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Abstract. We prove an effective mean-value theorem for the values of a non-
degenerate, algebraic exponential polynomial in several variables. These ob-
jects generalise simultaneously the fundamental examples of linear recurrence
sequences and sums of S-units. The proof is based on an effective, uniform
estimate for the deviation of the exponential polynomial from its expected
value. This estimate is also used to obtain a non-effective asymptotic formula
counting the norms of these values below a fixed bound.

1. Introduction and main results

Let K denote a finite extension field of the rational field Q with degree denoted
d = [K : Q], and let OK denote the ring of algebraic integers of K. Let E(x) denote
an algebraic exponential polynomial in the variable x = (x1, . . . , xr). This is an
expression of the form

E(x) =
m∑

i=1

Ai(x)λx1
i1 . . . λ

xr

ir ,(1)

where Ai(x) ∈ OK[x1, . . . , xr], λij ∈ OK for 1 ≤ i ≤ m, 1 ≤ j ≤ r.
For each x ∈ Nr, we define

|Emax(x)| = max
i
{|λx1

i1 . . . λ
xr

ir |}.
We suppose throughout that E(x) is non-degenerate in the following sense. That
is, for each distinct pair of indices k and l, the numbers λk1/λl1, . . . , λkr/λlr are
multiplicatively independent. If r = 1, we may write x = x1. Then (1) takes the
simpler form

E(x) =
m∑

i=1

Ai(x)λx.(2)

It can easily be shown that E(x) represents the x-th term of an algebraic linear
recurrence sequence. Conversely, if E(x) denotes the x-th term of an algebraic
linear recurrence sequence, then it can be shown that E(x) is given by an explicit
formula of the kind in (2). In this case, if the sequence has order M and the degree
of Ai(x) is denoted ni − 1, then

∑
i ni = M . The non-degeneracy condition given
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above reduces, in the case where r = 1, to the usual notion of non-degeneracy for
these sequences.

Considerable interest has been shown in the arithmetic of these exponential
polynomials in the case when r = 1, see [3], [7], [8], [9], [11], [12], [13]. Often,
quite simply stated questions have turned out to be particularly intractable by
elementary methods. We give an example. It looks obvious that E(x) should grow
like its largest term. Say we order the ‘roots’; thus |λ1| ≥ |λ2| ≥ . . . ≥ |λr|. We
would expect the following to hold for all sufficiently large x ∈ N, |E(x)| ≥ C0|λ1|x.
This is obviously true if |λ1| > |λ2|. But suppose several roots tie for first place in
absolute value?

The general result was only obtained in [4], independently in [6], and at the
expense of an extremely profound theorem from diophantine approximation. In the
course of matters, it turned out to be easier to work with a massive generalisation
of a recurrence sequence, namely, a sum of S-units. Here, S denotes a finite set of
valuations of K, containing the archimedean valuations. Let US denote the group
of S-units of K. In [4], Evertse studied a linear form

a0 + a1u1 + · · ·+ amum,(3)

where ui ∈ US , ai ∈ K∗, i = 1, . . . ,m. To obtain the result we just alluded to,
he had to work with a linear form with the ui all belonging to a subset of K∗

whose norms were constrained to grow no faster than a small positive power of
their heights. This appears to be the minimally general level at which to work in
order to obtain smoothly the growth rate for recurrence sequences. A by-product
of working at this level of generality is that the multivariable version of the growth
result comes free of charge.

This would already justify the further study of the behaviour of linear forms
such as those he considered. Further impetus is provided by the fact that sums
of S-units occur naturally in many places in the theory of diophantine equations.
They occur naturally in other areas also; see [10] for a fascinating application in
measurable dynamics. We note that an algebraic exponential polynomial of the
kind in (1) arises as a special case of the objects studied by Evertse. Some strong
results are known about the growth rate of these general sequences. However, most
of the general results are non-effective. The exceptions arise in small numbers of
variables or where a few terms dominate the rest. In such cases, it is usual for
Baker’s Theorem to be applicable, and this is effective.

Evertse’s theorem used a hard result, known as the Subspace Theorem, proved by
Schmidt. This was proved initially only in the archimedean valuation. Schlickewei
subsequently generalised this, enabling one to consider also a finite number of non-
archimedean valuations. More recently, many of the results obtained for sums
of S-units have been improved using a deeper version of the Subspace Theorem
known as the Quantitative Subspace Theorem. Using these powerful techniques,
one can show that the number of solutions of equations such as the S-unit equation
is bounded in a way which depends very minimally upon the starting parameters.
See the recent papers [8], [9] and Schmidt’s excellent book [11] for details and
further references.

In this paper we are going to show how an effective result on the deviation of
|E(x)| from its expected value, coupled with the recent advances in [8], [9], can
be applied to obtain effective mean value results for the non-zero values of E(x).
Although it would require some effort to make our results explicit, nonetheless,
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general effective results for sequences of this kind are most welcome, especially
since we seem to be miles away from proving effective results for their growth rates.
With current techniques we would require, at the very least, an effective form of
Roth’s Theorem which is something we prefer not to hold our breath for.

We say that an exponential polynomial E(x) given by (1) has constant coeffi-
cients if its polynomial coefficients Ai(x) are constants i = 1, . . . ,m.

Theorem 1. For a non-degenerate exponential polynomial E(x) given by (1) and
any postive integer N , there is an effective asymptotic formula as N →∞:

1
N r

N∑
x1=1

. . .

N∑
xr=1

log |E(x)| = CN +O
(
N1−τ logτ N

)
,(4)

where

τ =

{
1− 1/(r + 1), if E(x) has constant coefficients;
1/2, otherwise.

Notes. (i) The set L = {Li(x) = x1 log |λi1| + . . . + xr log |λir|} is a collection of
real linear forms; let |x|L denote maxi{Li(x)}. The constant C in (4) denotes the
Riemann integral of the function | · |L over the unit cube [0, 1]r. As a limit, this is

lim
N→∞

1
N r+1

N∑
x1=1

. . .

N∑
xr=1

|x|L = lim
N→∞

1
N r

N∑
x1=1

. . .

N∑
xr=1

|x/N |L.(5)

Notice how (5) exploits the linearity property of | · |L, namely |ρx|L = ρ|x|L, for all
ρ in R+.

(ii) For the non-archimedean analogue of formula (4), consult [7] if r = 1 and [2]
for the general case. The differences are that the leading term in (4) is constant,
equal to the local integral of the valuation of the exponential polynomial. Also,
remarkably, the error term is not bounded effectively. It is rather unusual in number
theory for the archimedean version of a result to be better than its non-archimedean
counterpart.

(iii) Theorem 1 (and Lemma 2 below) generalise readily to the S-integral situ-
ation. Let S denote any finite set of valuations of K, including the archimedean
valuations. Suppose we insisted only that the λij and the coefficients of the Ai(x) be
S-integers. Then Theorem 1 holds with |E(x)|v replacing |E(x)|, where v denotes
any valuation of S and | · |v denotes the corresponding absolute value.

Theorem 2. Suppose E(x) is a non-degenerate exponential polynomial given by
(1). Let NK|Q : K → Q denote the usual field norm. Let q > 0 denote a real
parameter, to be thought of as large. Then there is an ineffective asymptotic formula
as follows:

NE(q) = #{x ∈ Nr : |NK|Q(E(x))| < q} = D(log q)r +O
(
(log q)r−τ

)
,(6)

where

τ =

{
1− 1/(r + 1), if E(x) has constant coefficients;
1/2, otherwise.
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Notes. (i) In formula (6), the constant D arises as a volume in the following way.
Let σl : K → C, l = 1, . . . , d, denote the distinct embeddings of K into the
complex numbers. Let L denote the set of linear forms

{Lil(x) = x1 log |σl(λi1)|+ . . .+ xr log |σl(λir)|}1≤i≤m,1≤l≤d.

Write |x|L = maxi,l{Lil(x)}. Then D denotes the volume of the fundamental
domain D = {Rr

+ : |x|L ≤ 1}.
(ii) We encountered a similar situation in [1], where we obtained a very accurate

formula counting the values of the S-norm of a general sum of S-units. Let a · u =
a0 + a1u1 + . . . + amum, where ui lie in the group of S-units of a number field K
and ai ∈ K∗. Letting NS denote the S-norm, we derived a formula of the following
shape:

#{u : NS(a · u) < q} = ψ1(log q)N + ψ2(log q)N−1 + o((log q)N−1),(7)

counting the number of vectors u = (u1, . . . , um) of S-units with NS(a · u) < q. In
(7), N denotes ms, where s is the torsion-free rank of the group of S-units. Now
a remark applies which is similar to (iii) following Theorem 1. Assuming E(x) is a
non-degenerate algebraic exponential polynomial, we are able to prove the following
asymptotic formula:

NE,S(q) = #{x ∈ Nr : NS(E(x)) < q} = DS(log q)r +O
(
(log q)r−1+1/(r+1)

)
.

Although this formula is not as accurate as the one in (7), it does apply to a much
larger class of objects.

(iii) We could (and we will at the beginning of the proof of Theorem 2) have
obtained the formula (6) with an error term of o((log q)r) simply by applying the
standard results from [4] about the growth rate of |NK|Q(E(x))|. The application
of Lemma 2 below gives a fairly substantial improvement of the error term. Un-
fortunately no effective formula can be given at the moment. The only prospect of
this seems to lie with an effective lower bound for |NK|Q(E(x))|.

2. Auxiliary results

The theorem in [8] implies the following statement.

Lemma 1. Suppose E(x) is a non-degenerate exponential polynomial given by (1).
Then for any H ≥ 1 the number T of solutions of the equation

E(x) = 0, 0 ≤ x1, . . . , xr ≤ H,

is at most

T =

{
O(1), if E(x) has constant coefficients;
O(Hr−1), otherwise,

where the implied constants depend on d, m, r, the maximal total degree D of the
Ai(x) and the number of prime divisors ω of the fractional ideals (λij), i = 1, . . . ,m,
j = 1, . . . , r.

Proof. We use induction with respect to the number of terms m of the exponential
polynomial E(x). For m = 1 the only contribution to the number of zeros comes
from a polynomial equation

A1(x1, . . . xr) = 0, 0 ≤ x1, . . . , xr ≤ H.
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Obviously this equation has at most O(1) solutions if E(x) has constant coefficients
and O(Hr−1) solutions otherwise.

The induction is provided by the theorem in [8] which implies that all except
maybe O(1) solutions of the equation of the lemma satisfy an equation of the form∑

i∈I
Ai(x)λx1

i1 . . . λ
xr

ir = 0,

where I is a proper subset of the set {1, . . . ,m}. Applying the induction assumption
to each of 2m − 1 such subsets we obtain the required estimate.

We thank H. P. Schlickewei and W. M. Schmidt for the information about their
recent work [9] where the dependence on the number of prime ideals is eliminated.
However, even this much stronger result still does not allow us to avoid the depen-
dency on λij in constants in our paper.

The following statement is an archimedean analogue of Lemma 4 of [13].

Lemma 2. Let N1, . . . , Nr, H denote non-negative integers, with |N | = maxi{Ni}
for N = (N1, . . . , Nr). There are effectively computable constants C1, C2, C3, inde-
pendent of N and H with the following property:

#{0 ≤ yi < H : |E(N + y)| < |Emax(N)|e−C1H−C2 log |N|}

≤
{
C3, if E(x) has constant coefficients;
C3H

r−1, otherwise.
(8)

Proof. It will be easier to re-write the definition of E(x) as a sum of monomials of
the form

m(x)λx = xn1
1 . . . xnr

r λx1
1 . . . λxr

r .(9)

With this notation, write E(x) in the following way:

E(x) =
M∑
i=1

Aimi(x)λ
x
i .(10)

In (10), the coefficients Ai are non-zero algebraic integers, Ai ∈ OK.
By Lemma 1, we see that there is some number

T =

{
O(1), if E(x) has constant coefficients;
O(Hr−1), otherwise,

such that any other non-zero exponential polynomial

F (x) =
M∑
i=1

Bimi(x)λ
x
i , Bi ∈ OK,(11)

has at most T zeros. The constants implicit in the definition of T depend upon the
exponential polynomial E only.

Suppose it is possible to find Q = T + 1 integer vectors xi = N + y
i
, y

i
=

(yi1, . . . , yir), i = 1, . . . , Q, in the range 0 ≤ yij < H, i = 1, . . . , Q, j =
1, . . . , r, which satisfy the property within the brackets in (8). Denote Y =
{y

1
, . . . , y

Q
}.

Now we construct a sequence z1, . . . , zM recursively. On the first step, we select
an arbitrary z1 ∈ Y with m1(N + z1)λ

z1
1 6= 0. This choice is possible because the
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last equation is an equation with a non-zero exponential polynomial of the shape
(11) and |Y | > T .

Assume that z1, . . . , zk ∈ Y , k < M , are already selected in such a way that

det

m1(N + z1)λ
z1
1 . . . mk(N + z1)λ

z1
k

. . . . . . . . .
m1(N + zk)λzk

1 . . . mk(N + zk)λzk

k

 6= 0.

We select zk+1 ∈ Y such that

det


m1(N + z1)λ

z1
1 . . . mk+1(N + z1)λ

z1
k+1

. . . . . . . . .
m1(N + zk)λzk

1 . . . mk+1(N + zk)λzk

k+1

m1(N + zk+1)λ
zk+1
1 . . . mk+1(N + zk+1)λ

zk+1
k+1

 6= 0.

This is possible because of the choice of z1, . . . , zk; the last determinant is a non-
zero exponential polynomial of the shape (11) and |Y | > T .

Finally we obtain,

 m1(N + y
1
)λ

y
1

1 . . . mM (N + y
1
)λ

y
1

M

. . . . . . . . .

m1(N + y
M

)λ
y

M
1 . . . . mM (N + y

M
)λ

y
M

M


 A1λ

N
1

. . .

AMλN
M

 =

E(N + y
1
)

. . .
E(N + y

M
)

 ,

(12)

where

∆ = det

 m1(N + y
1
)λ

y
1

1 . . . mM (N + y
1
)λ

y
1

M

. . . . . . . . .

m1(N + y
M

)λ
y

M
1 . . . mM (N + y

M
)λ

y
M

M

 6= 0.

Noticing that all algebraic conjugates (over K) of ∆ do not exceed eC4H+C5 log |N|,
we obtain

∆ ≥ e−C4dH−C5d log |N|.

Applying Cramer’s Rule we see that for the vector (E(N +zi))1≤i≤M the largest
entry is bounded below by a quantity of the shape |Emax(N)|e−C6H−C7 log |N|.
This contradicts our starting assumption by violating the inequality satisfied by
|Emax(N)|. This completes the proof of the lemma.

For the proof of Theorem 2 we need the following (perhaps well-known) state-
ment.

Lemma 3. Let Q > 0 denote a large real parameter. Then

#{x ∈ Nr : |x|L ≤ Q} = DQr +O(Qr−1).(13)

Proof. This is a standard fact from the geometry of numbers; |x|L represents the
largest of a finite collection of linear forms with positive coefficients. We could
just apply the result on p. 128 of [5]. The condition of Lipschitz-parametrizability
follows because the faces of the domain are defined by linear forms. Note that the
constant D is the volume of the fundamental domain D = {x ∈ Rr

+ : |x|L ≤ 1}.
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3. Proofs of the main results

This section starts with a proof of Theorem 1.

Proof of Theorem 1. Let H denote a positive integer. We are going to prove the
following effective asymptotic formula,

1
N r

N∑
x1=1

. . .

N∑
xr=1

log |E(x)| = CN +O
(
H logN +NH−ρ

)
,(14)

where

ρ =

{
r, if E(x) has constant coefficients;
1, otherwise.

Clearly, Theorem 1 (formula (4)) follows by taking

H =

{
[N1/(r+1) log−1/(r+1)N ], if E(x) has constant coefficients;
[N1/2 log−1/2N ], otherwise.

The proof of formula (14) comes by breaking the summatory range in each variable
into intervals of length H . In each interval, we may use Lemma 2 to replace |E(x)|
by its value at an endpoint together with an error term of size O(H logN), with
a number of exceptional values of x which is bounded as in (8). For each i with
1 ≤ i ≤ r, write xi = aiH + bi and x = aH + b. Fixing a for the moment, consider
the sum

H∑
b1=1

. . .

H∑
br=1

log |E(aH + b)|.(15)

By Lemma 2, this is
H∑

b1=1

. . .

H∑
br=1

(log |Emax(aH)|+O(H logN))

+

{
O(N), if E(x) has constant coefficients;
O(NHr−1), otherwise.

(16)

The last part of this formula comes from the exceptional points in Lemma 2. For
these, we can only estimate log |E(aH + b)| by O(N). Thus the formula in (16)
simplifies to

Hr+1 log |Emax(a)|+O(Hr+1 logN)

+

{
O(N), if E(x) has constant coefficients;
O(NHr−1), otherwise.

(17)

We may write |Emax(x)| = e|x|L . Then (17) becomes

Hr+1|a|L +O(Hr+1 logN) +

{
O(N), if E(x) has constant coefficients;
O(NHr−1), otherwise.

(18)

Fix a j such that |x|L = Lj(x). This equation defines a region in Rr
+ which we

denote by Cj . Now Cj is a cone and summing the values Lj(a) for a ∈ Nr ∩ Cj is
a straightforward matter. The integers in question are bounded as follows, |a| ≤
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N/H + O(1). Therefore, summing the expressions in (18) gives a formula of the
shape

CN r+1 +O (N rH logN) +

{
O(N r+1H−r), if E(x) has constant coefficients;
O(N r+1H−1), otherwise.

Dividing through by N r gives the formula claimed in (14).

Proof of Theorem 2. Let H denote a positive integer with H ≥ log log q. We will
prove the following asymptotic formula:

NE(q) = D(log q)r

+

{
O(H(log q)r−1 +H−r(log q)r), if E(x) has constant coefficients;
O(H(log q)r−1 +H−1(log q)r), otherwise.

(19)

This clearly implies Theorem 2 (formula (6)) by taking Hr+1 = log q if E(x) has
constant coefficients and H2 = log q otherwise.

Initially, we will suppose that K = Q. Recall the definition of | · |L from Note (i)
following Theorem 1. The basic idea of the proof is to simplify matters by counting
values of |x|L rather than values of |E(x)|.

Case where K = Q.
It will be useful to kick off with the following bounds:

C8|x| ≤ |x|L ≤ C9|x|.(20)

In (20), | · | denotes any of the standard Euclidean norms on Zr. We will fix a choice
of norm, the maximum norm, so that hereafter

|x| = max
i
{|xi|}, x = (x1, . . . , xr).(21)

The proof of (20) is trivial in the case where K = Q. In particular, the left hand
inequality follows because the coefficients of the linear forms in L all have positive
coefficients (a feature which does not necessarily hold in the general case).

Using the results in [4], we estimate the growth rate of |E(x)| as x varies over
Nr. Let ε > 0 be given. From Theorem 2 in [4], a constant C10(E, ε) > 0 exists
with

C10|Emax(x)|1−ε ≤ |E(x)|,(22)

for all x ∈ Nr apart from the finitely many zeros of E(x). Since the bound |E(x)| ≤
C11|Emax(x)|1+ε is trivial, an ineffective version of (7) with error term o((log q)r)
follows at once. We show how the invocation of Lemma 2 allows an improvement
to the error to be made.

First, it is clear that the bounds in (20) and (22), together with the hypothesis
that |E(x)| < q, imply a bound for |x| of the shape

|x| ≤ C12 log q = T (q),(23)

where in (23), the constant C12 is ineffective. Now let H > 0 denote an integer
and suppose, after adjusting C12 if necessary, that H divides T (q). Now divide the
interval [0, T (q)] into sub-intervals of length H . These define boxes of side H , of
the form

B(N ) = [N1, N1 +H ]× · · · × [Nr, Nr +H ], N = (N1, . . . , Nr).
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Given any of these, say B(N), we have the estimate

log |E(x)| = |x|L +O(H + log |N |),(24)

which holds for all x ∈ B(N) apart from at most an exceptional set whose number
is bounded as in (8). Applying (23) shows that we may take |N | to be O(log q). So
we replace (24) by the estimate

log |E(x)| = |x|L +O(H + log log q) = |x|L +O(H),(25)

because we have insisted that H ≥ log log q. Therefore (23) can be replaced by

|x|L ≤ log q + C14H = T (q,H).(26)

We are going to divide the counting into two parts. Notice that for |x|L >
T (q,H), there are at most a finite number of elements of B(N)∩Nr with |E(x)| < q,
and this number is bounded as in (8).

We reckon the first part of the sum to be the following:∑
N

#{x ∈ B(N) ∩ Nr : |E(x)| ≤ q, |x|L ≤ T (q,H)}.(27)

Applying Lemma 2 to (27) gives

∑
N

#{x ∈ B(N) ∩Nr : |x|L ≤ T (q,H)}

+

{
O(#{B(N ) : |N |L ≤ T (q,H)}), if E(x) has constant coefficients;
O(Hr−1#{B(N) : |N |L ≤ T (q,H)}), otherwise.

(28)

Note how the uniformity of the error term played a crucial role in (28). The
number of boxes B(N) with |N |L ≤ T (q,H) is approximately (T (q,H)/H)r. Using
Lemma 3 and the explicit definition of T (q,H) (in (26)) we deduce the following
formula for (28):

#{x ∈ Nr : |x|L ≤ T (q,H)}

+

{
O ((T (q,H)/H)r) , if E(x) has constant coefficients;
O((T (q,H)r/H), otherwise

=D(log q)r+

{
O(H(log q)r−1+H−r(log q)r), if E(x) has constant coefficients;
O(H(log q)r−1+H−1(log q)r), otherwise.

(29)

For the second part of the sum we recall that in each B(N), provided |x|L >
T (q,H), the contribution is bounded as in (8). Write R(q,H) for the set of x with
T (q,H) < |x|L ≤ T (q). Then the second part of the sum (that is, the contribution
from those x with |x|L > T (q,H)) can be estimated as{

O(
∑

x∈R(q,H) 1), if E(x) has constant coefficients;
O(Hr−1

∑
x∈R(q,H) 1), otherwise.

(30)

The total number of boxes counted in (30) is approximately

[(T (q)− T (q,H))/H ]r = O((log q/H)r).
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Thus the term in (30) is{
O(H−r(log q)r), if E(x) has constant coefficients;
O(H−1(log q)r), otherwise.

(31)

The expression in (31) fits nicely into the last part of the error term in (29), com-
pleting the proof of formula (19).

General Case.
First, we can provide an estimate to replace that in (22). As before, σl : K →

C, l = 1, . . . , d, denotes the distinct embeddings of K into the complex numbers.
For any vector a = (a1, . . . , aM ) ∈ OM

K define the height H(a) to be

H(a) =
∏

l

max{|σl(a1)|, . . . , |σl(aM )|}.(32)

Using the results in [4], we are able to estimate |NK|Q(E(x))|, by comparing it with
HE(x) = H((λx

1 , . . . , λ
x
M )). Using Theorem 2 in [4], we deduce the existence of

positive constants C15 and C16 with

C15HE(x)1−ε ≤ |NK|Q(E(x))| ≤ C16HE(x).(33)

In (33), the right hand inequality is trivial and follows from the triangle inequality.
Secondly, we can use Lemma 2 to deduce the existence of constants C17, C18 and
C19 which are effective and uniform such that for any box B(N ) as in the proof of
the case K = Q

#{x ∈ B(N) : |NK|Q(E(x))| ≤ HE(x)e−C17H−C18 log |N |}(34)

is bounded by C19 if E(x) has constant coefficients and by C19H
r−1 otherwise.

This follows simply by multiplying together the inequalities in Lemma 2, one for
each of the distinct embeddings.

Finally, we stand in need of some kind of geometric information. In the above,
we knew that the fundamental domain D had finite volume, thus implying formula
(13). This was true because the coefficients of the linear forms were positive. In the
general case, this follows because the expression HE(x) is a height function (see [11]
for a good discussion of heights). In particular, HE(x) has the following property:
for any C20 > 0, there are only finitely many x ∈ Nr with

HE(x) ≤ C20.(35)

In fact (35) follows from a more general property that for any x ∈ Nr,

C21|x|L < logHE(x) < C22|x|L,(36)

where C21 and C22 are positive constants. Now (35) is true because (see [11]) there
are only finitely many a ∈ OM

K with H(a) below a fixed bound. Write hE(x) =
log(HE(x)) as a sum of linear forms; thus

hE(x) =
d∑

l=1

max{L1l(x), . . . , LMl(x)}.(37)

In (37), the notation refers to Note (i), following the statement of Theorem 2. Now
the definition of hE(x) extends to Rr

+ and we claim that the fundamental domain

D = {x ∈ Rr
+ : hE(x) ≤ 1}(38)

has finite volume. To see this, note that Rr
+ is a finite union of cones according to

which of the linear forms in (37) are largest. Each of these cones has a fundamental
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domain of finite volume because if this were not so, the cone would contain infinitely
many points of Nr. But this would violate inequality (35). Thus each cone has a
fundamental domain of finite volume and therefore D has finite volume. From this
we can use [5], as in Lemma 3, to deduce inequality (13) and the rest of the proof
follows verbatim.
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