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A NECESSARY CONDITION OF SOLVABILITY
FOR THE CAPILLARITY BOUNDARY

OF MONGE-AMPERE EQUATIONS IN TWO DIMENSIONS

MA XI-NAN

(Communicated by Peter Li)

Abstract. In this paper we consider a class of Monge-Ampere equations with
a prescribed contact angle boundary value problem on a bounded strictly con-
vex domain in two dimensions. The purpose is to give a sharp necessary
condition of solvability for the above mentioned equations. This is achieved
by using the maximum principle and introducing a curvilinear coordinate sys-
tem for Monge-Ampere equations in two dimensions. An interesting feature
of our necessary condition is the need for a certain strong restriction between
the curvature of the boundary of domain and the boundary condition, which
does not appear in the Dirichlet and Neumann boundary values.

§1. Introduction

The existence of convex classical solutions of the Dirichlet boundary problem for
equations of Monge-Ampere type,

detuij = f(x, u, Du) in Ω,(1.1)

u = φ(x) on ∂Ω,(1.2)

where Ω is a convex domain in Rn, f is a prescribed positive function on Ω×R×Rn,
φ(x) ∈ C∞(Ω̄), have been obtained in [1]. In conjunction with (1.1), the Neumannn
boundary and the oblique derivative problem also have been considered in [2], [5],
[6], [7]. They established various existence theorems. For the nonlinear oblique
value problems, the only known result is obtained in the paper [7] of Urbas. But
his result excludes the following capillarity boundary problem:

∂u

∂n
= cos θ(x, u)

√
1 + |Du|2 on ∂Ω,(1.3)

where n is the unit normal vector pointing outward from ∂Ω and θ(x, u) ∈ (0, π)
is the wetting angle. The reason for excluding the above case is that the second
derivative estimates may fail to hold. So even for the equations

det uij = c in Ω,(1.4)
∂u

∂n
= cos θo

√
1 + |Du|2 on ∂Ω,(1.5)
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where Ω is a strictly convex bounded smooth domain in R2, c is a positive constant,
and θo ∈ (0, π

2 ), the existence of a classical solution is still open.
In this paper we give a necessary condition of solvability for (1.4)-(1.5); more

precisely we obtain the following theorem.

Theorem. Under the above hypotheses on Ω, c, θo, if u(x) ∈ C2(Ω̄)∩C3(Ω) is the
strictly convex solution of (1.4)-(1.5), then we have the following relation

k0 ≤ max{√c cos θo,
√

c tan θo},(1.6)

where k0 = minx∈∂Ω k(x) > 0 and k(x) is the curvature of ∂Ω at x.

The above theorem shows that when we solve capillarity boundary value prob-
lems for Monge-Ampere equations on a strictly convex domain in R2, there exists a
strong restriction between the curvature of the boundary of domain and the bound-
ary value, which is different from Dirichlet and Neumann boundary value problems
[1], [2].

Remark 1.1. When θo =
π

5
, cos θo = tan θo =

√
5− 1
2

, and there exists a point

xo ∈ ∂Ω such that k(xo) ≤
√

5−1
2 , then our condition (1.6) is automatically satisfied.

The proof of the theorem depends on the maximum principle for some suit-
able auxillary function and the introduction of a curvilinear coordinate system for
Monge-Ampere equations in two dimensions. In section 2, we will state some no-
tations and lemmas. The proof of the theorem and an example which implies the
sharpness of our condition will be given in section 3. In [3], the same technique
will also be used to obtain the isoperimetric bounds of classical convex solutions of
homogeneous Dirichlet and Robin boundary values for the Monge-Ampere equation

detuij = c,

in two dimensions.

§2. Notations and lemmas

Let C be a curve in the plane given in parametric representation by

xi = xi(s), i = 1, 2,(2.1)

where s denotes the arc length along C measured from some point on C. Then for

the tangent vector T , we have T i = ẋi, |T |2 = 1, ẋi(s) =
dxi(s)

ds
.

Assume now that a function u(x) is defined on the closure of a bounded convex
smooth domain Ω with ∂Ω as its boundary; we denote n as its unit outward normal.
As in [4], let’s introduce the curvilinear coordinate system (s, r) with ∂Ω as the
reference curve; here s stands for the arc-length of ∂Ω and r is taken to be positive
in the direction of n. Then define the “normal derivative” ∂u

∂n of u by

∂u

∂n
= lim

r→0

1
r
(u(xi)− u(xi − rni)).

Meanwhile we have

u(x1, x2) = u(x1(s), x2(s)) = u(s) on ∂Ω,
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so we can also define a tangential derivative by
∂u

∂s
=

du

ds
=

∂u

∂xi
ẋi = uiT

i.

We also denote

ui =
∂u

∂xi
, uij =

∂2u

∂xi∂xj
.

Then we have the following formulas at any point x ∈ ∂Ω:
∂u

∂s
= uiT

i,(2.2)

∂u

∂n
= uin

i,(2.3)

∂2u

∂2s
= uijT

iT j − kuin
i,(2.4)

∂2u

∂2n
= uijn

inj ,(2.5)

∂

∂s
(
∂u

∂n
) = uijn

iT j + kuiT
i,(2.6)

∂

∂n
(
∂u

∂s
) =

∂

∂s
(
∂u

∂n
)− k

∂u

∂s
= uijn

iT j.(2.7)

Lemma 2.1. For u ∈ C2(Ω̄), we have the following relation at any point x0 ∈ ∂Ω:

uij =
2∑

k,l=1

(T iT jT kT l + T injT knl + niT jnkT l + ninjnknl)Dklu.(2.8)

Proof. This can be verified directly by using

T 1 = n2, T 2 = −n1.

Lemma 2.2. For u ∈ C2(Ω̄), the equation detuij = c can be rewritten on ∂Ω in
the following form:

(
∂2u

∂s2
+ k

∂u

∂n
)
∂2u

∂n2
= c + [

∂

∂n
(
∂u

∂s
)]2.(2.9)

Proof. This follows from Lemma 2.1 and the formulas (2.2)-(2.7).

Lemma 2.3. Suppose that P (x) = |Du|2 − 2
√

cu, where u ∈ C2(Ω̄) ∩ C3(Ω) is a
strictly convex solution of equation (1.4). Then P (x) attains its maximum on ∂Ω.

Proof. Without loss of generality, assume that P (x) is not a constant in Ω̄. By
using the summation convention, we have

Pi = 2uiuij − 2
√

cui,(2.10)

Pij = 2ukjuki + 2ukukij − 2
√

cuij .(2.11)

From equation (1.4), it follows that

log(det uij) = log c.(2.12)

Differentiating (2.12) with respect to xk, we have

uijuijk = 0, k = 1, 2,(2.13)



766 MA XI-NAN

where {uij} is the inverse of the Hessian matrix H = {uij}. Since u ∈ C2(Ω̄) is
strictly convex, {uij} is a positive definite matrix, and therefore

uijPij = 2uijukjuki + 2uijukukij − 2
√

cuijuij

= 2∆u− 4
√

c.(2.14)

Now use (1.4) to obtain

∆u = u11 + u22 ≥ 2
√

u11u22 = 2
√

c + u12
2 ≥ 2

√
c.(2.15)

So

uijPij ≥ 0,(2.16)

and then P (x) attains its maximum on ∂Ω by the maximum principle.

§3. The proof of the Theorem

In this section the Theorem will be proved by a careful analysis of P (x) on ∂Ω.

Proof. If u ∈ C2(Ω̄) ∩ C3(Ω) is a strictly convex solution to the equations (1.4)-
(1.5), by Lemma 2.3, P (x) takes its maximum at some point xo ∈ ∂Ω. From the
Hopf boundary point lemma [4], we have either

P (x) ≡ Const. in Ω̄,

or
∂P

∂n
(xo) > 0.

(i): Suppose first that P (x) is not a constant. We then have at xo ∈ ∂Ω,

∂P

∂s
= 0,(3.1)

∂P

∂n
> 0.(3.2)

Now, (3.1) and (3.2) may be written explicity at xo as follows:

∂P

∂s
= 2

∂u

∂s
· ∂

∂s
(
∂u

∂s
) + 2

∂u

∂n
· ∂

∂s
(
∂u

∂n
)− 2

√
c
∂u

∂s
= 0,(3.3)

∂P

∂n
= 2

∂u

∂n
· ∂

∂n
(
∂u

∂n
) + 2

∂u

∂s
· ∂

∂n
(
∂u

∂s
)− 2

√
c
∂u

∂n
> 0.(3.4)

From the boundary condition (1.5), we get

∂u

∂n
· ∂

∂s
(
∂u

∂n
) = cot2 θo · ∂u

∂s

∂

∂s
(
∂u

∂s
).(3.5)

Inserting into (3.3) yields

∂P

∂s
= 2

∂u

∂s
(

1
sin2 θo

· ∂2u

∂s2
−√

c) = 0 at xo.(3.6)

Thus, the following two cases will occur.
Case (a):

∂u

∂s
(xo) = 0.(3.7)
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In this case, we may use the fact that
∂2P

∂s2
(xo) ≤ 0 . But since

∂u

∂s
(xo) = 0,

∂2P

∂s2
= 2

∂2u

∂s2
(

1
sin2 θo

· ∂2u

∂s2
−√

c) ≤ 0 at xo,(3.8)

i.e. at xo we have

0 ≤ ∂2u

∂s2
≤ √

c sin2 θo.(3.9)

From (3.3) and (3.7) we have
∂

∂s
(
∂u

∂n
)(xo) = 0.(3.10)

So by (2.7)
∂

∂n
(
∂u

∂s
)(xo) = 0.(3.11)

Therefore (2.9) can be written as

∂2u

∂n2
=

c

∂2u

∂s2
+ k

∂u

∂n

at xo.(3.12)

Inserting into (3.4) yields
∂P

∂n
= 2

∂u

∂n

c

∂2u

∂s2
+ k

∂u

∂n

− 2
√

c
∂u

∂n
> 0 at xo.(3.13)

From
∂u

∂s
(xo) = 0 and the boundary value condition, we have

∂u

∂n
(xo) = cot θo.(3.14)

From (3.9), (3.13) and (3.14), we have that

k(xo) ≤
√

c tan θo.(3.15)

Case (b):
∂u

∂s
(xo) 6= 0.(3.16)

Then it follows from (3.6) that we have

∂2u

∂s2
=
√

c sin2 θo at xo.(3.17)

Combining (3.5), (3.17) and (2.7), we have

∂

∂n
(
∂u

∂s
) =

∂u

∂s
(
√

c cos2 θo

∂u

∂n

− k) at xo.(3.18)

If we insert the expression (3.18) into (2.9), we get

∂2u

∂n2
=

c + (
∂u

∂s
)2[

√
c cos2 θo

∂u

∂n

− k]2

√
c sin2 θo + k

∂u

∂n

at xo.(3.19)
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In this case the expression (3.4) becomes

k
∂u

∂n
≤ √

c cos2 θo at xo.(3.20)

Thus from the boundary value condition (1.5), we have

k(xo) ≤
√

c cos θo.(3.21)

(ii): If P (x) ≡ Const. on Ω̄, then for any point xo ∈ ∂Ω, we have
∂P

∂s
= 2

∂u

∂s
· ∂

∂s
(
∂u

∂s
) + 2

∂u

∂n
· ∂

∂s
(
∂u

∂n
)− 2

√
c
∂u

∂s
= 0,(3.22)

∂P

∂n
= 2

∂u

∂n
· ∂

∂n
(
∂u

∂n
) + 2

∂u

∂s
· ∂

∂n
(
∂u

∂s
)− 2

√
c
∂u

∂n
= 0.(3.23)

If ∂u
∂s (xo) = 0, then at xo

∂2P

∂s2
= 2

∂2u

∂s2
(

1
sin2 θo

∂2u

∂s2
−√

c) = 0.(3.24)

So it may be may divided into three cases.
Case (c):

∂u

∂s
(xo) = 0,

∂2u

∂s2
(xo) =

√
c sin2 θo.(3.25)

As in case (a), (3.22)-(3.23) and (3.25) imply

k
∂u

∂n
=
√

c cos2 θo at xo.(3.26)

So from (3.14), it follows that

k(xo) =
√

c sin θo cos θo.(3.27)

Case (d):

∂u

∂s
(xo) = 0,

∂2u

∂s2
(xo) = 0.(3.28)

Again as in case (a), (3.22)-(3.23) and (3.28) imply

k(xo) =
√

c tan θo.(3.29)

Case (e):

∂u

∂s
(xo) 6= 0,

∂2u

∂s2
(xo) =

√
c sin2 θo.(3.30)

Then as in case (b), by (3.22)-(3.23) and (3.30) we have

k(xo) ≤
√

c cos θo.(3.31)

So from (3.15), (3.21), (3.27), (3.29) and (3.31), we know that if u ∈ C2(Ω̄) ∩
C3(Ω) is the strictly convex solution for equations (1.4)-(1.5), then the following
inequality holds:

ko = min
x∈∂Ω

k(x) ≤ max{√c cos θo,
√

c tan θo},(3.32)

which completes the proof of the theorem.

Now we give an example that shows the upper bound of k(x) is sharp.
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Example. When Ω = B(o, R), the disk with radius R in R2, and one considers
u = x2 + y2, then det(uij) = 4 and

∂u

∂n
= 2R, 1 + |Du|2 = 1 + 4R2, on ∂Ω.

Thus, the boundary condition

4R2 = cos2 θo(1 + 4R2)

implies

4R2 = cot2 θo

and

k(x) =
1
R

= 2 tan θo.

This examples shows that for some θo with tan θo ≥ cos θo, the condition (1.6) is
sharp.
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