A MULTIPLIER RELATION FOR CALDERÓN-ZYGMUND OPERATORS ON $L^{1}\left(\mathbb{R}^{n}\right)$

JONATHAN BENNETT

(Communicated by Christopher D. Sogge)

Abstract

A generalised integral is used to obtain a Fourier multiplier relation for Calderón-Zygmund operators on $L^{1}\left(\mathbb{R}^{n}\right)$. In particular we conclude that an operator in our class is injective on $L^{1}\left(\mathbb{R}^{n}\right)$ if it is injective on $L^{2}\left(\mathbb{R}^{n}\right)$.

1. Introduction

The Hilbert transform, defined almost everywhere (a.e.) for $f \in L^{p}(\mathbb{R}), 1 \leq p<$ ∞, by

$$
H f(x)=\lim _{\epsilon \rightarrow 0} \frac{1}{\pi} \int_{|y| \geq \epsilon} \frac{f(x-y)}{y} d y
$$

is well known to be bounded on $L^{p}(\mathbb{R})$ for $1<p<\infty$, and weak type (1,1). This is covered in Stein [2]. For $f \in L^{2}(\mathbb{R})$, the action of H can also be described by a Fourier multiplier, $\widehat{(H f)}(\xi)=\operatorname{isign}(\xi) \widehat{f}(\xi)$, ${ }^{\text {人 }}$ denoting the Fourier transform. This multiplier relation also holds for all $f \in L^{1}(\mathbb{R})$ such that $H f \in L^{1}(\mathbb{R})$. This may be seen as follows; for the relevant background see Stein [4]. Recall that $\left\{f \in L^{1}(\mathbb{R}): H f \in L^{1}(\mathbb{R})\right\}$ is the real Hardy space $H^{1}(\mathbb{R})$, and H is bounded from $H^{1}(\mathbb{R})$ to $L^{1}(\mathbb{R})$. (We may take $\left.\|f\|_{H^{1}(\mathbb{R})}=\|f\|_{L^{1}(\mathbb{R})}+\|H f\|_{L^{1}(\mathbb{R})}.\right)$
A function $a: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is an $H^{1}\left(\mathbb{R}^{n}\right)$ atom if
(i) a is supported in a ball B,
(ii) $|a| \leq|B|^{-1}$, and
(iii) $\int a(x) d x=0$.

If $f \in H^{1}(\mathbb{R})$, it can be shown that there exist non-negative constants $\left\{\lambda_{k}\right\}$ such that $\sum \lambda_{k}<\infty$, and $H^{1}(\mathbb{R})$ atoms $\left\{a_{k}\right\}$ such that $f=\sum \lambda_{k} a_{k}$ in $H^{1}(\mathbb{R})$ norm. This is the celebrated 'atomic decomposition of $H^{1}(\mathbb{R})$ '. Since H is bounded from $H^{1}(\mathbb{R})$ to $L^{1}(\mathbb{R}), H f=\sum \lambda_{k} H a_{k}$ in $L^{1}(\mathbb{R})$. On taking the Fourier transform of this expression we get the desired result, since each atom is in $L^{2}(\mathbb{R})$, and hence satisfies the multiplier relation. Observe that this implies that H is injective on $L^{1}(\mathbb{R})$.

The above discussion has its roots in Zygmund [7], where the analogue for the Fourier series is proved using the classical complex Hardy spaces. The analogue states that if f and its conjugate \tilde{f} are in $L^{1}(\mathbb{T})$, then $c_{k}(\tilde{f})=\operatorname{isign}(k) c_{k}(f)$.

[^0]Zygmund also describes a very different approach. He considers a generalised integral, referred to as integral B, with which the above multiplier relation for Fourier coefficients holds for all $f \in L^{1}(\mathbb{T})$.

The purpose of this paper is to deduce analogous $L^{1}\left(\mathbb{R}^{n}\right)$ results for a wide class of Calderón-Zygmund operators for which Hardy space techniques are not necessarily appropriate. The main conclusion is the following, which is Corollary 1 of section 5 .

Theorem 1. Let the operator T satisfy the conditions (1), (2), and (3). If $u \in$ $L^{1}\left(\mathbb{R}^{n}\right)$ is such that $T u \in L^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\widehat{(T u)}(\xi)=\mathfrak{m}(\xi) \widehat{u}(\xi)
$$

for every $\xi \neq 0$, where \mathfrak{m} is the Fourier multiplier corresponding to T.
The above shall be achieved by obtaining a multiplier relation on $L^{1}\left(\mathbb{R}^{n}\right)$ using a generalised integral. This was done for the Hilbert transform by Toland in [5], following the alternative approach in Zygmund.

It is worth remarking that the previous observations about H suggest we might try to characterise those Calderón-Zygmund operators T for which $\left\{f \in L^{1}(\mathbb{R})\right.$: $\left.T f \in L^{1}(\mathbb{R})\right\}=H^{1}(\mathbb{R})$. For some related results see Janson [1], and Uchiyama [6].

Finally, we would like to thank A. Carbery for suggesting numerous improvements to what would have followed.

2. The class of operators under study

Suppose $K: \mathbb{R}^{n} \backslash\{0\} \longrightarrow \mathbb{C}$ satisfies

$$
\begin{equation*}
\int_{|x| \geq 2|y|}|K(x-y)-K(x)| d x \leq c \tag{1}
\end{equation*}
$$

for all $y \neq 0$. Suppose T is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$, commutes with translations and satisfies

$$
\begin{equation*}
T f(x)=\int_{\mathbb{R}^{n}} K(y) f(x-y) d y \tag{2}
\end{equation*}
$$

whenever $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $x \notin \operatorname{supp}(f)$. Such an operator is often referred to as a Calderón-Zygmund operator, with Calderón-Zygmund kernel K.

2.1. Some useful properties of our class.

(P1) For $0<\alpha<\beta,\left|\int_{\alpha<|x|<\beta} K(x) d x\right|$ is bounded uniformly in α and β.
(P2) There is an $\mathfrak{m} \in L^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\widehat{(T f)}(\xi)=\mathfrak{m}(\xi) \widehat{f}(\xi)$ for $f \in L^{2}\left(\mathbb{R}^{n}\right)$.
(P3) \mathfrak{m} is continuous on $\mathbb{R}^{n} \backslash\{0\}$.
(P4) T is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$, and is weak type $(1,1)$.
To see (P3), let a be a nonzero $H^{1}\left(\mathbb{R}^{n}\right)$ atom. Using (1) it can easily be shown (see [4]) that $T a \in L^{1}\left(\mathbb{R}^{n}\right)$. So \widehat{a} and $\widehat{T a}$ are continuous. Since $a \in L^{2}\left(\mathbb{R}^{n}\right)$, $\widehat{T a}=\mathfrak{m} \widehat{a}$ a.e. Therefore \mathfrak{m} is continuous at every point for which $\widehat{a} \neq 0$. Choose any $\xi \in \mathbb{R}^{n} \backslash\{0\}$. For some $\eta \in \mathbb{R}^{n} \backslash\{0\}, \widehat{a}(\eta) \neq 0$. Let λ be a nonzero real number and ρ be an orthogonal matrix such that $\eta=\lambda \rho \xi$. Now $0 \neq \widehat{a}(\eta)=\int a(x) e^{2 \pi i \lambda \rho \xi \cdot x} d x=$ $\int a(x) e^{2 \pi i \xi \cdot\left(\lambda \rho^{-1} x\right)} d x=\widehat{a_{\lambda, \rho}}(\xi)$, where $a_{\lambda, \rho}(x)=\lambda^{-n} a\left(\lambda^{-1} \rho x\right)$. Since $a_{\lambda, \rho}$ is an $H^{1}\left(\mathbb{R}^{n}\right)$ atom, \mathfrak{m} is continuous at ξ and hence on $\mathbb{R}^{n} \backslash\{0\}$. We wish to thank F . Ricci for pointing out this simplification of the author's original argument.

For (P1) and (P4) see [2], and for (P2) see [3].
We shall impose one further condition on K, namely

$$
\begin{equation*}
|K(x)| \leq \frac{c}{|x|^{n}} \quad x \neq 0 \tag{3}
\end{equation*}
$$

3. Realising the operators as principal values

Let $0<\epsilon<R$ and

$$
K_{\epsilon, R}(x)= \begin{cases}K(x) & \text { if } \epsilon \leq|x| \leq R \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 1. For $\xi \neq 0, \widehat{K_{\epsilon, R}}(\xi)$ converges as $R \rightarrow \infty$, and

$$
\widehat{K_{\epsilon}}(\xi)=\lim _{R \rightarrow \infty} \widehat{K_{\epsilon, R}}(\xi)
$$

is bounded independently of ϵ.
Proof. It is well known (see [2]), that $\widehat{K_{\epsilon, R}}(\xi)$ is uniformly bounded in ϵ and R for each $\xi \in \mathbb{R}^{n}$. A similar argument shows that for fixed $\xi \neq 0, \widehat{K_{R, R^{\prime}}}(\xi) \rightarrow 0$ as $R, R^{\prime} \rightarrow \infty$. Hence $\widehat{K_{\epsilon, R}}(\xi)$ converges to a bounded function as $R \rightarrow \infty$.
Lemma 2. There exists a sequence $\left\{\epsilon_{j}\right\}$, converging to zero, for which $\left\{\widehat{K_{\epsilon_{j}}}(\xi)\right\}$ converges everywhere on $\mathbb{R}^{n} \backslash\{0\}$ to a bounded function.
Proof. Fix $\xi \neq 0 .\left\{\widehat{K}_{\epsilon}(\xi): \epsilon>0\right\}$ is bounded in \mathbb{C}, so there exists a sequence $\left\{\epsilon_{j}\right\}$ converging to zero such that $\left\{\widehat{K_{\epsilon_{j}}}(\xi)\right\}$ converges. Let $\xi^{\prime} \in \mathbb{R}^{n} \backslash\{0\}$. We shall show that $\left\{\widehat{K_{\epsilon_{j}}}\left(\xi^{\prime}\right)\right\}$ is convergent also. Let

$$
U_{j, l}=\left\{x \in \mathbb{R}^{n}: \min \left(\epsilon_{j}, \epsilon_{l}\right) \leq|x| \leq \max \left(\epsilon_{j}, \epsilon_{l}\right)\right\}
$$

Using spherical polar coordinates and (3),

$$
\begin{aligned}
\mid \widehat{K_{\epsilon_{j}}}(\xi)-\widehat{K_{\epsilon_{j}}} & \left.\left(\xi^{\prime}\right)\right)-\left(\widehat{K_{\epsilon_{l}}}(\xi)-\widehat{K_{\epsilon_{l}}}\left(\xi^{\prime}\right)\right) \mid \\
& =\left|\int_{U_{j, l}} K(x)\left(e^{2 \pi i x \cdot \xi}-e^{2 \pi i x \cdot \xi^{\prime}}\right) d x\right| \leq c\left(|\xi|+\left|\xi^{\prime}\right|\right)\left|\int_{\epsilon_{j}}^{\epsilon_{l}} d t\right| \longrightarrow 0
\end{aligned}
$$

as $j, l \rightarrow \infty$. So $\left\{\widehat{K_{\epsilon_{j}}}(\xi)-\widehat{K_{\epsilon_{j}}}\left(\xi^{\prime}\right)\right\}_{j}$ converges, and hence $\left\{\widehat{K_{\epsilon_{j}}}\left(\xi^{\prime}\right)\right\}_{j}$ converges.
Define $\widetilde{\mathfrak{m}} \in L^{\infty}\left(\mathbb{R}^{n}\right)$ by $\widetilde{\mathfrak{m}}(\xi)=\lim _{j \rightarrow \infty} \widehat{K_{\epsilon_{j}}}(\xi), \xi \neq 0$. We now make some observations.
(i) By the Dominated Convergence Theorem (D.C.T.) and Plancherel's theorem

$$
\left\|K_{\epsilon_{j}} * f-\mathcal{F}^{-1}(\widetilde{\mathfrak{m}} \widehat{f})\right\|_{2} \longrightarrow 0 \text { as } j \rightarrow \infty
$$

where \mathcal{F}^{-1} denotes the inverse Fourier transform.
(ii) Fix $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $x \notin \operatorname{supp}(f)$. There is a $J \in \mathbb{N}$ such that

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x) f(x-y) d y=\int_{|y| \geq \epsilon_{j}} K(y) f(x-y) d y=K_{\epsilon_{j}} * f(x)
$$

for $j \geq J$.
These observations allow us to define an operator $S: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$ satisfying
(i) $\widehat{S f}=\widetilde{\mathfrak{m}} \widehat{f}$, and
(ii) $S f(x)=T f(x)$ whenever $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $x \notin \operatorname{supp}(f)$.

Consequently $T-S$ has Calderón-Zygmund kernel 0 , by (2). The fact that $T-S$ is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ and commutes with translations allows one to show that $T-S$ $=\lambda I$, for some $\lambda \in \mathbb{C}$. This is equivalent to $\mathfrak{m}(\xi)=\widetilde{\mathfrak{m}}(\xi)+\lambda$. For our purposes we may suppose that $\lambda=0$, i.e. $S=T$.

4. The generalised integral

For a set $E \subset \mathbb{R}^{n},|E|$ shall denote its Lebesgue measure. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ have compact support, $t \in[0,1]^{n}$, and $m \in \mathbb{Z}$. Let

$$
I_{m}(f)(t)=\frac{1}{2^{n m}} \sum_{k \in \mathbb{Z}^{n}} f\left(t+\frac{k}{2^{m}}\right) \quad \text { (a finite sum). }
$$

Definition 1. For $I \in \mathbb{R}$, write $I=\# \int_{\mathbb{R}^{n}} f(x) d x$ (or more briefly $I=\# \int f$), if $I_{m}(f)(t) \rightarrow I$ in measure on $[0,1]^{n}$ as $m \rightarrow \infty$.

Observe that if $f \in C_{c}\left(\mathbb{R}^{n}\right)$, then $I_{m}(f)(t)$ is a Riemann partial sum. Hence $\# \int f=\int f$. From this we can deduce the following.

Lemma 3. For $f \in L^{1}\left(\mathbb{R}^{n}\right)$ of compact support, $\# \int f=\int f$.
This will follow as a corollary to a more interesting result.
Definition 2. Define for some measurable $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$,

$$
\widetilde{I_{m}}(f)(t)=\frac{1}{2^{n m}} \sum_{k \in \mathbb{Z}^{n}} f\left(t+\frac{k}{2^{m}}\right) \quad t \in[0,1]^{n}
$$

whenever the sum is absolutely convergent for a.e. $t \in[0,1]^{n}$. (So for $f \in L^{1}\left(\mathbb{R}^{n}\right)$ of compact support, $\widetilde{I_{m}} f=I_{m} f$.) Define $\widetilde{\#} \int f$ in analogy with $\# \int f$.

Lemma 4. For $f \in L^{1}\left(\mathbb{R}^{n}\right), \tilde{\#} \int f=\int f$.
Proof. We must first show that $I_{m}(f)$ is defined for $f \in L^{1}\left(\mathbb{R}^{n}\right)$. Let G be the set of lattice points in $\left[0,2^{m}\right)^{n}$. Observe that

$$
\begin{aligned}
& \sum_{k \in \mathbb{Z}^{n}} \frac{1}{2^{n m}} \int_{[0,1]^{n}}\left|f\left(t+\frac{k}{2^{m}}\right)\right| d t \\
& =\sum_{\gamma \in G} \sum_{k \in 2^{m} \mathbb{Z}^{n}+\{\gamma\}} \frac{1}{2^{n m}} \int_{[0,1]^{n}}\left|f\left(t+\frac{k}{2^{m}}\right)\right| d t \\
& =\sum_{\gamma \in G} \frac{1}{2^{n m}}\|f\|_{1}=\|f\|_{1}<\infty
\end{aligned}
$$

So by the Monotone Convergence Theorem, $\sum_{k \in \mathbb{Z}^{n}}\left|f\left(t+\frac{k}{2^{m}}\right)\right|<\infty$ a.e. $t \in[0,1]^{n}$ as required. Observe that we also have,

$$
\begin{equation*}
\int_{[0,1]^{n}}\left|\widetilde{I_{m}}(f)(t)\right| d t \leq\|f\|_{1} \tag{4}
\end{equation*}
$$

Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$, and $\alpha, \epsilon>0$. Choose $f_{1} \in C_{c}\left(\mathbb{R}^{n}\right)$, and $f_{2} \in L^{1}\left(\mathbb{R}^{n}\right)$ such that $f=f_{1}+f_{2}$ and $\left\|f_{2}\right\|_{1}<\frac{\alpha}{4} \min (\epsilon, 1)$. By (4) and Chebychev's inequality,

$$
\begin{equation*}
\left|\left\{t \in[0,1]^{n}:\left|\widetilde{I_{m}}\left(f_{2}\right)(t)\right| \geq \frac{\alpha}{2}\right\}\right| \leq \frac{2\left\|f_{2}\right\|_{1}}{\alpha}<\frac{\epsilon}{2} \tag{5}
\end{equation*}
$$

By the triangle inequality,

$$
\begin{align*}
& \left|\left\{t \in[0,1]^{n}:\left|\widetilde{I_{m}}(f)(t)-\int f\right| \geq \alpha\right\}\right| \\
& \leq\left|\left\{t \in[0,1]^{n}:\left|\widetilde{I_{m}}\left(f_{1}\right)(t)-\int f_{1}\right| \geq \frac{\alpha}{4}\right\}\right| \tag{6}\\
& +\left|\left\{t \in[0,1]^{n}:\left|\widetilde{I_{m}}\left(f_{2}\right)(t)\right| \geq \frac{\alpha}{2}\right\}\right| \tag{7}\\
& +\left|\left\{t \in[0,1]^{n}:\left|\int f_{2}\right| \geq \frac{\alpha}{4}\right\}\right| \tag{8}
\end{align*}
$$

Since $\left\|f_{2}\right\|_{1}<\frac{\alpha}{4}$, the term (8) is zero. By (5) the term (7) is less than $\frac{\epsilon}{2}$. Since $f_{1} \in C_{c}\left(\mathbb{R}^{n}\right)$, the remark preceding Lemma 3 implies that the term (6) can be made less than $\frac{\epsilon}{2}$ for sufficiently large m. This concludes the proof.

As will be seen, for our purposes it is more convenient to extend $\# \int$ to functions of non-compact support by the following limiting process, so I shall reject $\widetilde{I_{m}}$.
Let $\rho \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ satisfy
(i) $\rho(0)=1$,
(ii) $0 \leq \rho(x) \leq 1$.

Let $\rho_{N}(x)=\rho\left(\frac{x}{N}\right)$.
Definition 3. For $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$, we write $I=\# \int_{\mathbb{R}^{n}} f(x) d x$ (or $I=\# \int f$), if for every such ρ, \# $\int_{\mathbb{R}^{n}} \rho_{N}(x) f(x) d x$ converges to I as $N \rightarrow \infty$.

By Lemma 3 and the Dominated Convergence Theorem, \# $\int f=\int f$ for every $f \in L^{1}\left(\mathbb{R}^{n}\right)$.

In order to exploit the translation invariance of T, we shall need the following lemma.

Lemma 5. Let $v \in C_{c}^{1}\left(\mathbb{R}^{n}\right), u \in L^{1}\left(\mathbb{R}^{n}\right)$, and

$$
S_{v}(u)(x)=(T v u)(x)-v(x)(T u)(x)
$$

S_{v} is bounded from $L^{1}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\frac{n}{n-1}$ when $n \geq 2$, and from $L^{1}\left(\mathbb{R}^{n}\right)$ to $L^{\infty}\left(\mathbb{R}^{n}\right)$ when $n=1$.

Proof. ($n \geq 2$)

$$
S_{v}(u)(x)=\int_{\mathbb{R}^{n}}(v(y)-v(x)) u(y) K(x-y) d y
$$

By Minkowski's inequality for integrals, it is sufficient to show that

$$
\sup _{y \in \mathbb{R}^{n}}\|(v(y)-v(\cdot)) K(\cdot-y)\|_{p}<\infty \text { for } 1<p<\frac{n}{n-1}
$$

This is clear on observing that,

$$
|(v(y)-v(x)) K(x-y)| \leq \begin{cases}\frac{c\|\nabla v\|_{\infty}}{\mid x-y \|_{n-1}} \in L^{p}(B(y ; 1)) & \text { for } p<\frac{n}{n-1} \\ \frac{2 c\|v\|_{\infty}}{|x-y|^{n}} \in L^{p}\left(B(y ; 1)^{c}\right) & \text { for } p>1\end{cases}
$$

where $B(y ; 1)$ is the ball in \mathbb{R}^{n} with centre y and radius 1 , and $B(y ; 1)^{c}$ is its complement.

Lemma 6. Suppose $\phi \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$, $\alpha>0$, and $0<\epsilon<1$. There is a constant $\kappa=\kappa(\phi, n)$ such that for $u \in L^{1}\left(\mathbb{R}^{n}\right)$ with $\|u\|_{1} \leq \kappa \alpha \epsilon$,

$$
\begin{equation*}
\left|\left\{t \in[0,1]^{n}:\left|I_{m}(\phi T u)(t)\right| \geq \alpha\right\}\right| \leq \epsilon \text { for all } m \in \mathbb{N} \tag{9}
\end{equation*}
$$

Proof. Let $t \in[0,1]^{n}$ and suppose N is chosen so that $\operatorname{supp}(\phi) \in[-N, N]^{n}$. Let

$$
A_{m, t}=\left\{k \in \mathbb{Z}^{n}: t+\frac{k}{2^{m}} \in[-N, N]^{n}\right\}
$$

We shall dominate $I_{m}(\phi T u)(t)$ by the sum of two terms, each of which will satisfy an expression of the form (9).

$$
\begin{align*}
\left|I_{m}(\phi T u)\right| & \leq \frac{1}{2^{n m}}\left|\sum_{k \in A_{m, t}} T(\phi u)\left(t+\frac{k}{2^{m}}\right)\right| \\
& +\frac{1}{2^{n m}}\left|\sum_{k \in A_{m, t}} S_{\phi}(u)\left(t+\frac{k}{2^{m}}\right)\right| \tag{10}
\end{align*}
$$

where S_{ϕ} is defined in Lemma 5. Let

$$
v_{k}(x)=\phi\left(x+\frac{k}{2^{m}}\right) u\left(x+\frac{k}{2^{m}}\right) .
$$

Since T is linear and commutes with translations,

$$
\begin{equation*}
\frac{1}{2^{n m}} \sum_{k \in A_{m, t}} T(\phi u)\left(t+\frac{k}{2^{m}}\right)=T\left(\frac{1}{2^{n m}} \sum_{k \in A_{m, t}} v_{k}\right)(t) \tag{11}
\end{equation*}
$$

Observe that for each $m, A_{m, t}$ is constant, say A_{m}, on $(0,1)^{n}$. Using this, (11), and the fact that T is weak type $(1,1)$, we get for some constant c,

$$
\begin{aligned}
& \left|\left\{t \in[0,1]^{n}:\left|\frac{1}{2^{n m}} \sum_{k \in A_{m, t}} T(\phi u)\left(t+\frac{k}{2^{m}}\right)\right| \geq \alpha\right\}\right| \\
& =\left|\left\{t \in(0,1)^{n}:\left|T\left(\frac{1}{2^{n m}} \sum_{k \in A_{m, t}} v_{k}\right)(t)\right| \geq \alpha\right\}\right| \\
& \leq \frac{c}{\alpha}\left\|\frac{1}{2^{n m}} \sum_{k \in A_{m}} v_{k}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \\
& \leq \frac{c 2^{n} N^{n}\|\phi\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}\|u\|_{L^{1}\left(\mathbb{R}^{n}\right)}}{\alpha}<\epsilon
\end{aligned}
$$

provided $\|u\|_{L^{1}\left(\mathbb{R}^{n}\right)} \leq \frac{\alpha \epsilon}{c 2^{n} N^{n}\|\phi\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}}$. This deals with the first term of (10) with $\kappa=\frac{1}{c 2^{n} N^{n}\|\phi\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}}$. We now turn to the remaining term. Let

$$
J_{m, \phi}(f)(t)=\frac{1}{2^{n m}} \sum_{k \in A_{m, t}} f\left(t+\frac{k}{2^{m}}\right) \text { for } f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty
$$

By (4), $\left\|J_{m, \phi}(f)\right\|_{L^{1}\left([0,1]^{n}\right)} \leq\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}$, and by considering the number of elements of $A_{m, t},\left\|J_{m, \phi}(f)\right\|_{L^{\infty}\left([0,1]^{n}\right)} \leq 2^{n}(N+1)^{n}\|f\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}$. Therefore by the Riesz convexity theorem, $\left\|J_{m, \phi}(f)\right\|_{L^{p}\left([0,1]^{n}\right)} \leq\left(2^{n}(N+1)^{n}\right)^{\frac{1}{q}}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ for $1 \leq p \leq \infty$.

Here, as usual, $\frac{1}{p}+\frac{1}{q}=1$. By Lemma 4 and the composition of $J_{m, \phi}$ with S_{ϕ},

$$
u \longmapsto \frac{1}{2^{n m}}\left|\sum_{k \in A_{m, t}} S_{\phi}(u)\left(t+\frac{k}{2^{m}}\right)\right|
$$

is bounded (independently of m), from $L^{1}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left([0,1]^{n}\right)$ for $1<p<\frac{n}{n-1}$. Let $\alpha>0$ and $0<\epsilon<1$. By Chebyshev's inequality, there is a constant $\kappa=\kappa(\phi, n)$ such that

$$
\left|\left\{t \in[0,1]^{n} ; \frac{1}{2^{n m}}\left|\sum_{k \in A_{m, t}} S_{\phi}(u)\left(t+\frac{k}{2^{m}}\right)\right| \geq \alpha\right\}\right| \leq\left(\frac{\|u\|_{L^{1}\left(\mathbb{R}^{n}\right)}}{\kappa \alpha}\right)^{p}<\epsilon^{p}<\epsilon
$$

provided $\|u\|_{L^{1}\left(\mathbb{R}^{n}\right)}<\kappa \alpha \epsilon$. This deals with the second term in (10).
Lemma 7. For $\phi \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$, $T \phi \in L^{\infty}\left(\mathbb{R}^{n}\right)$.
Proof. The proof of this is a simple consequence of the cancellation property (P1), and the size condition (3), for K.

Lemma 8. If $\phi \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$ and $u \in L^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\# \int_{\mathbb{R}^{n}} \phi(x) \overline{(T u)(x)} d x=\int_{\mathbb{R}^{n}}\left(T^{*} \phi\right)(x) \overline{u(x)} d x
$$

where T^{*} is the L^{2} adjoint of T, having Calderón-Zygmund kernel $K^{*}(x)=\overline{K(-x)}$. (Note that in general $T u \notin L_{\text {loc. }}^{1}\left(\mathbb{R}^{n}\right)$.)

Proof. Let $u=v_{j}+w_{j}$ where $v_{j} \in C_{c}^{1}\left(\mathbb{R}^{n}\right)$ and $\left\|w_{j}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \rightarrow 0$ as $j \rightarrow \infty$. Let $\alpha>0$ and $0<\epsilon<1$. By the triangle inequality,

$$
\begin{align*}
& \left|\left\{t \in[0,1]^{n}:\left|I_{m}(\phi \overline{T u})(t)-\int\left(T^{*} \phi\right)(x) \overline{u(x)} d x\right| \geq \alpha\right\}\right| \\
& \leq\left|\left\{t \in[0,1]^{n}:\left|I_{m}\left(\phi \overline{T v_{j}}\right)(t)-\int\left(T^{*} \phi\right)(x) \overline{v_{j}(x)} d x\right| \geq \frac{\alpha}{3}\right\}\right| \tag{12}\\
& +\left|\left\{t \in[0,1]^{n}:\left|\int\left(T^{*} \phi\right)(x) \overline{w_{j}(x)} d x\right| \geq \frac{\alpha}{3}\right\}\right| \tag{13}\\
& +\left|\left\{t \in[0,1]^{n}:\left|I_{m}\left(\phi \overline{T w_{j}}\right)(t)\right| \geq \frac{\alpha}{3}\right\}\right| \tag{14}
\end{align*}
$$

By Lemma 6, there is an integer J such that

$$
\left|\left\{t \in[0,1]^{n}:\left|I_{m}\left(\phi \overline{T w_{j}}\right)(t)\right| \geq \frac{\alpha}{3}\right\}\right|<\epsilon \forall m \in \mathbb{Z}, j \geq J
$$

So the term (14) is less than ϵ for $j \geq J$. By Lemma $7, T^{*} \phi \in L^{\infty}\left(\mathbb{R}^{n}\right)$, and hence

$$
\int\left(T^{*} \phi\right)(x) \overline{w_{j}(x)} d x \rightarrow 0
$$

as $j \rightarrow \infty$, so increasing J if necessary we may suppose that

$$
\left|\int\left(T^{*} \phi\right)(x) \overline{w_{j}(x)} d x\right|<\frac{\alpha}{3} \quad \forall j \geq J
$$

So for $j \geq J$, the term (13) is zero. As $v_{j}, \phi \in L^{2}\left(\mathbb{R}^{n}\right)$,

$$
\int\left(T^{*} \phi\right)(x) \overline{v_{j}(x)} d x=\int \phi(x) \overline{\left(T v_{j}\right)(x)} d x
$$

so term (12) now becomes

$$
\left|\left\{t \in[0,1]^{n}:\left|I_{m}\left(\phi \overline{T v_{j}}\right)(t)-\int \phi(x) \overline{\left(T v_{j}\right)(x)} d x\right| \geq \frac{\alpha}{3}\right\}\right| .
$$

Fix $j \geq J . \phi \overline{T v_{j}} \in L^{1}\left(\mathbb{R}^{n}\right)$, so by Lemma 3 this term (12) tends to zero as $m \rightarrow \infty$. This completes the proof of Lemma 8.

5. The multiplier relation on $L^{1}\left(\mathbb{R}^{n}\right)$

Lemma 9. If $\psi_{N}^{(\xi)}(y)=\rho_{N}(y) e^{2 \pi i \xi \cdot y}, \xi \neq 0$, then

$$
T^{*} \psi_{N}^{(\xi)}(x)-\rho_{N}(x) \overline{\mathfrak{m}(-\xi)} e^{2 \pi i \xi \cdot x} \longrightarrow 0
$$

uniformly in x as $N \rightarrow \infty$.
Proof. Let $K^{*}(x)=\overline{K(-x)}$, and $\xi \neq 0$.

$$
\begin{aligned}
& T^{*} \psi_{N}^{(\xi)}(x)-\rho_{N}(x) \overline{\mathfrak{m}(-\xi)} e^{2 \pi i \xi \cdot x} \\
& =\lim _{j \rightarrow \infty} \lim _{R \rightarrow \infty} e^{2 \pi i \xi \cdot x} \int_{\epsilon_{j} \leq|y| \leq R} K^{*}(y)\left(\rho_{N}(x-y)-\rho_{N}(x)\right) e^{-2 \pi i \xi \cdot y} d y
\end{aligned}
$$

By writing ρ as the inverse Fourier transform of $\widehat{\rho}$, and then by Fubini's theorem,

$$
\begin{aligned}
& \left|\int_{\epsilon_{j} \leq|y| \leq R} K^{*}(y)\left(\rho_{N}(x-y)-\rho_{N}(x)\right) e^{-2 \pi i \xi \cdot y} d y\right| \\
& =\left|\int_{\epsilon_{j} \leq|y| \leq R} K^{*}(y) \int_{\mathbb{R}^{n}} \widehat{\rho}(s)\left(e^{-2 \pi i \frac{(x-y)}{N} \cdot s}-e^{-2 \pi i \frac{x}{N} \cdot s}\right) e^{-2 \pi i \xi \cdot y} d s d y\right| \\
& =\left|\int_{\mathbb{R}^{n}} \widehat{\rho}(s) e^{2 \pi i x \cdot \frac{s}{N}}\left(\overline{\widehat{K_{\epsilon_{j}, R}}\left(\frac{s}{N}-\xi\right)}-\overline{\widehat{K_{\epsilon_{j}, R}}(-\xi)}\right) d s\right| \\
& \leq \int_{\mathbb{R}^{n}}|\widehat{\rho}(s)|\left|\widehat{K_{\epsilon_{j}, R}}\left(\frac{s}{N}-\xi\right)-\widehat{K_{\epsilon_{j}, R}}(-\xi)\right| d s \\
& \longrightarrow \int_{\mathbb{R}^{n}}|\widehat{\rho}(s)|\left|\mathfrak{m}\left(\frac{s}{N}-\xi\right)-\mathfrak{m}(-\xi)\right| d s
\end{aligned}
$$

as $R \rightarrow \infty$ and $j \rightarrow \infty$ by Lemmas 1,2 , and the D.C.T. The last expression tends to zero uniformly in x as $N \rightarrow \infty$, by the continuity of \mathfrak{m} on $\mathbb{R}^{n} \backslash\{0\}$, (see (P3) of section 2.1), and the D.C.T.

Theorem 2. Let T satisfy (1), (2), and (3). If $u \in L^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\# \int_{\mathbb{R}^{n}}(T u)(x) e^{2 \pi i \xi \cdot x} d x=\mathfrak{m}(\xi) \widehat{u}(\xi)
$$

for every $\xi \neq 0$.

Proof. If $u \in L^{1}\left(\mathbb{R}^{n}\right)$, and $\xi \neq 0$, then

$$
\begin{aligned}
& \# \int_{\mathbb{R}^{n}}(T u)(x) e^{2 \pi i \xi \cdot x} \rho_{N}(x) d x \\
& =\# \int_{\mathbb{R}^{n}}(T u)(x) \overline{e^{-2 \pi i \xi \cdot x} \rho_{N}(x)} d x \\
& \left.=\int_{\mathbb{R}^{n}} u(x) \overline{\left(T^{*} \psi_{N}^{(-\xi)}\right)(x)} d x \quad \text { (by Lemma } 8\right) \\
& \longrightarrow \int_{\mathbb{R}^{n}} u(x) e^{2 \pi i \xi \cdot x} \mathfrak{m}(\xi) d x
\end{aligned}
$$

as $N \rightarrow \infty$ by Lemma 9 and the D.C.T. Hence

$$
\# \int_{\mathbb{R}^{n}}(T u)(x) e^{2 \pi i \xi \cdot x} d x=\mathfrak{m}(\xi) \widehat{u}(\xi)
$$

Corollary 1. Let T satisfy (1), (2), and (3). If $u \in L^{1}\left(\mathbb{R}^{n}\right)$ is such that $T u \in$ $L^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\widehat{(T u)}(\xi)=\mathfrak{m}(\xi) \widehat{u}(\xi), \quad \xi \neq 0
$$

Proof. Use Theorem 1 and the remark after Definition 3.
Corollary 2. If T satisfies (1), (2), and (3), then T is injective on $L^{1}\left(\mathbb{R}^{n}\right)$ if and only if the zero set of \mathfrak{m} has empty interior.

Corollary 3. Let T satisfy (1) and (2). Suppose K is homogeneous of degree $-n$ and $f \in L^{1}\left(\mathbb{R}^{n}\right)$ is non-negative. If $f \not \equiv 0$, then $T f \notin L^{1}\left(\mathbb{R}^{n}\right)$.

Proof. Use Corollary 1 and the fact that \mathfrak{m} is homogeneous of degree 0 .

References

[1] Janson, S. (1981), Characterizations of $H^{1}\left(\mathbb{R}^{n}\right)$ by singular integral transforms on martingales and \mathbb{R}^{n}. Math. Scand. 46, 140-152. MR 57:3729
[2] Stein, E.M. (1970), Singular Integrals and Differentiability Properties of Functions. Princeton University Press. MR 44:7280
[3] Stein, E.M. and Weiss, G. (1971), Fourier Analysis on Euclidean Spaces. Princeton University Press. MR 46:4102
[4] Stein, E.M. (1993), Harmonic Analysis. Princeton University Press. MR 95c:42002
[5] Toland, J.F. (1995), A few remarks about the Hilbert transform. J. Funct. Anal. 145, 151-174. CMP 97:10
[6] Uchiyama, A. (1982), A constructive proof of the Fefferman-Stein decomposition of $B M O\left(\mathbb{R}^{n}\right)$. Acta Math. 148, 215-241. MR 84h:42037
[7] Zygmund, A. (1959), Trigonometric Series I. Cambridge University Press. MR 21:6498
JCMB, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JZ, Scotland
E-mail address: bennett@maths.ed.ac.uk

[^0]: Received by the editors June 4, 1997.
 1991 Mathematics Subject Classification. Primary 42B20.

