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A MULTIPLIER RELATION FOR CALDERON-ZYGMUND
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ABSTRACT. A generalised integral is used to obtain a Fourier multiplier rela-
tion for Calderén-Zygmund operators on L!(R™). In particular we conclude
that an operator in our class is injective on L (R™) if it is injective on L2(R™).

1. INTRODUCTION

The Hilbert transform, defined almost everywhere (a.e.) for f € LP(R), 1 < p <
00, by
1 _
Hf(z) = lim — Mdy
e—0 7 I,UIZ6 y
is well known to be bounded on LP(R) for 1 < p < oo, and weak type (1,1). This
is covered in Stein [2]. For f € L?(R), the action of H can also be described by

a Fourier multiplier, (H f)(§) = isign(f)f(f)7 ~ denoting the Fourier transform.
This multiplier relation also holds for all f € L'(R) such that Hf € L'(R). This
may be seen as follows; for the relevant background see Stein [4]. Recall that
{f € LY(R) : Hf € L*(R)} is the real Hardy space H*(R), and H is bounded from
H(R) to L}(R). (We may take |fllis s = If]lzsc) + I Fl 22 ey-)
A function a : R” — R is an H'(R") atom if

(i) a is supported in a ball B,

(ii) |a| < |B|71, and

(iii) [a(z)dz = 0.
If f € HY(R), it can be shown that there exist non-negative constants {\x} such
that >° \x < oo, and H'(R) atoms {az} such that f = > A\gap in H'(R) norm.
This is the celebrated ‘atomic decomposition of H(R)’. Since H is bounded from
HY(R) to L*(R), Hf = Y. A\Hay in L'(R). On taking the Fourier transform of
this expression we get the desired result, since each atom is in L?*(R), and hence
satisfies the multiplier relation. Observe that this implies that H is injective on
L'(R).

The above discussion has its roots in Zygmund [7], where the analogue for the
Fourier series is proved using the classical complex Hardy spaces. The analogue

states that if f and its conjugate f are in L(T), then cy(f) = isign(k)ck(f).
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Zygmund also describes a very different approach. He considers a generalised inte-
gral, referred to as integral B, with which the above multiplier relation for Fourier
coefficients holds for all f € L!(T).

The purpose of this paper is to deduce analogous L!(R™) results for a wide
class of Calderén-Zygmund operators for which Hardy space techniques are not
necessarily appropriate. The main conclusion is the following, which is Corollary 1
of section 5.

Theorem 1. Let the operator T satisfy the conditions (1), (2), and (3). If u €
LY(R™) is such that Tu € L*(R"), then

—

(Tu)(&) = m(&)u(§)

for every € # 0, where m is the Fourier multiplier corresponding to T'.

The above shall be achieved by obtaining a multiplier relation on L!(R™) using
a generalised integral. This was done for the Hilbert transform by Toland in [5],
following the alternative approach in Zygmund.

It is worth remarking that the previous observations about H suggest we might
try to characterise those Calderén-Zygmund operators T' for which {f € L*(R) :
Tfe LY(R)} = H*(R). For some related results see Janson [1], and Uchiyama [6].

Finally, we would like to thank A. Carbery for suggesting numerous improve-
ments to what would have followed.

2. THE CLASS OF OPERATORS UNDER STUDY

Suppose K : R"\{0} — C satisfies
o [ Ky~ K < c
|z]>2]y]

for all y # 0. Suppose T is bounded on L2(R™), commutes with translations and
satisfies
(2) Tf(x)= | K(y)f(z—y)dy

RTL
whenever f € S(R™) with « & supp(f). Such an operator is often referred to as a
Calderén-Zygmund operator, with Calderén-Zygmund kernel K.

2.1. Some useful properties of our class.

(P1) For 0 < e < (3,

fa<\z\<5

K(:E)d:v‘ is bounded uniformly in « and S.

— ~

)
(P2) There is an m € L (R"™) such that (T'f)(¢) = m(€) f(€) for f € L?(R™).
(P3) m is continuous on R™\{0}.
(P4) T is bounded on LP(R™) for 1 < p < oo, and is weak type (1,1).
To see (P3), let a be a nonzero H!(R™) atom. Using (1) it can easily be shown

o~

(see [4]) that Ta € L'(R™). So @ and Ta are continuous. Since a € L*(R"),

o~

Ta = ma a.e. Therefore m is continuous at every point for which @ # 0. Choose any
¢ € R"\{0}. For some nn € R™"\{0}, @(n) # 0. Let A be a nonzero real number and
p be an orthogonal matrix such that n = A\p€. Now 0 # a(n) = [ a(x)e*™ % dy =
[ a(z)eXm €O Dy — a5(€), where ay,(z) = A"a(A"'pz). Since ay, is an
HY(R™) atom, m is continuous at & and hence on R™\{0}. We wish to thank F.
Ricci for pointing out this simplification of the author’s original argument.
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For (P1) and (P4) see [2], and for (P2) see [3].
We shall impose one further condition on K, namely

(3) K(2)] € @ #0.

R
3. REALISING THE OPERATORS AS PRINCIPAL VALUES

Let 0 < e < R and
[ K(z) ife<|z| <R
K r(z) = { 0 otherwise.

Lemma 1. For £ #0, ?6\3(5) converges as R — oo, and
K(§) = lim K. r(€)
is bounded independently of €.
Proof. Tt is well known (see [2]), that I?E,\R({) is uniformly boundgii e and R for
each £ € R". A similar argument shows that for fixed § # 0, Kp p/ (&) — 0 as

R, R — 0. Hence I/(E,\R(ﬁ) converges to a bounded function as R — oo.

Lemma 2. There exists a sequence {€;}, converging to zero, for which {I/{-;(f)}
converges everywhere on R™\{0} to a bounded function.

Proof. Fix £ # 0. {Iz(f) : € > 0} is bounded in C, so there exists a sequence {e;}
converging to zero such that {I/(E\] (&)} converges. Let & € R™\{0}. We shall show
that {I/{-;(f,)} is convergent also. Let

Uji ={z € R" : min (¢, ¢) < |z| < max (e, ¢)}.

Using spherical polar coordinates and (3),
(Ko (6) = Ko (€)= (Ko () - Ka ()]
/ (z)(eQﬂ-irf _ eQﬂ'imf/)da:
U

— 0

< (€l + 1€

€1
/ dt

J

as j,1 — 0o0. So {f{e\](é) — I/(;(g’)}j converges, and hence {I/(E\j(f,)}j converges.
Define m € L>®(R™) by m(§) = limj_,oof/(-:j(f) , &€ # 0. We now make some
observations.
(i) By the Dominated Convergence Theorem (D.C.T.) and Plancherel’s theorem

1Ko % f = F @ f)lls — 0 as j — oo,

where F~1 denotes the inverse Fourier transform.
(i) Fix f € S(R™) and z ¢ supp(f). There is a J € N such that

11 = [ K@i@ndr= [ K@= Ko 1w
R™ y|>e;
for j > J.
These observations allow us to define an operator S : L2(R") — L?*(R") satisfying
(i) Sf =mf, and
(ii) Sf(xz) =T f(x) whenever f € S(R"™) and = & supp(f).
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Consequently T'— S has Calderén-Zygmund kernel 0, by (2). The fact that T— S is
bounded on L?(R™) and commutes with translations allows one to show that T'— S
= M, for some A € C. This is equivalent to m(£) = m(£) + . For our purposes we
may suppose that A =0,1.e. S=T.

4. THE GENERALISED INTEGRAL

For a set E C R™, |E| shall denote its Lebesgue measure. Let f : R” — R have
compact support, ¢ € [0,1]", and m € Z. Let

In(f)(t) = Qnim S s <t+ 2%) (a finite sum).
kez™

Definition 1. For I € R, write I = # [, f(x)dz (or more briefly I = # [ f),
I, (f)(t) — I in measure on [0, 1]™ as m — oo.

Observe that if f € C.(R™), then I,,(f)(t) is a Riemann partial sum. Hence
# [ f= [ f. From this we can deduce the following.

Lemma 3. For f € L*(R™) of compact support, # [ f = [ f.
This will follow as a corollary to a more interesting result.
Definition 2. Define for some measurable f : R® — R,

L)) = S Zf(t—i——) telo,1)"

keZm
whenever the sum is absolutely convergent for a.e. t € [0,1]". (So for f € L'(R"™)
of compact support, I,, f = I, f.) Define # [ f in analogy with # [ f.
Lemma 4. For f € L'(R™), # [ f = [ f.

Proof. We must first show that I,,,(f) is defined for f € L*(R"). Let G be the set
of lattice points in [0,2™)™. Observe that

ZW/ (H_)‘dt

kezn
1 k
v€EG kezmzn_,_{.y} [0,1]™
= sl =171 < oo
yeG

So by the Monotone Convergence Theorem, rezn
as required. Observe that we also have,

() J @] a <

Let f € L*(R"), and o, ¢ > 0. Choose f; € C.(R"), and fo € L'(R") such that
f=fi+ f2and | fa]|1 < §min (e, 1). By (4) and Chebychev’s inequality,

) {rea: | L] = 5 < Al o <

(07

ft+ )] <ocae tel01]
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By the triangle inequality,

{teoar: |- [1]za}
©) <[{repar: - [n]= 5]
™ +|{te o L] = 3

(8) +Ht€[0,1]":‘/f2 z%}‘.

Since || f2|l1 < §, the term (8) is zero. By (5) the term (7) is less than §. Since

f1 € C.(R™), the remark preceding Lemma 3 implies that the term (6) can be made
less than § for sufficiently large m. This concludes the proof.

As will be seen, for our purposes it is more convenient to extend # | to functions

of non-compact support by the following limiting process, so I shall reject j;
Let p € C°(R™) satisfy

(i) p(0) =1,
(i) 0 <p(z) <1.

Let pwv(2) = p(3).
Definition 3. For f: R" — R, we write I = # [,,, f(z)dx (or I = # [ f), if for
every such p, # [;. pv(x)f(z)dz converges to I as N — oc.

By Lemma 3 and the Dominated Convergence Theorem, # [ f = [ f for every
f € LYR").

In order to exploit the translation invariance of T', we shall need the following
lemma.

Lemma 5. Let v € CL(R"), u € L'(R"), and
Sy(u)(z) = (Tvu)(x) — v(x)(Tu)(x).

Sy is bounded from L'(R™) to LP(R™) for 1 < p < -2 when n > 2, and from
LY(R™) to L>=(R") when n = 1.

Proof. (n > 2)

Su()(@) = | (o0) = v()u)K (@ - y)dy.

By Minkowski’s inequality for integrals, it is sufficient to show that

n
sup [|(v(y) —v(-))K(- = y)llp <ooforl <p<—7.
yeR™ n—1

This is clear on observing that,

AVl e LP(B(y; 1)) forp < 2,

[(v(y) —v(@) K (x —y)| < {'ﬂﬁ = ¢ [P(B(y: 1)) forp>1

lz—y[™

where B(y;1) is the ball in R™ with centre y and radius 1, and B(y;1)¢ is its
complement.



720 JONATHAN BENNETT

Lemma 6. Suppose ¢ € CL(R"), a > 0, and 0 < € < 1. There is a constant
k = r(¢,n) such that for u € L*(R™) with |lu; < kae,

9) {t € [0,1])" : [I;,(¢Tu) ()] > a}| <€ for allm € N.

Proof. Let t € [0,1)™ and suppose N is chosen so that supp(¢) € [-N, N]™. Let

k
Ay = {keZ”:t+2—m € [—N,N]"}.

We shall dominate I, (¢Tu)(t) by the sum of two terms, each of which will satisfy
an expression of the form (9).

6T < o | 3 TG00 (14 55 )

k€EAm ¢

(10) +2an > Ss(w) (t+ Qﬁm) :

k€A ¢

where Sy is defined in Lemma 5. Let

wtor=o (o4 ) u e ).

Since T is linear and commutes with translations,

(11) 2,% > T(gu) (t+ 2%>=T 27% > e | (@)

kEAm ¢ k€A ¢

Observe that for each m, A,,+ is constant, say A,,, on (0,1)". Using this, (11),
and the fact that 7' is weak type (1,1), we get for some constant c,

te o Wim 3 T(¢u)(t+2im) > a

k€A ¢
=[Rte(0,1)":|T = > )| >
= 5 : onm Vi =
k€A ¢
c 1
N
k€A, LI(R")

2nNn oo n n
¢ 19l oo @y lull 1 (mm) .

a
provided |u p1gn) < m This deals with the first term of (10) with

K= . We now turn to the remaining term. Let

1
c2" N"[|¢][ Loo rn)

TN = 50 S f<t+ 2%) for f € LP(R™), 1< p < oo.

k€A ¢

By (4), | Jm,¢ ()1 0,177) < Ifll2(mn), and by considering the number of elements
of Aty | Jm,e(f)llLe0,17) < 2" (N 4 1)"|| ||z ®n). Therefore by the Riesz con-

. n L
vexity theorem, ||Jom.¢(f)llze(jo,1m) < 2"(N 4+ 1)) e[| fllLp@mn) for 1 < p < oo.
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Here, as usual, % + % = 1. By Lemma 4 and the composition of J,, ¢ with Sy,

u»—>2nim S Syw) (t+2ﬁm)

k€A ¢

is bounded (independently of m), from L'(R™) to L?([0,1]™) for 1 < p < -2+. Let
a > 0 and 0 < € < 1. By Chebyshev’s inequality, there is a constant kK = n(qﬁ, n)
such that

1 k Jull L@y \*
n, ~ ) > < (EIETET) P
€ [0.1]" 5 > S¢(u)<t+2m> > _( = < <e
k€A ¢
provided ||ul| 1 (gny < wae. This deals with the second term in (10).
Lemma 7. For ¢ € CL(R™), T'¢ € L>°(R").

Proof. The proof of this is a simple consequence of the cancellation property (P1),
and the size condition (3), for K.

Lemma 8. If ¢ € C}(R") and u € L'(R"™), then

4 [ s@)Tw@d: = / (T*6) () u(@) da

where T* is the L? adjoint of T, having Calderdén-Zygmund kernel K*(z) = K(—x).
(Note that in general Tu & Lj,, (R™).)

Proof. Let u = vj + w; where v; € C}(R™) and ||wj|[z1gn) — 0 as j — co. Let
a > 0 and 0 < € < 1. By the triangle inequality,
20}

Ht 0,1 - ‘Im (6T) (1) — / (T* ) (2)ul@) de
=5

w  <|frenar Lm0 - [@own@e
)+ |{repar:| [rownwe > § ]

a9+ [{re o I (6Tw) 0] 2 S}
By Lemma 6, there is an integer J such that
{teOl | (¢ij)(t)|2%}‘<e VYm € Z,j>J.

=

So the term (14) is less than € for j > J. By Lemma 7, T*¢ € L*°(R"), and hence

@ oz —o

as j — 00, so increasing J if necessary we may suppose that
[ @
So for j > J, the term (13) is zero. As vj,¢ € L*(R"),

/ (T*6) () () = / () Ty (@) da,

o
<= Vi>J
3 =
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so term (12) now becomes

{re0ar: |1, (6T5) (0 - [ otaTo s

Q
> =
il

Fix j > J. ¢Twv; € L'(R™), so by Lemma 3 this term (12) tends to zero as m — oo.
This completes the proof of Lemma 8.

5. THE MULTIPLIER RELATION ON L!(R"™)
Lemma 9. If ' (y) = pi (y)e*™, € 0, then
T (@) = px ()= — 0
uniformly in x as N — o0o.
Proof. Let K*(z) = K(—x), and £ # 0.
T (2) — pw (@) m(=E)e> ¢

= lim lim e / E*(y)(pn (2 —y) — p (x))e >V dy.
€ <|y|<R

j—o0 R—oo

By writing p as the inverse Fourier transform of p, and then by Fubini’s theorem,

/.<| <& K*(y)(pn(x —y) — pn(x))e 2™ dy

/ K*(y)/ B(s) (e—zm—l“;y s 6—2771%»3) =2V gy
€ <|y|<R n

[ e (R (5 - €) - Bonl-0) ) as
< [ 136 [Rea (37— €) - Ko=) s

N S
— [ ) |m (5 €) —m(-¢)| ds
]Rn
as R — oo and j — oo by Lemmas 1, 2, and the D.C.T. The last expression tends

to zero uniformly in x as N — oo, by the continuity of m on R™\{0}, (see (P3) of
section 2.1), and the D.C.T.

Theorem 2. Let T satisfy (1), (2), and (3). If u € LY(R"), then

# | (Tu)(x)e*™ " de = m(£)u(§)

R™

for every € # 0.
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Proof. If u € L*(R"), and & # 0, then
# | (Tu)(@)e®™ " py (x)dx
Rn

=# | (Tu)(z)e=?m*py (x)dx
R™

= /n u(z) (T*¢§V‘5>) (x)dx (by Lemma 8)

— u(2)e*™ T m(€)dx
R'Vl

as N — oo by Lemma 9 and the D.C.T. Hence
# | (Tu)(x)e’ ™ da = m(€)u(s).

Rn

Corollary 1. Let T satisfy (1), (2), and (3). If u € L*(R") is such that Tu €
LY(R™), then

—

(Tu)(§) = m(&u(§), &#0.

Proof. Use Theorem 1 and the remark after Definition 3.

Corollary 2. If T satisfies (1), (2), and (3), then T is injective on L*(R™) if and
only if the zero set of m has empty interior.

Corollary 3. Let T satisfy (1) and (2). Suppose K is homogeneous of degree —n
and f € L*(R™) is non-negative. If f #0, then Tf ¢ L*(R™).

Proof. Use Corollary 1 and the fact that m is homogeneous of degree 0.
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