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Abstract. We show that on the 2-torus T2 there exists a C1 open set U of
C1 regular maps such that every map belonging to U is topologically mixing
but is not Anosov. It was shown by Mañé that this property fails for the class
of C1 toral diffeomorphisms, but that the property does hold for the class of
C1 diffeomorphisms on the 3-torus T3. Recently Bonatti and Diaz proved that
the second result of Mañé is also true for the class of C1 diffeomorphisms on
the n-torus Tn (n ≥ 4).

The concept of sensitive dependence on initial conditions has played an important
role in the development of the theory of chaotic dynamical systems (see Devaney
[4]). We know that this concept contains that of topological mixing, which is well
known from the hyperbolic theory. Thus it will be natural to ask how big the class
of topological mixing is. We discuss this question on dynamical systems defined by
C1 regular maps of the 2-torus.

Let Tn be an n-torus and let π : Rn → Tn be the natural projection. A metric
for Tn is defined by d(x, y) = inf{|x̄− ȳ| | x̄, ȳ ∈ Rn, π(x̄) = x, π(ȳ) = y} (x, y ∈ Tn)
where | · | denotes the euclidean norm of Rn. Let f : Tn → Tn be a continuous
surjection. f has sensitive dependence on initial conditions if there is δ > 0 such
that for each x ∈ Tn and each neighborhood U of x there exist y ∈ U and n ≥ 0
such that d(fn(x), fn(y)) > δ. If for nonempty open sets U, V there exists N > 0
such that U ∩fn(V ) 6= ∅ for all n ≥ N , then f : Tn → Tn is said to be topologically
mixing. f is positively expansive if there is a constant δ > 0 such that if x 6= y,
then d(fn(x), fn(y)) > δ for some nonnegative integer n (δ is called an expansive
constant for f). For continuous surjective maps of the n-torus the above properties
satisfy the following implications:

positive expansivity =⇒topological mixing
=⇒sensitive dependence on initial conditions.

Whenever on the 1-torus T1 a local homeomorphism f is topologically mixing,
it is positively expansive. This is easily checked as follows. Let δ > 0 be small
enough. For x, y ∈ T1 with x 6= y suppose d(fn(x), fn(y)) ≤ δ for n ≥ 0. Then
the open interval with length ≤ δ, (x, y), satisfies fn((x, y)) ⊂ Uδ(fn(x)) for n ≥ 0.
Since f is topologically mixing, for arbitrary nonempty open sets U1, U2 there exists

Received by the editors November 26, 1996 and, in revised form, June 26, 1997.
1991 Mathematics Subject Classification. Primary 58F12.
Key words and phrases. Anosov differentiable map, DA-map, sensitive dependence on initial

conditions, topological mixing, transversal homoclinic point.

c©1999 American Mathematical Society

915



916 NAOYA SUMI

N > 0 such that fn((x, y)) ∩ U1 6= ∅ and fn((x, y)) ∩ U2 6= ∅ for n ≥ N . But this
is inconsistent since fn((x, y)) ⊂ Uδ(fn(x)) for n ≥ 0. Thus, d(fn(x), fn(y)) > δ
for some n ≥ 0, that is positively expansive.

Since the positively expansive property cannot hold for homeomorphisms (see
[2]), f is not injective. This implies that on the 1-torus T1 the C1-interior of the
class of regular maps that are topologically mixing equals the class of expanding
maps. On the 2-torus Mañé [7] proved that the C1-interior of topologically mix-
ing diffeomorphisms equals the class of Anosov diffeomorphisms, and moreover he
proved that there exists a C1 open set U of C1 diffeomorphisms on the 3-torus T3,
such that every diffeomorphism belonging to U is topologically mixing and is not
Anosov. Recently Bonatti and Diaz [3] extended to the class of C1 diffeomorphisms
on the n-torus Tn (n ≥ 4) the second result obtained by Mañé.

The aim of this paper is to show the following theorem on the class of regular
maps.

Theorem A. On the 2-torus T2 the C1-interior of regular maps that are topological
mixing is bigger than the class of C1 Anosov differentiable maps.

Theorem A will be obtained by proving the following

Theorem B. The class of all C1 regular maps contains a nonempty C1 open set
U such that every regular map belonging to U is topologically mixing, but is not
Anosov.

Palis and Takens posed the following problem in [11]: Are the diffeomorphisms
with a hyperbolic limit set C1-dense in the space of all surface diffeomorphisms?
This is still unsolved. But Theorem B indicates that the answer is no for the space
of all C1 regular maps on the 2-torus.

Before starting the proof we prepare a few basic notations for completeness. Let
f : T2 → T2 be a regular map, i.e. a differentiable map such that for every x ∈ T2

the derivative Dxf : TxT2 → Tf(x)T2 is surjective. By the inverse function theorem,
f is a local diffeomorphism. We denote by

∏∞
−∞ T2 the product topological space

with the metric d̃((xj), (yj)) =
∑∞

−∞ 2−|j|d(xj , yj) for (xj), (yj) ∈
∏∞
−∞ T2, and

define a natural projection π̃ :
∏∞
−∞ T2 → T2 by π̃((xi)) = x0. For an f -invariant

set Λ (f(Λ) = Λ) we write Λf = {(xj) | xj ∈ Λ, f(xj) = xj+1 (j ∈ Z)} . Then a
homeomorphism f̃ : Λf → Λf is defined by f̃((xi)) = (f(xi)) for (xi) ∈ Λf and
π̃ ◦ f̃ = f ◦ π̃ holds. The system (Λf , f̃) is said to be the inverse limit system of
(Λ, f).

For an f -invariant closed subset Λ if there exist constants C > 0 and 0 < λ < 1
such that for x̃ = (xj) ∈ Λf the tangent space Tx0T2 splits into the direct sum
Tx0T2 = Es(x̃)⊕ Eu(x̃) of Df -invariant subspaces Es(x̃) and Eu(x̃) satisfying{

|Dx0f
n(v)| ≤ Cλn|v| (v ∈ Es(x̃)),

|(Dx−nfn)−1(v)| ≤ Cλn|v| (v ∈ Eu(x̃))

for all n ≥ 0, then Λ is hyperbolic. If T2 is a hyperbolic set of f , then f : T2 →
T2 is called an Anosov differentiable map. If, in particular, Tx0T2 = Eu(x̃) for
all x̃ = (xi) ∈ T2

f , then f is said to be expanding. Every expanding map is
positively expansive. However, in general a positively expansive regular map need
not be expanding ([2]). For the properties of Anosov diffeomorphisms, Anosov
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differentiable maps and expanding maps, we refer to Anosov [1], Smale [14], Franks
[5], Manning [9], Mañé and Pugh [8], Przytycki [12] and Shub [13].

For a hyperbolic set Λ and x̃ = (xj) ∈ Λf define

W s
ε (x̃, f) =

{
y ∈ T2

∣∣ d(f j(x), f j(y)) ≤ ε (j ≥ 0)
}

,

Wu
ε (x̃, f) =

{
y ∈ T2

∣∣∣∣∣ there exists ỹ = (yj) ∈ T2
f such that

y = y0 and d(xj , yj) ≤ ε (j ≤ 0)

}
.

Then W σ
ε (x̃, f) is a manifold which is tangent at x0 to Eσ(x̃) for σ = s, u ([12]).

The sets W s
ε (x̃, f) and Wu

ε (x̃, f) are called the local stable manifold and the local
unstable manifold respectively.

Let f : T2 → T2 be a regular map, and let p ∈ T2 be a fixed point of f . p is
called hyperbolic if Dpf has no eigenvalues of absolute value one. A hyperbolic
fixed point is the simplest example of a hyperbolic set. We say that p is a sink if
all the eigenvalues of Dpf are less than one in absolute value and p is a source if all
the eigenvalues of Dpf are greater than one in absolute value. A hyperbolic fixed
point p is a saddle if p is neither a sink nor a source. (The same definition applies
to a periodic point of a differentiable map of an arbitrary manifold.)

Let f : T2 → T2 be a regular map. Suppose that f has a saddle fixed point
p. Take and fix p̄ ∈ R2 with π(p̄) = p. Then there exists a lifting f̄ : R2 → R2

of f such that f̄(p̄) = p̄. Obviously f̄ is a diffeomorphism and p̄ is a saddle fixed
point of f̄ . For ε > 0 define W s

ε (p̄, f̄) =
{
x̄ ∈ R2

∣∣ |f̄n(x̄)− p̄| ≤ ε (n ≥ 0)
}

and
Wu

ε (p̄, f̄) =
{
x̄ ∈ R2

∣∣ |f̄n(x̄)− p̄| ≤ ε (n ≤ 0)
}
. Take ε > 0 small enough. Then

W σ
ε (p̄, f̄) is a C1 curve for σ = s, u, and there exists 0 < λ̄ < 1 satisfying{

|f̄n(x̄)− p̄| ≤ λ̄n|x̄− p̄| (x̄ ∈ W s
ε (p̄, f̄), n ≥ 0),

|f̄−n(x̄)− p̄| ≤ λ̄n|x̄− p̄| (x̄ ∈ Wu
ε (p̄, f̄), n ≥ 0)

(see Hirsch and Pugh [6]). Put p̃ = (· · · , p, p, p, · · · ) ∈ T2
f . Since π(W σ

ε (p̄, f̄)) =
W σ

ε (p̃, f) by definition, obviously W σ
ε (p̃, f) is a C1-curve, and

(I) d(fn(x), p) ≤ λ̄nd(x, p) (x ∈ W s
ε (p̃, f), n ≥ 0),

(II) if (xi) ∈ T2
f satisfies d(x−n, p) ≤ ε for n ≥ 0, then d(x−n, p) ≤ λ̄nd(x0, p) for

n ≥ 0.

For p̃ ∈ T2
f define the stable and unstable sets by

W s(p̃, f) =
{
x ∈ T2

∣∣ lim
n→∞ d(fn(x), p) = 0

}
,

Wu(p̃, f) =

{
x ∈ T2

∣∣∣∣∣ there exists x̃ = (xn) ∈ T2
f such that

x = x0 and lim
n→∞ d(x−n, p) = 0

}
.

Then we have W s(p̃, f) =
⋃∞

0 f−n (W s
ε (p̃, f)) and Wu(p̃, f) =

⋃∞
0 fn (Wu

ε (p̃, f)) .
If f is not injective, then W s(p̃, f) is expressed as a countable union of C1 curves,
and Wu(p̃, f) is not an immersed manifold. Therefore the stable and unstable sets
are not manifolds.

On the other hand, the stable and unstable manifolds at p̄ of f̄ are defined
respectively by W s(p̄, f̄) =

{
x̄ ∈ R2

∣∣ limn→∞ |f̄n(x̄)− p̄| = 0
}

and Wu(p̄, f̄) =
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x̄ ∈ R2

∣∣ limn→−∞ |f̄n(x̄)− p̄| = 0
}

. Then it is easily checked that

W s(p̄, f̄) =
∞⋃
0

f̄−n
(
W s

ε (p̄, f̄)
)
, W u(p̄, f̄) =

∞⋃
0

f̄n
(
Wu

ε (p̄, f̄)
)
,

W s(p̃, f) ⊃ π(W s(p̄, f̄)), Wu(p̃, f) = π(Wu(p̄, f̄)).

In order to show Theorem B we need the technique of the derived-from-Anosov
diffeomorphism by Smale [14] (see Williams [15] for details).

Let A =
(

3 1
1 1

)
. The eigenvalues of A are µ = 2 +

√
2, λ = 2 − √

2, so

0 < λ < 1 < µ. Let vu and vs be the eigenvectors for µ and λ respectively
with |vu| = |vs| = 1. We use coordinates u1vu + u2vs on R2 and denote by Eσ

the span of the eigenvector vσ (σ = s, u). For x̄ ∈ R2 the tangent spaces Tx̄R2

and Tπ(x̄)T2 can be identified with R2 in a natural way. Then we can also use
(u1, u2)-coordinates on Tx̄R2 and Tπ(x̄)T2. Note that in the (u1, u2)-coordinates

Dx̄π =
(

1 0
0 1

)
: Tx̄R2 → Tπ(x̄)T2.

Let r > 0 be small enough. Then π|Br(0) is injective where Br(0) is the ball of
radius r about 0. Take a small r′ with 0 < r′ < r and let δ(s) be a bump function
such that δ(s) = 0 (s ≥ r) and δ(s) = 1 (s ≤ r′). Define ϕ̄t(x̄) = (u1, e

δ(|(u1,u2)|)tu2)
for x̄ = (u1, u2) ∈ R2 = Eu ⊕ Es and put

ϕt(x) =

{
π ◦ ϕ̄t ◦ (π|Br(0))

−1(x) (x ∈ π(Br(0))),
x (x /∈ π(Br(0))).

Then the derivative at p0 = π(0) is Dp0ϕt =
(

1 0
0 et

)
in the (u1, u2)-coordinates.

Let fA : T2 → T2 be the toral endomorphism induced by the matrix A. Since
0 < λ < 1 < µ, fA is an Anosov differentiable map and p0 = π(0) is a saddle fixed
point of fA. Define f = ϕτ ◦ fA for a fixed τ such that µ > eτλ > 1. Suppose
that − dδ

ds (s) < 1/s (s ≥ 0). Then we have that f is regular. The map f is called
the DA-regular map. Note that in the (u1, u2)-coordinates the derivative of f at

p0 is Dp0f = Dp0ϕτ ◦Dp0fA =
(

1 0
0 eτ

)
◦

(
µ 0
0 λ

)
=

(
µ 0
0 eτλ

)
, and thus p0 is a

source.
Let p̃0 = (· · · , p0, p0, p0, · · · ) ∈ T2

fA
. Denote by W s

0 (p̃0, fA) the arcwise connected
component of W s(p̃0, fA) containing p0. Then f(W s

0 (p̃0, fA)) = W s
0 (p̃0, fA). The

new map f has three fixed points on W s
0 (p̃0, fA) ∩ Br(p0), p0 and two new saddle

fixed points p1 and p2. This fact can be seen to be true because f is a monotonically
growing function on W s

0 (p̃0, fA), f(p0) = p0 is a source and outside Br(p0) the slope
of the graph of f on W s

0 (p̃0, fA) is still less than one.
Let f̄ : R2 → R2 be a lifting of f such that f̄(0) = 0. Since f has three fixed

points p0, p1, p2 in Br(p0) and f ◦π = π ◦ f̄ on Br(0), f̄ also has three fixed points
in Br(0). We denote by p̄i the fixed point of f̄ corresponding to pi (i = 0, 1, 2).

For all x ∈ T2 the derivative Dxf is expressed as Dxf =
(

µ 0
c(x) d(x)

)
in

the (u1, u2)-coordinates, and we have 0 < d(x) ≤ eτλ. Since f ◦ π = π ◦ f̄ and

Dx̄π = id (x̄ ∈ R2), we have that Dx̄f̄ = Dπ(x̄)f =
(

µ 0
c(π(x̄)) d(π(x̄))

)
for x̄ ∈ R2.

Put C = max{|c(x)| |x ∈ T2} and D = min{d(x)|x ∈ T2}, and take L > 0 such
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that

µ > eτλ + C/L.(1)

Since µ > 1, we may fix m > 0 satisfying µm/(1 + L) > 1 and take µ̄ such that

µm/(1 + L) > µ̄ > 1.(2)

Let λ̄ satisfy λ < λ̄ < 1− 8r and choose δ > 0 so that
1/λ(1 + δ) > 1/λ̄,

λ̄ < 1− 8r
√

1 + δ2,

µ− δ
(

Ceτ λ
D

)
> eτλ,

δ < 1/L.

(3)

For x̄ ∈ R2 define T u(x̄) =
{
(v1, v2) ∈ Eu(x̄)⊕ Es(x̄)

∣∣ |v2| ≤ L|v1|
}

where
Eu(x̄) and Es(x̄) denote the subspaces in Tx̄R2 corresponding to Eu and Es in
R2. Then for x̄ ∈ R2 and 0 6= v ∈ T u(x̄)

Dx̄f̄(v) ∈ intT u(f̄(x̄)), |Dx̄f̄m(v)| > µ̄|v|(4)

where int(E) denotes the interior of E. Indeed, for (v1, v2) ∈ T u(x̄) put Dx̄f̄(v1, v2)
= (v′1, v

′
2), and then

|v′2| = |c(π(x̄))v1 + d(π(x̄))v2| ≤ C|v1|+ eτλ|v2|
≤ {C + Leτλ}|v1| < Lµ|v1| = L|v′1| (by (1))

and so (v′1, v
′
2) ∈ T u(f̄(x̄)). The second inequality is easily checked by (2). There-

fore (4) is proved.
For x̄ ∈ R2 we also define T s(x̄) = {(v1, v2) ∈ Eu(x̄)⊕ Es(x̄) | |v1| ≤ δ|v2|} .

Since the derivative Dx̄f̄−1 of f̄−1 is expressed as Dx̄f̄−1 =
(

µ−1 0
0 λ−1

)
for

x̄ /∈ Br(Z2) =
⋃

n∈Z2 Br(n), by (3) we have{
Dx̄f̄−1(v) ∈ intT s(f̄−1(x̄)) (x̄ ∈ R2, 0 6= v ∈ T s(x̄)),
|Dx̄f̄−1(v)| > λ̄−1|v| (x̄ /∈ Br(Z2), 0 6= v ∈ T s(x̄))

(5)

where int(E) denotes the interior of E. The proof of (5) is similar to that of (4)
and so we omit the proof.

Then, by the implicit function theorem we see that there exists a small C1

neighborhood U of f such that each g of U is regular and
(i) in Br(p0) there exists a fixed point pi

g of g (i = 0, 1, 2), and p0
g is a source and

pi
g is a saddle for i = 1, 2,

(ii) every lifting of g satisfies the properties (4) and (5),
(iii) for x ∈ T2 there exists y ∈ g−1(x) such that B1/4(y) ∩Br(p0) = ∅.

The following Proposition C implies Theorem B.

Proposition C. Under the above notation, for g ∈ U and two saddle fixed points
pi

g (i = 1, 2) of g, one has cl
(
Wu(p̃i

g, g) ∩W s(p̃i
g, g)

)
= T2 where p̃i

g = (· · · , pi
g, p

i
g,

pi
g, · · · ) for i = 1, 2. Here cl(E) denotes the closure of E.

By Proposition C it is clear that g ∈ U is topologically mixing. Since g ∈ U has
a source p0

g and a saddle pi
g by (i), obviously g is not Anosov. Moreover we have

the following result from Proposition C.
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Theorem D. Under the above notation, every g belonging to U has a set of saddle
periodic points that is dense in T2.

To see Theorem D we need the next Lemma E. Let h : T2 → T2 be a C1-regular
map and p ∈ T2 a saddle fixed point of h. Then x ∈ T2 is a homoclinic point of
p if x ∈ W s(p̃, h) ∩Wu(p̃, h) \ {p} where p̃ = (· · · , p, p, p, · · · ). We say that x is a
transversal homoclinic point if there exists a point x̃ = (xi) ∈ T2

h such that x = x0

and d(x−n, p) → 0 (n →∞), and such that for some n > 0

xn ∈ W s
ε (p̃, h), x−n ∈ Wu

ε (p̃, h),

Dx−nh2n(Tx−nWu
ε (p̃, h)) + TxnW s

ε (p̃, h) = TxnT2.

From the homoclinic point theorem for diffeomorphisms we have the following

Lemma E. Let p ∈ T2 be a saddle fixed point of a C1-regular map h. If x ∈ T2

is a transversal homoclinic point of p, then the point x is approximated by saddle
periodic points of h.

Since h is a local diffeomorphism, the conclusion of Lemma E is obtained by
the technique described in Newhouse [10]. That for g ∈ U every homoclinic point
of the saddle fixed point pi

g (i = 1, 2) of g is transverse follows from the proof of
Proposition C. Therefore Theorem D is concluded.

Now to obtain the main result of this paper we have only to show Proposition
C.

Proof of Proposition C. Let f : T2 → T2 be the DA-regular map as above and
U be the C1 neighborhood of f as in Proposition C. Let f̄ : R2 → R2 be the lifting
of f taken as above. Fix g ∈ U and choose a lifting ḡ : R2 → R2 of g which is close
to f̄ under the uniform C1 topology. By (i) there exists a fixed point p̄i

g ∈ Br(0) of
ḡ (i = 0, 1, 2), and p̄0

g is a source and p̄i
g is a saddle for i = 1, 2.

Let T u(x̄) (x̄ ∈ R2) and µ̄ > 1 be as above. By (ii), for x̄ ∈ R2 and 0 6= v ∈ T u(x̄),

Dx̄ḡ(v) ∈ T u(ḡ(x̄)), |Dx̄ḡm(v)| > µ̄|v|.(6)

Let I be a closed interval and let k̄ : I → R2 be a C1-injection. Suppose that

0 6= dk̄

dt
(t) ∈ T u(k̄(t)) (t ∈ I),(7)

and for a, b ∈ I define d(k̄(a), k̄(b)) =
∫ b

a

∣∣∣dk̄
dt (t)

∣∣∣ dt where d depends on k as well

as k̄(a), k̄(b). The max is attained at the ends of the interval, so it is clearer to
define `(k̄(I)) as

∫
I

∣∣∣dk̄
dt (t)

∣∣∣ dt. From an easy calculation we have |k̄(a) − k̄(b)| ≤
d(k̄(a), k̄(b)) ≤ √

1 + L2|k̄(a)− k̄(b)|.
Lemma 1. Let ḡ : R2 → R2, m > 0 and µ̄ > 1 be as above. If (7) holds for a
C1-injection k̄ : I → R2, then `(ḡm ◦ k̄(I)) ≥ µ̄`(k̄(I)).

Proof. This is clear from (6).

Let T s(x̄) (x̄ ∈ R2) and λ̄ < 1 be as above. Then by (ii) we have{
Dx̄ḡ−1(v) ∈ T s(ḡ−1(x̄)) (x̄ ∈ R2, 0 6= v ∈ T s(x̄)),
|Dx̄ḡ−1(v)| > λ̄−1|v| (x̄ /∈ Br(Z2), 0 6= v ∈ T s(x̄)).

(8)
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Suppose that for a C1-injection c̄ : I → R2

0 6= dc̄

dt
(t) ∈ T s(c̄(t)) (t ∈ I).(9)

Then by (8) we have |c̄(a)− c̄(b)| ≤ d(c̄(a), c̄(b)) ≤ √
1 + δ2|c̄(a)− c̄(b)|.

From (8) we have the following Lemma 2.

Lemma 2. Let ḡ : R2 → R2 and λ̄ < 1 be as above. Suppose that (9) holds for a
C1-injection c̄ : I → R2. If c̄(I) ∩Br(Z2) = ∅, then `(ḡ−1 ◦ c̄(I)) ≥ λ̄−1`(c̄(I)).

By (3) we can take and fix λ̂ such that

1 > λ̂ > λ̄/(1− 8r
√

1 + δ2).(10)

Then we have the following lemma.

Lemma 3. Let ḡ : R2 → R2 and λ̂ be as above. Suppose that (9) holds for a
C1-injection c̄ : I → R2. If `(c̄(I)) ≥ 1/4, then `(ḡ−1 ◦ c̄(I)) ≥ λ̂−1`(c̄(I)).

Proof. Let I = [a, b]. If c̄(I) ∩ Br(Z2) = ∅, then the assertion is ensured by
Lemma 2. Thus it suffices to see the lemma for the case c̄(I) ∩ Br(Z2) 6= ∅.
Since `(c̄(I)) < ∞, there exists a finite sequence {ni|1 ≤ i ≤ k} ⊂ Z2 such that
c̄(I) ∩Br(ni) 6= ∅ and c̄(I) ∩Br(Z2) ⊂ ⋃k

1 Br(ni).
For the case when k = 1 Lemma 3 is proved as follows. Put a1 = min{t ∈

I|c̄(t) ∈ Br(n1)}, b1 = max{t ∈ I|c̄(t) ∈ Br(n1)} and J = [a1, b1]. Then we have
`(c̄(J)) ≤ 2r

√
1 + δ2 and c̄(I) ∩Br(n1) ⊂ c̄(J). By the assumption `(c̄(I)) ≥ 1/4

we have

`(ḡ−1 ◦ c̄(I)) ≥ λ̄−1`(c̄(I \ J)) (by Lemma 2)

= λ̄−1 {1− `(c̄(J))/`(c̄(I))} `(c̄(I))

≥ λ̄−1
{

1− 8r
√

1 + δ2
}

`(c̄(I))

≥ λ̂−1`(c̄(I)) (by (10)).

For the case when k ≥ 2, put ai = min{t|c̄(t) ∈ Br(ni)} and bi = max{t|c̄(t) ∈
Br(ni)}. Since r is small enough, c̄([ai, bi])∩c̄([aj , bj]) = ∅ for i 6= j. Without loss of
generality we suppose that a ≤ a1 ≤ b1 < · · · < ak ≤ bk ≤ b. Then c̄(I) is decom-
posed into finitely many curves {c̄([a, a1]), c̄([a1, a2]), · · · , c̄([ak−1, ak]), c̄([ak, b])}.
Apply the method as above for each curve. Therefore we have the conclusion.

Let L > 0 and δ > 0 be as above and let πσ : Eu ⊕ Es → Eσ (σ = u, s)
be the natural projection. For x̄ ∈ R2 define Cu(x̄) = {ȳ ∈ R2| |πs(x̄ − ȳ)| ≤
L|πu(x̄− ȳ)|} and Cs(x̄) = {ȳ ∈ R2| |πu(x̄− ȳ)| ≤ δ|πs(x̄− ȳ)|}. Since δ < 1/L by
(3), Cu(x̄) ∩Cs(ȳ) is compact for x̄, ȳ ∈ R2.

Let I = [−1, 1], I− = [−1, 0], I+ = [0, 1] and let k̄ and c̄ : I → R2 be C1-
injections. Suppose that (7) and (9) hold for k̄ and c̄ respectively. Obviously
k̄(I) ⊂ Cu(k̄(t)) and c̄(I) ⊂ Cs(c̄(t)) for t ∈ I. Then the following Lemma 4 is
easily checked.

Lemma 4. There exists K > 0 such that if C1 injections k̄ and c̄ : I → R2 satisfy
the following conditions:

(a) (7) and (9) hold for k̄ and c̄ respectively,
(b) k̄(0), c̄(0) ∈ B1(0) = {x̄ ∈ R2| |x̄| ≤ 1},
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(c) min{`(k̄(I∗)), `(c̄(I∗)) | ∗ = ±} ≥ K,

then c̄(I) ∩ k̄(I) 6= ∅.

Let p̄1 and p̄1
g be as above. It is enough to give the proof of Proposition C for p1

g.
We write p̄ = p̄1 and p̄g = p̄1

g. Let Eσ(p̄) be the subspace in Tp̄R2 corresponding
to Eσ for σ = u, s. Then Eu(p̄) (Es(p̄)) is the eigenspace of Dp̄f̄ corresponding to
the eigenvalue with absolute value greater (less) than one by the construction of f̄ .

We denote by Eu
g (p̄g) (Es

g(p̄g)) the eigenspace of Dp̄g ḡ corresponding to the
eigenvalue with absolute value greater (less) than one. For σ = u, s we may as-
sume that Eσ

g (p̄g) ⊂ T σ(p̄g) by taking U sufficiently small if necessary. Then for
small η > 0, Tx̄W σ

η (p̄g, ḡ) ⊂ T σ(x̄) (x̄ ∈ W σ
η (p̄g, ḡ), σ = u, s). Since W s(p̄g, ḡ) =⋃∞

0 ḡ−n
(
W s

η (p̄g, ḡ)
)

and Wu(p̄g, ḡ) =
⋃∞

0 ḡn
(
Wu

η (p̄g, ḡ)
)
, by (6) and (8) we have

Tx̄W σ(p̄g, ḡ) ⊂ T σ(x̄) (x̄ ∈ W σ(p̄g, ḡ), σ = u, s).

By Lemmas 1, 2 and 3 it is checked that the lengths of two connected components
of Wu(p̄g, ḡ)\{p̄g} are infinite and that W s(p̄g, ḡ)\{p̄g} has a connected component
W s

0 (p̄g, ḡ) such that the length of W s
0 (p̄g, ḡ) is infinite.

Lemma 5. Let U and p̃1
g (g ∈ U) be as in Proposition C. Then cl(Wu(p̃1

g, g)) = T2

holds.

Proof. Put p̃g = p̃1
g and let x ∈ T2 and U be an arbitrary neighborhood of x.

Then it suffices to see that U ∩Wu(p̃g, g) 6= ∅. Take x̄ ∈ R2 with π(x̄) = x. Let
I, I− and I+ be as above and let c̄ : I → R2 be a C1-injection with c̄(0) = x̄,
0 6= dc̄

dt (t) ∈ T s(c̄(t)) for t ∈ I and π ◦ c̄(I) ⊂ U .
Put c(t) = π ◦ c̄(t) for t ∈ I. Obviously, c(0) = x and c(I) ⊂ U . Since g ∈ U ,

by (iii) there exists an infinite sequence {x−n|n ≥ 1} in T2 such that g(x−1) = x,
g(x−n) = x−n+1 (n ≥ 2) and

B1/4(x−n) ∩Br(p0) = ∅(11)

where p0 = π(0) is the source fixed point of f . Define a C1-injection c−n : I → T2

(n ≥ 1) such that c−n(0) = x−n and gn ◦ c−n(t) = c(t) for t ∈ I. To obtain Lemma
5 it suffices to show that

c−n(I) ∩Wu(p̃g, g) 6= ∅(12)

for some n ≥ 1. Indeed, if (12) holds, then we have ∅ 6= gn (c−n(I) ∩Wu(p̃g, g)) ⊂
c(I) ∩W u(p̃g, g) ⊂ U ∩Wu(p̃g, g).

To see (12) fix N ≥ 1 and choose x̄−N ∈ B1(0) = {x̄ ∈ R2| |x̄| ≤ 1} such
that π(x̄−N ) = x−N . Let c̄−N : I → R2 be a lifting of c−N : I → T2 satisfying
c̄−N(0) = x̄−N . For large N ≥ 1 we show that

c̄−N(I) ∩Wu(p̄g, ḡ) 6= ∅.(13)

Indeed, if (13) is proved, then we have ∅ 6= π(c̄−N (I) ∩ Wu(p̄g, ḡ)) ⊂ c−N (I) ∩
Wu(p̃g, g), from which (12) follows.

Therefore, to obtain the conclusion it is only necessary to see (13). Since ḡN ◦c̄−N

and c̄ are liftings of c, we have ḡN ◦ c̄−N (t) = c̄(t) + n for some n ∈ Z2, and so
0 6= d(ḡN◦c̄−N )

dt (t) ∈ T s(ḡN ◦c̄−N (t)) (t ∈ I). Then by (8) we have 0 6= d(ḡn◦c̄−N )
dt (t) ∈

T s(ḡn ◦ c̄−N(t)) for t ∈ I and 0 ≤ n ≤ N .
Lemma 3 ensures that

`(c̄−N (I∗)) ≥ λ̂−N `(ḡN ◦ c̄−N (I∗)) (∗ = ±).(14)
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Indeed, fix ∗ = ± and 0 ≤ n ≤ N − 1. If `(ḡn ◦ c̄−N (I∗)) < 1/4 holds, then we have
ḡn ◦ c̄−N (I∗) ∩Br(Z2) ⊂ π−1

(
B1/4(xn−N ) ∩Br(p0)

)
= ∅ by (11), and by Lemma

2

`(ḡn−1 ◦ c̄−N(I∗)) ≥ λ̂−1`(ḡn ◦ c̄−N (I∗)).(15)

If we have `(ḡn ◦ c̄−N(I∗)) ≥ 1/4, then Lemma 3 holds. Thus we have (15). Since
n is arbitrary in [0, N − 1], we have (14).

Since ḡN ◦ c̄−N(t) = c̄(t)+n for t ∈ I, by (14) we have `(c̄−N (I∗)) ≥ λ̂−N `(c̄(I∗))
for ∗ = ±. Therefore the lengths of the two connected components of c̄−N (I) \
{x̄−N} increase when N ↗∞.

On the other hand, since the lengths of two connected components of Wu(p̄g, ḡ)\
{p̄g} are infinite and Tx̄Wu(p̄g, ḡ) ⊂ T u(x̄) for x̄ ∈ Wu(p̄g, ḡ), by Lemma 4 we have
(13).

We are now in a position to prove Proposition C. Let U and p̃1
g (g ∈ U) be as in

Proposition C and put p̃g = p̃1
g. For z ∈ T2 and U a neighborhood of z it suffices

to show that

U ∩Wu(p̃g, g) ∩W s(p̃g, g) 6= ∅.

Since cl(Wu(p̃g, g)) = T2 by Lemma 5, it is clear that Wu(p̃g, g)∩U 6= ∅, so choose
a point x from the set. Since Wu(p̃g, g) = π(Wu(p̄g, ḡ)), there exists x̄ ∈ Wu(p̄g, ḡ)
such that x = π(x̄). Let I, I− and I+ be as above. We can find a C1-injection k̄ :
I → Wu(p̄g, ḡ) such that k̄(0) = x̄, π◦ k̄(I) ⊂ U and for t ∈ I, 0 6= dk̄

dt (t) ∈ T u(k̄(t)).
Put k(t) = π ◦ k̄(t) for t ∈ I. Then we have k(0) = x and k(I) ⊂ U ∩W u(p̃g, g).

To show Proposition C it suffices to see that

gn(k(I)) ∩W s(p̃g, g) 6= ∅(16)

for some n ≥ 0. Once (16) is established, we can take y ∈ k(I) satisfying gn(y) ∈
W s(p̃g, g). Obviously, y ∈ W s(p̃g, g). Since y ∈ k(I) ⊂ Wu(p̃g, g) ∩ U , we have
y ∈ U ∩Wu(p̃g, g) ∩W s(p̃g, g) 6= ∅.

To prove (16), fix M > 0 and put N = Mm and k̄N = ḡN ◦ k̄. By (6) and
Lemma 1 we have that for t ∈ I, 0 6= dk̄N

dt (t) ∈ T u(k̄N (t)) and

`(k̄N (I∗)) ≥ µ̄M `(k̄(I∗)) (∗ = ±).(17)

Put B1(0) = {x̄ ∈ R2| |x̄| ≤ 1}. Then x̄N = k̄N (0) + n1 ∈ B1(0) for some n1 ∈ Z2.
By (17) the lengths of the two connected components of (k̄N (I)+n1)\{x̄N} increase
when N ↗∞.

On the other hand, let W s
0 (p̄g, ḡ) be as above. Since the length of W s

0 (p̄g, ḡ) is
infinite and TȳW

s
0 (p̄g, ḡ) ⊂ T s(ȳ) for ȳ ∈ W s

0 (p̄g, ḡ), there exists a C1 injection c̄ :
I → W s

0 (p̄g, ḡ) such that the lengths of the two connected components of c̄(I)\{c̄(0)}
are large enough and 0 6= dc̄

dt (t) ∈ T s(c̄(t)) (t ∈ I). Choose n2 ∈ Z2 such that
c̄(0) + n2 ∈ B1(0). Then we have (k̄N (I) + n1) ∩ (c̄(I) + n2) 6= ∅ by Lemma 4.
Therefore,

∅ 6= π
{
(k̄N (I) + n1) ∩ (c̄(I) + n2)

} ⊂ π
{
(k̄N (I) + n1) ∩ (W s

0 (p̄g, ḡ) + n2)
}

⊂ π(k̄N (I)) ∩ π(W s
0 (p̄g, ḡ)) ⊂ gN (k(I)) ∩W s(p̃g, g).
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