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A MULTIPLIER RELATION FOR CALDERÓN-ZYGMUND
OPERATORS ON L1(Rn)

JONATHAN BENNETT

(Communicated by Christopher D. Sogge)

Abstract. A generalised integral is used to obtain a Fourier multiplier rela-
tion for Calderón-Zygmund operators on L1(Rn). In particular we conclude
that an operator in our class is injective on L1(Rn) if it is injective on L2(Rn).

1. Introduction

The Hilbert transform, defined almost everywhere (a.e.) for f ∈ Lp(R), 1 ≤ p <
∞, by

Hf(x) = lim
ε→0

1
π

∫
|y|≥ε

f(x− y)
y

dy

is well known to be bounded on Lp(R) for 1 < p < ∞, and weak type (1,1). This
is covered in Stein [2]. For f ∈ L2(R), the action of H can also be described by
a Fourier multiplier, (̂Hf)(ξ) = isign(ξ)f̂(ξ), ̂ denoting the Fourier transform.
This multiplier relation also holds for all f ∈ L1(R) such that Hf ∈ L1(R). This
may be seen as follows; for the relevant background see Stein [4]. Recall that
{f ∈ L1(R) : Hf ∈ L1(R)} is the real Hardy space H1(R), and H is bounded from
H1(R) to L1(R). (We may take ‖f‖H1(R) = ‖f‖L1(R) + ‖Hf‖L1(R).)
A function a : Rn −→ R is an H1(Rn) atom if

(i) a is supported in a ball B,
(ii) |a| ≤ |B|−1, and
(iii)

∫
a(x)dx = 0.

If f ∈ H1(R), it can be shown that there exist non-negative constants {λk} such
that

∑
λk < ∞, and H1(R) atoms {ak} such that f =

∑
λkak in H1(R) norm.

This is the celebrated ‘atomic decomposition of H1(R)’. Since H is bounded from
H1(R) to L1(R), Hf =

∑
λkHak in L1(R). On taking the Fourier transform of

this expression we get the desired result, since each atom is in L2(R), and hence
satisfies the multiplier relation. Observe that this implies that H is injective on
L1(R).

The above discussion has its roots in Zygmund [7], where the analogue for the
Fourier series is proved using the classical complex Hardy spaces. The analogue
states that if f and its conjugate f̃ are in L1(T), then ck(f̃) = isign(k)ck(f).

Received by the editors June 4, 1997.
1991 Mathematics Subject Classification. Primary 42B20.

c©1999 American Mathematical Society

715



716 JONATHAN BENNETT

Zygmund also describes a very different approach. He considers a generalised inte-
gral, referred to as integral B, with which the above multiplier relation for Fourier
coefficients holds for all f ∈ L1(T).

The purpose of this paper is to deduce analogous L1(Rn) results for a wide
class of Calderón-Zygmund operators for which Hardy space techniques are not
necessarily appropriate. The main conclusion is the following, which is Corollary 1
of section 5.

Theorem 1. Let the operator T satisfy the conditions (1), (2), and (3). If u ∈
L1(Rn) is such that Tu ∈ L1(Rn), then

(̂Tu)(ξ) = m(ξ)û(ξ)

for every ξ 6= 0, where m is the Fourier multiplier corresponding to T .

The above shall be achieved by obtaining a multiplier relation on L1(Rn) using
a generalised integral. This was done for the Hilbert transform by Toland in [5],
following the alternative approach in Zygmund.

It is worth remarking that the previous observations about H suggest we might
try to characterise those Calderón-Zygmund operators T for which {f ∈ L1(R) :
Tf ∈ L1(R)} = H1(R). For some related results see Janson [1], and Uchiyama [6].

Finally, we would like to thank A. Carbery for suggesting numerous improve-
ments to what would have followed.

2. The class of operators under study

Suppose K : Rn\{0} −→ C satisfies∫
|x|≥2|y|

|K(x− y)−K(x)|dx ≤ c(1)

for all y 6= 0. Suppose T is bounded on L2(Rn), commutes with translations and
satisfies

Tf(x) =
∫

Rn

K(y)f(x− y)dy(2)

whenever f ∈ S(Rn) with x 6∈ supp(f). Such an operator is often referred to as a
Calderón-Zygmund operator, with Calderón-Zygmund kernel K.

2.1. Some useful properties of our class.

(P1) For 0 < α < β,
∣∣∣∫α<|x|<β K(x)dx

∣∣∣ is bounded uniformly in α and β.

(P2) There is an m ∈ L∞(Rn) such that (̂Tf)(ξ) = m(ξ)f̂(ξ) for f ∈ L2(Rn).
(P3) m is continuous on Rn\{0}.
(P4) T is bounded on Lp(Rn) for 1 < p <∞, and is weak type (1,1).

To see (P3), let a be a nonzero H1(Rn) atom. Using (1) it can easily be shown
(see [4]) that Ta ∈ L1(Rn). So â and T̂ a are continuous. Since a ∈ L2(Rn),
T̂ a = mâ a.e. Therefore m is continuous at every point for which â 6= 0. Choose any
ξ ∈ Rn\{0}. For some η ∈ Rn\{0}, â(η) 6= 0. Let λ be a nonzero real number and
ρ be an orthogonal matrix such that η = λρξ. Now 0 6= â(η) =

∫
a(x)e2πiλρξ·xdx =∫

a(x)e2πiξ·(λρ−1x)dx = âλ,ρ(ξ), where aλ,ρ(x) = λ−na(λ−1ρx). Since aλ,ρ is an
H1(Rn) atom, m is continuous at ξ and hence on Rn\{0}. We wish to thank F.
Ricci for pointing out this simplification of the author’s original argument.
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For (P1) and (P4) see [2], and for (P2) see [3].
We shall impose one further condition on K, namely

|K(x)| ≤ c

|x|n x 6= 0.(3)

3. Realising the operators as principal values

Let 0 < ε < R and

Kε,R(x) =
{
K(x) if ε ≤ |x| ≤ R
0 otherwise.

Lemma 1. For ξ 6= 0, K̂ε,R(ξ) converges as R→∞, and

K̂ε(ξ) = lim
R→∞

K̂ε,R(ξ)

is bounded independently of ε.

Proof. It is well known (see [2]), that K̂ε,R(ξ) is uniformly bounded in ε and R for
each ξ ∈ Rn. A similar argument shows that for fixed ξ 6= 0, K̂R,R′ (ξ) → 0 as

R,R
′ →∞. Hence K̂ε,R(ξ) converges to a bounded function as R→∞.

Lemma 2. There exists a sequence {εj}, converging to zero, for which {K̂εj(ξ)}
converges everywhere on Rn\{0} to a bounded function.

Proof. Fix ξ 6= 0. {K̂ε(ξ) : ε > 0} is bounded in C, so there exists a sequence {εj}
converging to zero such that {K̂εj(ξ)} converges. Let ξ

′ ∈ Rn\{0}. We shall show
that {K̂εj(ξ

′
)} is convergent also. Let

Uj,l = {x ∈ Rn : min (εj , εl) ≤ |x| ≤ max (εj , εl)}.
Using spherical polar coordinates and (3),∣∣∣(K̂εj (ξ)− K̂εj(ξ

′
))− (K̂εl

(ξ)− K̂εl
(ξ
′
))

∣∣∣
=

∣∣∣∣∣
∫

Uj,l

K(x)(e2πix·ξ − e2πix·ξ′ )dx

∣∣∣∣∣ ≤ c(|ξ|+ |ξ′ |)
∣∣∣∣∣
∫ εl

εj

dt

∣∣∣∣∣ −→ 0

as j, l→∞. So {K̂εj(ξ) − K̂εj(ξ
′
)}j converges, and hence {K̂εj(ξ

′
)}j converges.

Define m̃ ∈ L∞(Rn) by m̃(ξ) = limj→∞ K̂εj(ξ) , ξ 6= 0. We now make some
observations.

(i) By the Dominated Convergence Theorem (D.C.T.) and Plancherel’s theorem

‖Kεj ∗ f −F−1(m̃f̂)‖2 −→ 0 as j →∞,

where F−1 denotes the inverse Fourier transform.
(ii) Fix f ∈ S(Rn) and x 6∈ supp(f). There is a J ∈ N such that

Tf(x) =
∫

Rn

K(x)f(x− y)dy =
∫
|y|≥εj

K(y)f(x− y)dy = Kεj ∗ f(x)

for j ≥ J .
These observations allow us to define an operator S : L2(Rn) → L2(Rn) satisfying

(i) Ŝf = m̃f̂ , and
(ii) Sf(x) = Tf(x) whenever f ∈ S(Rn) and x 6∈ supp(f).
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Consequently T −S has Calderón-Zygmund kernel 0, by (2). The fact that T −S is
bounded on L2(Rn) and commutes with translations allows one to show that T −S
= λI, for some λ ∈ C. This is equivalent to m(ξ) = m̃(ξ) + λ. For our purposes we
may suppose that λ = 0, i.e. S = T .

4. The generalised integral

For a set E ⊂ Rn, |E| shall denote its Lebesgue measure. Let f : Rn −→ R have
compact support, t ∈ [0, 1]n, and m ∈ Z. Let

Im(f)(t) =
1

2nm

∑
k∈Zn

f

(
t+

k

2m

)
(a finite sum).

Definition 1. For I ∈ R, write I = #
∫

Rn f(x)dx (or more briefly I = #
∫
f), if

Im(f)(t) → I in measure on [0, 1]n as m→∞.

Observe that if f ∈ Cc(Rn), then Im(f)(t) is a Riemann partial sum. Hence
#

∫
f =

∫
f. From this we can deduce the following.

Lemma 3. For f ∈ L1(Rn) of compact support, #
∫
f =

∫
f .

This will follow as a corollary to a more interesting result.

Definition 2. Define for some measurable f : Rn −→ R,

Ĩm(f)(t) =
1

2nm

∑
k∈Zn

f

(
t+

k

2m

)
t ∈ [0, 1]n

whenever the sum is absolutely convergent for a.e. t ∈ [0, 1]n. (So for f ∈ L1(Rn)
of compact support, Ĩmf = Imf .) Define #̃

∫
f in analogy with #

∫
f .

Lemma 4. For f ∈ L1(Rn), #̃
∫
f =

∫
f .

Proof. We must first show that Im(f) is defined for f ∈ L1(Rn). Let G be the set
of lattice points in [0, 2m)n. Observe that∑

k∈Zn

1
2nm

∫
[0,1]n

∣∣∣∣f (
t+

k

2m

)∣∣∣∣ dt
=

∑
γ∈G

∑
k∈2mZn+{γ}

1
2nm

∫
[0,1]n

∣∣∣∣f (
t+

k

2m

)∣∣∣∣ dt
=

∑
γ∈G

1
2nm

‖f‖1 = ‖f‖1 <∞.

So by the Monotone Convergence Theorem,
∑

k∈Zn

∣∣f (
t+ k

2m

)∣∣ <∞ a.e. t ∈ [0, 1]n

as required. Observe that we also have,∫
[0,1]n

∣∣∣Ĩm(f)(t)
∣∣∣ dt ≤ ‖f‖1.(4)

Let f ∈ L1(Rn), and α, ε > 0. Choose f1 ∈ Cc(Rn), and f2 ∈ L1(Rn) such that
f = f1 + f2 and ‖f2‖1 <

α
4 min (ε, 1). By (4) and Chebychev’s inequality,∣∣∣{t ∈ [0, 1]n :

∣∣∣Ĩm(f2)(t)
∣∣∣ ≥ α

2

}∣∣∣ ≤ 2‖f2‖1

α
<
ε

2
.(5)
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By the triangle inequality,∣∣∣∣{t ∈ [0, 1]n :
∣∣∣∣Ĩm(f)(t)−

∫
f

∣∣∣∣ ≥ α

}∣∣∣∣
≤

∣∣∣∣{t ∈ [0, 1]n :
∣∣∣∣Ĩm(f1)(t)−

∫
f1

∣∣∣∣ ≥ α

4

}∣∣∣∣(6)

+
∣∣∣{t ∈ [0, 1]n :

∣∣∣Ĩm(f2)(t)
∣∣∣ ≥ α

2

}∣∣∣(7)

+
∣∣∣∣{t ∈ [0, 1]n :

∣∣∣∣∫ f2

∣∣∣∣ ≥ α

4

}∣∣∣∣ .(8)

Since ‖f2‖1 <
α
4 , the term (8) is zero. By (5) the term (7) is less than ε

2 . Since
f1 ∈ Cc(Rn), the remark preceding Lemma 3 implies that the term (6) can be made
less than ε

2 for sufficiently large m. This concludes the proof.

As will be seen, for our purposes it is more convenient to extend #
∫

to functions
of non-compact support by the following limiting process, so I shall reject Ĩm.
Let ρ ∈ C∞c (Rn) satisfy

(i) ρ(0) = 1,
(ii) 0 ≤ ρ(x) ≤ 1.

Let ρN (x) = ρ( x
N ).

Definition 3. For f : Rn −→ R, we write I = #
∫

Rn f(x)dx (or I = #
∫
f), if for

every such ρ, #
∫

Rn ρN (x)f(x)dx converges to I as N →∞.

By Lemma 3 and the Dominated Convergence Theorem, #
∫
f =

∫
f for every

f ∈ L1(Rn).
In order to exploit the translation invariance of T , we shall need the following

lemma.

Lemma 5. Let v ∈ C1
c (Rn), u ∈ L1(Rn), and

Sv(u)(x) = (Tvu)(x)− v(x)(Tu)(x).

Sv is bounded from L1(Rn) to Lp(Rn) for 1 < p < n
n−1 when n ≥ 2, and from

L1(Rn) to L∞(Rn) when n = 1.

Proof. (n ≥ 2)

Sv(u)(x) =
∫

Rn

(v(y)− v(x))u(y)K(x − y)dy.

By Minkowski’s inequality for integrals, it is sufficient to show that

sup
y∈Rn

‖(v(y)− v(·))K(· − y)‖p <∞ for 1 < p <
n

n− 1
.

This is clear on observing that,

|(v(y)− v(x))K(x − y)| ≤
{

c‖∇v‖∞
|x−y|n−1 ∈ Lp(B(y; 1)) for p < n

n−1 ,
2c‖v‖∞
|x−y|n ∈ Lp(B(y; 1)c) for p > 1

where B(y; 1) is the ball in Rn with centre y and radius 1, and B(y; 1)c is its
complement.
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Lemma 6. Suppose φ ∈ C1
c (Rn), α > 0, and 0 < ε < 1. There is a constant

κ = κ(φ, n) such that for u ∈ L1(Rn) with ‖u‖1 ≤ καε,

|{t ∈ [0, 1]n : |Im(φTu)(t)| ≥ α}| ≤ ε for all m ∈ N.(9)

Proof. Let t ∈ [0, 1]n and suppose N is chosen so that supp(φ) ∈ [−N,N ]n. Let

Am,t =
{
k ∈ Zn : t+

k

2m
∈ [−N,N ]n

}
.

We shall dominate Im(φTu)(t) by the sum of two terms, each of which will satisfy
an expression of the form (9).

|Im(φTu)| ≤ 1
2nm

∣∣∣∣∣∣
∑

k∈Am,t

T (φu)
(
t+

k

2m

)∣∣∣∣∣∣
+

1
2nm

∣∣∣∣∣∣
∑

k∈Am,t

Sφ(u)
(
t+

k

2m

)∣∣∣∣∣∣ ,(10)

where Sφ is defined in Lemma 5. Let

vk(x) = φ

(
x+

k

2m

)
u

(
x+

k

2m

)
.

Since T is linear and commutes with translations,

1
2nm

∑
k∈Am,t

T (φu)
(
t+

k

2m

)
= T

 1
2nm

∑
k∈Am,t

vk

 (t).(11)

Observe that for each m, Am,t is constant, say Am, on (0, 1)n. Using this, (11),
and the fact that T is weak type (1,1), we get for some constant c,∣∣∣∣∣∣

t ∈ [0, 1]n :

∣∣∣∣∣∣ 1
2nm

∑
k∈Am,t

T (φu)
(
t+

k

2m

)∣∣∣∣∣∣ ≥ α


∣∣∣∣∣∣

=

∣∣∣∣∣∣
t ∈ (0, 1)n :

∣∣∣∣∣∣T
 1

2nm

∑
k∈Am,t

vk

 (t)

∣∣∣∣∣∣ ≥ α


∣∣∣∣∣∣

≤ c

α

∥∥∥∥∥ 1
2nm

∑
k∈Am

vk

∥∥∥∥∥
L1(Rn)

≤ c2nNn‖φ‖L∞(Rn)‖u‖L1(Rn)

α
< ε

provided ‖u‖L1(Rn) ≤ αε
c2nNn‖φ‖L∞(Rn)

. This deals with the first term of (10) with

κ = 1
c2nNn‖φ‖L∞(Rn)

. We now turn to the remaining term. Let

Jm,φ(f)(t) =
1

2nm

∑
k∈Am,t

f

(
t+

k

2m

)
for f ∈ Lp(Rn), 1 ≤ p ≤ ∞.

By (4), ‖Jm,φ(f)‖L1([0,1]n) ≤ ‖f‖L1(Rn), and by considering the number of elements
of Am,t, ‖Jm,φ(f)‖L∞([0,1]n) ≤ 2n(N + 1)n‖f‖L∞(Rn). Therefore by the Riesz con-
vexity theorem, ‖Jm,φ(f)‖Lp([0,1]n) ≤ (2n(N + 1)n)

1
q ‖f‖Lp(Rn) for 1 ≤ p ≤ ∞.
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Here, as usual, 1
p + 1

q = 1. By Lemma 4 and the composition of Jm,φ with Sφ,

u 7−→ 1
2nm

∣∣∣∣∣∣
∑

k∈Am,t

Sφ(u)
(
t+

k

2m

)∣∣∣∣∣∣
is bounded (independently of m), from L1(Rn) to Lp([0, 1]n) for 1 < p < n

n−1 . Let
α > 0 and 0 < ε < 1. By Chebyshev’s inequality, there is a constant κ = κ(φ, n)
such that∣∣∣∣∣∣

t ∈ [0, 1]n;
1

2nm

∣∣∣∣∣∣
∑

k∈Am,t

Sφ(u)
(
t+

k

2m

)∣∣∣∣∣∣ ≥ α


∣∣∣∣∣∣ ≤

(‖u‖L1(Rn)

κα

)p

< εp < ε

provided ‖u‖L1(Rn) < καε. This deals with the second term in (10).

Lemma 7. For φ ∈ C1
c (Rn), Tφ ∈ L∞(Rn).

Proof. The proof of this is a simple consequence of the cancellation property (P1),
and the size condition (3), for K.

Lemma 8. If φ ∈ C1
c (Rn) and u ∈ L1(Rn), then

#
∫

Rn

φ(x)(Tu)(x)dx =
∫

Rn

(T ∗φ)(x)u(x)dx

where T ∗ is the L2 adjoint of T , having Calderón-Zygmund kernel K∗(x) = K(−x).
(Note that in general Tu 6∈ L1

loc.(Rn).)

Proof. Let u = vj + wj where vj ∈ C1
c (Rn) and ‖wj‖L1(Rn) → 0 as j → ∞. Let

α > 0 and 0 < ε < 1. By the triangle inequality,∣∣∣∣{t ∈ [0, 1]n :
∣∣∣∣Im (

φTu
)
(t)−

∫
(T ∗φ)(x)u(x)dx

∣∣∣∣ ≥ α

}∣∣∣∣
≤

∣∣∣∣{t ∈ [0, 1]n :
∣∣∣∣Im (

φTvj

)
(t)−

∫
(T ∗φ)(x)vj(x)dx

∣∣∣∣ ≥ α

3

}∣∣∣∣(12)

+
∣∣∣∣{t ∈ [0, 1]n :

∣∣∣∣∫ (T ∗φ)(x)wj(x)dx
∣∣∣∣ ≥ α

3

}∣∣∣∣(13)

+
∣∣∣{t ∈ [0, 1]n :

∣∣Im (
φTwj

)
(t)

∣∣ ≥ α

3

}∣∣∣ .(14)

By Lemma 6, there is an integer J such that∣∣∣{t ∈ [0, 1]n :
∣∣Im (

φTwj

)
(t)

∣∣ ≥ α

3

}∣∣∣ < ε ∀m ∈ Z, j ≥ J.

So the term (14) is less than ε for j ≥ J . By Lemma 7, T ∗φ ∈ L∞(Rn), and hence∫
(T ∗φ)(x)wj(x)dx→ 0

as j →∞, so increasing J if necessary we may suppose that∣∣∣∣∫ (T ∗φ)(x)wj(x)dx
∣∣∣∣ < α

3
∀j ≥ J.

So for j ≥ J , the term (13) is zero. As vj , φ ∈ L2(Rn),∫
(T ∗φ)(x)vj(x)dx =

∫
φ(x)(Tvj)(x)dx,
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so term (12) now becomes∣∣∣∣{t ∈ [0, 1]n :
∣∣∣∣Im (

φTvj

)
(t)−

∫
φ(x)(Tvj)(x)dx

∣∣∣∣ ≥ α

3

}∣∣∣∣ .
Fix j ≥ J . φTvj ∈ L1(Rn), so by Lemma 3 this term (12) tends to zero as m→∞.
This completes the proof of Lemma 8.

5. The multiplier relation on L1(Rn)

Lemma 9. If ψ(ξ)
N (y) = ρN (y)e2πiξ·y, ξ 6= 0, then

T ∗ψ(ξ)
N (x)− ρN (x)m(−ξ)e2πiξ·x −→ 0

uniformly in x as N →∞.

Proof. Let K∗(x) = K(−x), and ξ 6= 0.

T ∗ψ(ξ)
N (x)− ρN (x)m(−ξ)e2πiξ·x

= lim
j→∞

lim
R→∞

e2πiξ·x
∫

εj≤|y|≤R

K∗(y)(ρN (x− y)− ρN (x))e−2πiξ·ydy.

By writing ρ as the inverse Fourier transform of ρ̂, and then by Fubini’s theorem,∣∣∣∣∣
∫

εj≤|y|≤R

K∗(y)(ρN (x− y)− ρN (x))e−2πiξ·ydy

∣∣∣∣∣
=

∣∣∣∣∣
∫

εj≤|y|≤R

K∗(y)
∫

Rn

ρ̂(s)
(
e−2πi (x−y)

N ·s − e−2πi x
N ·s

)
e−2πiξ·ydsdy

∣∣∣∣∣
=

∣∣∣∣∫
Rn

ρ̂(s)e2πix· s
N

(
K̂εj,R

( s

N
− ξ

)
− K̂εj,R(−ξ)

)
ds

∣∣∣∣
≤

∫
Rn

|ρ̂(s)|
∣∣∣K̂εj,R

( s

N
− ξ

)
− K̂εj,R(−ξ)

∣∣∣ ds
−→

∫
Rn

|ρ̂(s)|
∣∣∣m ( s

N
− ξ

)
−m(−ξ)

∣∣∣ ds
as R→∞ and j →∞ by Lemmas 1, 2, and the D.C.T. The last expression tends
to zero uniformly in x as N → ∞, by the continuity of m on Rn\{0}, (see (P3) of
section 2.1), and the D.C.T.

Theorem 2. Let T satisfy (1), (2), and (3). If u ∈ L1(Rn), then

#
∫

Rn

(Tu)(x)e2πiξ·xdx = m(ξ)û(ξ)

for every ξ 6= 0.
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Proof. If u ∈ L1(Rn), and ξ 6= 0, then

#
∫

Rn

(Tu)(x)e2πiξ·xρN (x)dx

= #
∫

Rn

(Tu)(x)e−2πiξ·xρN(x)dx

=
∫

Rn

u(x)
(
T ∗ψ(−ξ)

N

)
(x)dx (by Lemma 8)

−→
∫

Rn

u(x)e2πiξ·xm(ξ)dx

as N →∞ by Lemma 9 and the D.C.T. Hence

#
∫

Rn

(Tu)(x)e2πiξ·xdx = m(ξ)û(ξ).

Corollary 1. Let T satisfy (1), (2), and (3). If u ∈ L1(Rn) is such that Tu ∈
L1(Rn), then

(̂Tu)(ξ) = m(ξ)û(ξ), ξ 6= 0.

Proof. Use Theorem 1 and the remark after Definition 3.

Corollary 2. If T satisfies (1), (2), and (3), then T is injective on L1(Rn) if and
only if the zero set of m has empty interior.

Corollary 3. Let T satisfy (1) and (2). Suppose K is homogeneous of degree −n
and f ∈ L1(Rn) is non-negative. If f 6≡ 0, then Tf 6∈ L1(Rn).

Proof. Use Corollary 1 and the fact that m is homogeneous of degree 0.
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