$: $n \in \omega\}$ be such that $\left|N_{3}\right|=\aleph_{0}$ and $\left|\left\{n \in \omega: I_{\left.f\right|_{n} 0}^{=} \cap U_{\beta} \neq \emptyset\right\} \backslash N_{3}\right|=\aleph_{0}$ $\left[\left|\left\{n \in \omega:\left.I_{f}\right|_{n}{ }_{1} \cap U_{\beta} \neq \emptyset\right\} \backslash N_{3}\right|=\aleph_{0}\right]$. For each $n \in \omega$, if $n \in N_{3}$, let $I_{n}^{x}=I_{n}^{\beta}$; otherwise, let $I_{n}^{x}=\left.I_{f}\right|_{n} 0\left[I_{n}^{x}=\left.I_{f}\right|_{n} 1\right]$.

Subcase 4c : $I_{\left.f\right|_{n} 0} 0 \cap V_{\beta} \neq \emptyset\left[\left.I_{f}\right|_{n} 1 \cap V_{\beta} \neq \emptyset\right]$ for infinitely many $n \in \omega$ and $I_{\left.f\right|_{\overparen{n}} ^{\overparen{ }} 0} \cap U_{\beta}=\emptyset\left[\left.I_{f}\right|_{n} ^{\overparen{ }} 1 \cap U_{\beta}=\emptyset\right]$ for all but finitely many $n \in \omega$.

Choose a sequence $\left\{q_{n}\right\}_{n \in \omega} \subseteq \mathbf{Q} \cap U_{\beta}$ such that $q_{n} \rightarrow x$. Also, choose a sequence $\left\{I_{n}^{\beta}\right\}_{n \in \omega}$ of pairwise disjoint open intervals in $X_{\mathbf{R}}$ with endpoints in D such that $q_{n} \in I_{n}^{\beta}$ and $I_{n}^{\beta} \cap\left(\bigcup_{m \in \omega} I_{\left.f\right|_{\overparen{~}} 0}\right)=\emptyset\left[I_{n}^{\beta} \cap\left(I_{\left.f\right|_{\overparen{\curvearrowright}} 1}\right)=\emptyset\right]$. Let $N_{2} \subseteq\left\{2^{n}: n \in \omega\right\}$ be such that $\left|N_{2}\right|=\aleph_{0}$ and $\left|\left\{n \in \omega: I_{\left.f\right|_{n}{ }_{n} 0} \cap V_{\beta} \neq \emptyset\right\} \backslash N_{2}\right|=\aleph_{0}[\mid\{n \in \omega$: $\left.\left.I_{f \mid{ }_{n}} \cap V_{\beta} \neq \emptyset\right\} \backslash N_{2} \mid=\aleph_{0}\right]$. For each $n \in \omega$, if $n \in N_{2}$, let $I_{n}^{x}=I_{n}^{\beta}$; otherwise, let $I_{n}^{x}=\left.I_{f}\right|_{n} 0\left[I_{n}^{x}=I_{\left.f\right|_{n}-1}\right]$.
 and $I_{\left.f\right|_{n} ^{\overparen{ }} 0} \cap V_{\beta}=\emptyset\left[I_{\left.f\right|^{\curvearrowright} 1} \cap V_{\beta}=\emptyset\right]$ for all but finitely many $n \in \omega$.

Choose a sequence $\left\{q_{n}\right\}_{n \in \omega} \subseteq \mathbf{Q} \cap X$ such that $q_{n} \rightarrow x$ and $q_{n} \in U_{\beta}$ if n is even and $q_{n} \in V_{\beta}$ if n is odd. Also, let $\left\{I_{n}^{\beta}\right\}_{n \in \omega}$ be a sequence of pairwise disjoint open intervals of $X_{\mathbf{R}}$ with endpoints in D such that $q_{n} \in I_{n}^{\beta}$ and such that $\left(\bigcup_{n \in \omega} I_{n}^{\beta}\right) \cap\left(\bigcup_{n \in \omega} I_{\left.f\right|_{n}} 0\right)=\emptyset\left[\left(\bigcup_{n \in \omega} I_{n}^{\beta}\right) \cap\left(\bigcup_{n \in \omega} I_{\left.f\right|_{n}}{ }^{1}\right)=\emptyset\right]$. If n is a power of 2 or a power of 3 , let $I_{n}^{x}=I_{n}^{\beta}$. Otherwise, let $I_{n}^{x}=I_{\left.f\right|_{n}}{ }^{-}\left[I_{n}^{x}=I_{\left.f\right|_{n} 1}\right]$.

Let τ be the topology on X generated by $\bigcup_{x \in X} \mathcal{B}_{x}$. Note that (X, τ) is Hausdorff since τ is stronger than the subspace topology on X inherited from \mathbf{R}. Also, note that (X, τ) is Tychonoff since τ has a base of clopen sets.

Lemma 1. (X, τ) is κ-normal.
Proof. Let E, F be disjoint canonical closed subsets of X. Note that $c_{X}\left(\right.$ int $\left._{X_{\mathbf{R}}}(E)\right)$ $\subseteq c l_{X}\left(i n t_{X}(E)\right)=c l_{X}\left(i n t_{X}(E) \cap \mathbf{Q}\right)=c l_{X}\left(i n t_{X_{\mathbf{R}}}(E) \cap \mathbf{Q}\right) \subseteq c l_{X}\left(i n t_{X_{\mathbf{R}}}(E)\right)$.

Therefore, $E=c l_{X}\left(E_{0}\right)$ and $F=c l_{X}\left(F_{0}\right)$ where $E_{0}=i n t_{X_{\mathbf{R}}}(E)$ and $F_{0}=$ $\operatorname{int}_{X_{\mathbf{R}}}(F)$. Let $A=c l_{X_{\mathbf{R}}}\left(E_{0}\right) \cap c l_{X_{\mathbf{R}}}\left(F_{0}\right)$. By the construction of $\left\{z_{\alpha}\right\}_{\alpha<2^{\aleph_{0}}}$, and cases 2 and 4 of the definition of $\tau,|A| \leq \aleph_{0}$. Enumerate $A=\left\{a_{k}\right\}_{k \in \omega}$ and note that $A \cap \mathbf{Q}=\emptyset$. For each $x \in E \cup F$, we need to define W_{x} open in X with $x \in W_{x}$. First, let $k \in \omega$ and consider a_{k}. If $a_{k} \in E$, choose $n_{k} \in \omega$ such that $\left(\left\{a_{k}\right\} \cup \bigcup_{i \geq n_{k}} I_{i}^{a_{k}}\right) \cap\left(F \cup \bigcup\left\{W_{a_{n}}: n<k\right.\right.$ and $\left.\left.a_{n} \in F\right\}\right)=\emptyset$ and such that $\left\{a_{k}\right\} \cup \bigcup_{i>n_{k}} I_{i}^{a_{k}} \subseteq\left(a_{k}-\frac{1}{k}, a_{k}+\frac{1}{k}\right)$. If $a_{k} \in F$, choose $n_{k} \in \omega$ such that $\left(\left\{a_{k}\right\} \cup \bigcup_{i \geq n_{k}} \bar{I}_{i}^{a_{k}}\right) \cap\left(E \cup \bigcup\left\{W_{a_{n}}: n<k\right.\right.$ and $\left.\left.a_{n} \in E\right\}\right)=\emptyset$, and such that $\left\{a_{k}\right\} \cup \bigcup_{i \geq n_{k}} I_{i}^{a_{k}} \subseteq\left(a_{k}-\frac{1}{k}, a_{k}+\frac{1}{k}\right)$. Let $W_{a_{k}}=\left\{a_{k}\right\} \cup \bigcup_{i \geq n_{k}} I_{i}^{a_{k}}$. Now suppose that $x \in \bar{E} \backslash A[x \in F \backslash A]$. Then there exists $\delta>0$ such that $(x-\delta, x+\delta) \cap F=\emptyset$ $[(x-\delta, x+\delta) \cap E=\emptyset]$. Choose $n_{\delta} \in \omega \backslash\{0\}$ such that $\frac{1}{n_{\delta}}<\frac{\delta}{2}$. Then for each $n>n_{\delta}$ such that $a_{n} \in F\left[a_{n} \in E\right]$, we have $\left(x-\frac{\delta}{2}, x+\frac{\delta}{2}\right) \cap W_{a_{n}}=\emptyset$. For each $n<n_{\delta}$ such
that $a_{n} \in F\left[a_{n} \in E\right]$, there exists $\delta_{n}>0$ such that $\left(x-\delta_{n}, x+\delta_{n}\right) \cap W_{a_{n}}=\emptyset$. Let $\delta_{x}=\min \left\{\frac{\delta}{2}, \min \left\{\delta_{n}: n<n_{\delta}\right.\right.$ and $\left.\left.a_{n} \in F\left[a_{n} \in E\right]\right\}\right\}$. Choose an interval I_{x} which is open in $X_{\mathbf{R}}$ with endpoints in D such that $I_{x} \subseteq\left(x-\frac{\delta_{x}}{4}, x+\frac{\delta_{x}}{4}\right)$. Let $W_{x}=I_{x}$. Let $U=\bigcup_{x \in E} W_{x}$ and let $V=\bigcup_{x \in F} W_{x}$. To see that $U \cap V=\emptyset$, choose $s \in E$ and $t \in F$ and consider $W_{s} \cap W_{t}$.

Case 1 $: s, t \in A$.
Then there exists $n_{s}, n_{t} \in \omega$ such that $s=a_{n_{s}}$ and $t=a_{n_{t}}$. Then $W_{a_{n_{s}}} \cap W_{a_{n_{t}}}=\emptyset$ by design.

Case 2: Exactly one of s and t is an element of A.
Without loss of generality suppose $t \in A$. Then W_{s} is chosen such that $W_{s} \cap W_{t}=$ \emptyset.

Case 3: $s, t \notin A$.
Without loss of generality suppose $\delta_{s}>\delta_{t}$. If $W_{s} \cap W_{t} \neq \emptyset$, then $\left(s-\frac{\delta_{s}}{4}\right.$, $\left.s+\frac{\delta_{s}}{4}\right) \cap\left(t-\frac{\delta_{t}}{4}, t+\frac{\delta_{t}}{4}\right) \neq \emptyset$, which implies $t \in\left(s-\delta_{s}, s+\delta_{s}\right)$ and contradicts the choice of δ_{s}. Hence, $W_{s} \cap W_{t}=\emptyset$.

Therefore, X is κ-normal.
Lemma 2. (X, τ) is not densely normal.
Proof. Let Y be dense in X. For each $n \in \omega \backslash\{0\}$ and for each $s \in{ }^{n}\{0,1\}$ choose $y_{s \frown 0} \in\left(I_{s \frown 0} \backslash I_{s \frown 1}\right) \cap Y$, and choose $y_{s \frown 1} \in\left(I_{s \frown 1} \backslash I_{s \frown 0}\right) \cap Y$. Let $Y_{0}=\left\{y_{f \mid \overparen{n} 0}:\right.$ $f \in{ }^{\omega}\{0,1\}$ and $\left.x_{f} \in \mathbf{C}\right\}$ and let $Y_{1}=\left\{y_{f \mid \overparen{n}_{1}}: f \in{ }^{\omega}\{0,1\}\right.$ and $\left.x_{f} \in \mathbf{C}\right\}$.
$\underline{\text { Claim }: c l_{X}\left(Y_{0}\right)=Y_{0} \cup A_{0} \text { and } c l_{X}\left(Y_{1}\right)=Y_{1} \cup A_{1} \text {. } ~}$
Proof. By design, $Y_{0} \cup A_{0} \subseteq c l_{X}\left(Y_{0}\right)$. To see that $c l_{X}\left(Y_{0}\right) \subseteq Y_{0} \cup A_{0}$, let $y \in$ $c l_{X}\left(Y_{0}\right) \backslash Y_{0}$. Note that $y \in c l_{X_{\mathbf{R}}}\left(Y_{0}\right)$ which implies that $y \in c l_{X_{\mathbf{R}}}\left(\left\{q_{\left.f\right|_{n}}: f \in\right.\right.$ $\left.\left.{ }^{\omega}\{0,1\}, n \in \omega\right\}\right)$. Let $B_{0}^{0}=\left\{q_{\left.f\right|_{n}}: f \in{ }^{\omega}\{0,1\}, n \in \omega\right.$, and $\left.f(0)=0\right\}$ and let $B_{0}^{1}=\left\{q_{\left.f\right|_{n}}: f \in \omega\{0,1\}, n \in \omega\right.$, and $\left.f(0)=1\right\}$. Then $y \in c l_{X_{\mathbf{R}}}\left(B_{0}^{0}\right)$ or $y \in$ $c l_{X_{\mathbf{R}}}\left(B_{0}^{1}\right)$. If $y \in c l_{X_{\mathbf{R}}}\left(B_{0}^{0}\right)$, let $B_{0}=B_{0}^{0}$; otherwise, let $B_{0}=B_{0}^{1}$. For $k \in \omega \backslash\{0\}$, let $B_{k}^{0}=\left\{q_{\left.f\right|_{n}} \in B_{k-1}: f \in{ }^{\omega}\{0,1\}, n \in \omega\right.$, and $\left.f(k)=0\right\}$ and let $B_{k}^{1}=\left\{q_{\left.f\right|_{n}} \in\right.$ $B_{k-1}: f \in{ }^{\omega}\{0,1\}, n \in \omega$, and $\left.f(k)=1\right\}$. Then $y \in c l_{X_{\mathbf{R}}}\left(B_{k}^{0}\right) \cup c l_{X_{\mathbf{R}}}\left(B_{k}^{1}\right)$. If $y \in c l_{X_{\mathrm{R}}}\left(B_{k}^{0}\right)$, let $B_{k}=B_{k}^{0}$; otherwise, let $B_{k}=B_{k}^{1}$. Now define $f_{y}: \omega \rightarrow\{0,1\}$ by $f_{y}(k)=i$ where $B_{k}=B_{k}^{i}$. Then $y \in \bigcap_{k \in \omega} c l_{X_{\mathbf{R}}}\left(B_{k}\right)=c l_{X_{\mathbf{R}}}\left(\left\{q_{\left.f_{y}\right|_{n}}\right\}_{n \in \omega}\right)=\left\{x_{f}\right\}$. Hence, $y \in A_{0} \cup A_{1}$ but $y \notin A_{1}$ by the construction of Y_{0} and Y_{1}. Therefore, $y \in A_{0}$ as desired. Similarly, $c l_{X}\left(Y_{1}\right)=Y_{1} \cup A_{1}$.

To see that X is not normal on Y, suppose that U, V are open subsets of X such that $c l_{X}\left(Y_{0}\right) \subseteq U$ and $c l_{X}\left(Y_{1}\right) \subseteq V$. Let $D_{0}^{k}=\left\{x \in A_{0}:\{x\} \cup \bigcup_{n \geq k} I_{n}^{x} \subseteq U\right\}$. Note that $A_{0}=\bigcup_{k \in \omega} D_{0}^{k} \subseteq \bigcup_{k \in \omega} c l_{X_{\mathrm{R}}}\left(D_{0}^{k}\right)$. Recall that A_{0} is constructed such that A_{0} is not of first Baire category in C. So there exists $k_{0} \in \omega$ such that $\operatorname{int}_{X_{\mathbf{R}}}\left(c l_{X_{\mathbf{R}}}\left(D_{0}^{k_{0}}\right)\right) \neq \emptyset$. Let $f_{0} \in{ }^{\omega}\{0,1\}$ such that $x_{f_{0}} \in D_{0}^{k_{0}}$, and let L_{0} be an open interval of $X_{\mathbf{R}}$ such that $x_{f_{0}} \in L_{0} \subseteq c l_{X_{\mathbf{R}}}\left(D_{0}^{k_{0}}\right)$ and such that L_{0} has endpoints in D. Let $D_{1}^{k}=\left\{x_{f} \in A_{1} \cap L_{0}:\left\{x_{f}\right\} \cup \bigcup_{n \geq k} I_{n}^{x_{f}} \subseteq L_{0} \cap V\right\}$. Note that $A_{1} \cap L_{0}=$ $\bigcup_{k \in \omega} D_{1}^{k}$. Since A_{1} is not of first Baire category in \mathbf{C}, there exists $k_{1} \in \omega$ such that $i n t_{X_{\mathrm{R}}}\left(c l_{X_{\mathrm{R}}}\left(D_{1}^{k_{1}}\right)\right) \neq \emptyset$. Note that $c l_{X_{\mathrm{R}}}\left(D_{1}^{k_{1}}\right) \subseteq c l_{X_{\mathrm{R}}}\left(D_{0}^{k_{0}}\right)$. Let $k=\max \left\{k_{0}, k_{1}\right\}$. Choose $g_{1} \in{ }^{\omega}\{0,1\}$ such that $x_{g_{1}} \in D_{1}^{k_{1}}$. Also, choose L_{1} to be an open interval of $X_{\mathbf{R}}$ with endpoints in D such that $x_{g_{1}} \in L_{1} \subseteq c l_{X_{\mathbf{R}}}\left(D_{1}^{k_{1}}\right) \subseteq c l_{X_{\mathbf{R}}}\left(D_{0}^{k_{0}}\right)$ and such that $x_{f} \in L_{1}$ implies that $\left.f\right|_{k+4}=\left.g_{1}\right|_{k+4}$. Now choose $g_{0} \in{ }^{\omega}\{0,1\}$ such
that $x_{g_{0}} \in D_{0}^{k_{0}} \cap L_{1}$. Then $\left.g_{0}\right|_{k+4}=\left.g_{1}\right|_{k+4}$. Choose $m \in \omega, k \leq m \leq k+4$, such that m is not a power of 2 and m is not a power of 3 . Since $x_{g_{0}} \in D_{0}^{k_{0}}$, $x_{g_{1}} \in D_{1}^{k_{1}}$, and $k \leq m,\left\{x_{g_{0}}\right\} \cup \bigcup_{n \geq m} I_{n}^{x_{g_{0}}} \subseteq U$ and $\left\{x_{g_{1}}\right\} \cup \bigcup_{n \geq m} I_{n}^{x_{g_{1}}} \subseteq V$. Also, $I_{m}^{x_{g_{0}}}=I_{\left.g_{0}\right|_{m} 0}$ and $I_{m}^{x_{g_{1}}}=I_{\left.g_{1}\right|_{m} 1}$ since m is not a power of 2 or a power of 3 . Since $\left.g_{0}\right|_{m}=\left.g_{1}\right|_{m}, I_{\left.g_{0}\right|_{m}} \cap I_{\left.g_{1}\right|_{m}} 1 \neq \emptyset$. This implies that $U \cap V \neq \emptyset$. Hence, X is not normal on Y.

References

[1] Stchepin, E.V.; Real-valued functions, and spaces close to normal. Sib. Matem Journ. 13:5 (1972), 1182-1196.
[2] Arhangelskii, A.V.; Relative topological properties and relative topological spaces. Topology Appl. 70 (1996) 87-99.

Department of Mathematics, Ohio University, Athens, Ohio 45701
E-mail address: Just@bing.math.ohiou.edu
Current address, J. Tartir: Department of Mathematics and Statistics, Catholic University of America, Washington, DC 20064

E-mail address: Jt944485@oak.cats.ohiou.edu

[^0]: Received by the editors March 27, 1997 and, in revised form, June 19, 1997.
 1991 Mathematics Subject Classification. Primary 54D15.
 Key words and phrases. κ-normal, densely normal, X normal on Y, A concentrated on Y.
 The first author was partially supported by NSF grant DMS 9312363.
 ${ }^{1}$ Subsequent to our result, O. Pavlov has given another example of a κ-normal, not densely normal Tychonoff space. However, this construction is very different from ours.

