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FINITE FAMILIES WITH FEW SYMMETRIC DIFFERENCES
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(Communicated by Andreas R. Blass)

Abstract. We show that 2dlog2(m)e is the least number of symmetric differ-
ences that a family of m sets can produce. Furthermore we give two charac-
terizations of the set-theoretic structure of the families for which that lower
bound is actually attained.

1. Introduction

Throughout this paper F and G will always denote finite families of sets.

Definition 1.1. • Let A∆B denote the symmetric difference between the sets
A and B, defined as

A∆B = { x | (x ∈ A ∧ x /∈ B) ∨ (x /∈ A ∧ x ∈ B) } .
• For F and G families of sets and A a set let

∆F = {A∆B | A, B ∈ F } ;
∆̄F = the closure under ∆ of F;

F∆G = {A∆B | A ∈ F ∧B ∈ G } ;
A∆F = {A∆B | B ∈ F } ;
A ∩F = {A ∩B | B ∈ F } .

Notice that ∅ ∈ ∆F for any F, while ∅ ∈ F∆G if and only if F ∩G 6= ∅.
If B 6= C, then A∆B 6= A∆C: therefore the cardinality |∆F| of ∆F is always

greater than or equal to the cardinality |F| of F. Hence m sets produce at least m
symmetric differencies (and at most m(m− 1)/2 + 1: this upper bound is attained
for every m, e.g. by m pairwise disjoint sets).

Our first result, which will be proved in section 2, sharpens the above lower bound
on |∆F| by showing that if |F| = m then |∆F| ≥ 2dlog2(m)e, i.e. that if |F| > 2n then
|∆F| ≥ 2n+1. Since a family of subsets of a set with n + 1 elements can produce at
most 2n+1 symmetric differences our lower bound on |∆F| is optimal. Our result
in particular entails that if |∆F| = |F|, then |F| is a power of 2 and we will also
prove that if |F| > 2n and |∆F| = 2n+1, then there exists F′ ⊇ F with |F′| = 2n+1

and |∆F′| = |F′| (so that ∆F′ = ∆F).
This shows that to describe the set-theoretic structure of the families F with

as few as possible symmetric differences, i.e. such that the lower bound on |∆F|
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is attained, it suffices to describe the set-theoretic structure of the families F such
that |∆F| = |F|. The main goal of sections 3 and 4 is to shed some light on this
set-theoretic structure and this will be accomplished using two different approaches.
In section 3 we will focus on the Venn diagram of the family, while in section 4 we
will concentrate on the way the elements of the family can be distinguished by way
of a tree construction.

2. The least number of symmetric differences

The power set Pow(X) of a set X together with the operation ∆ is a group with
∅ as the identity and the property that the inverse of any element is the element
itself, namely a 2-group. Groups of this kind, also called Boolean groups, are well-
known and easily seen to be abelian, finite whenever finitely generated, and, in that
case, to have order a power of 2.

Proposition 2.1. If F is finite, then ∆̄F is a finite Boolean group with the oper-
ation ∆, and |∆̄F| = 2n for some n.

Finite Boolean groups provide the appropriate framework for the study of the
operation ∆ on finite families.

The following proposition collects a couple of elementary properties of cosets of
subgroups of Boolean groups that will be useful in the sequel.

Proposition 2.2. Let G be a Boolean group and H be a subgroup of G.
1) Let g, g′ ∈ G. g and g′ are in the same coset of H if and only if gg′ ∈ H.
2) If g ∈ G, then H ∪ (gH), i.e. the union of H with the coset of H containing

g, is a subgroup of G.

Proof. 1) g and g′ are in the same coset of H if and only if for some h ∈ H g′ = gh
if and only if gg′ ∈ H .

2) Every subset of G is closed under inverses. By 1) the product of two elements
of gH belongs to H , as does the product of two elements of H , while the product
of an element of H with an element of gH belongs to gH . Therefore H ∪ (gH) is
closed under products.

The above facts about Boolean groups allow us to establish the lower bound on
|∆F| stated in the introduction.

Theorem 2.3. For any n and any family F with |F| > 2n we have |∆F| ≥ 2n+1.
Hence for every m the least number of symmetric differences that m sets can produce
is 2dlog2(m)e.

Proof. Let G = ∆̄F, which by Proposition 2.1 is a finite Boolean group with the
operation ∆. Moreover |G| = 2n+1+k for some k ≥ 0. Let h be maximal such that
there exists a subgroup H ≤G of order 2h such that H ∩∆F = {∅}.

We claim that h ≤ k. In fact if h > k, then H has at most 2n cosets and, since
|F| > 2n, one of them contains at least two distinct elements of F whose symmetric
difference, by Proposition 2.2.1, would be a nonempty element of H ∩∆F.

A consequence of the claim is that H has at least 2n+1 cosets. If one of them
has empty intersection with ∆F, then the union of this coset with H is a subgroup
(by Proposition 2.2.2) of order 2h+1 which intersects ∆F only in ∅, contradicting
the maximality of h. Hence every coset of H contains at least one element of ∆F
and |∆F| ≥ 2n+1.
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We now study the families for which the lower bound on the cardinality of the
family of the symmetric differences is attained, i.e. families F such that for some
n, |F| > 2n and |∆F| = 2n+1.

Theorem 2.4. Let F be a nonempty finite family of sets. The following are equiv-
alent:

i) |∆F| is the least number of symmetric differences |F| sets can produce;
ii) |F| > |∆F|/2 and ∆F is a group under ∆;
iii) there exists F′ ⊇ F such that |F| > |F′|/2 and |F′| = |∆(F′)|.

Proof. For |F| = 1 the theorem holds since i), ii), and iii) are all true. So let n be
such that 2n < |F| ≤ 2n+1.

To prove that i) implies ii) notice that if |∆F| is the least number of symmetric
differences |F| sets can produce then, since, as pointed out in the introduction, the
lower bound in Theorem 2.3 is optimal, |∆F| = 2n+1 and hence |F| > |∆F|/2.
Therefore we need only to show that ∆F is closed under symmetric differences.

Let G = ∆̄F, so that by Proposition 2.1 |G| = 2n+1+k for some k ≥ 0. If k = 0,
then G = ∆F, and we are done; so we assume that k ≥ 1.

We first show by induction on i, 1 ≤ i ≤ k, that for every X ∈ G \ (∆F) there
exists a subgroup H of G of order 2i such that X ∈ H and H ∩ ∆F = {∅}. For
i = 1 simply take H = {∅, X}. Assume the property holds for i < k and let H be
of order 2i, with X ∈ H and H ∩∆F = {∅}. H has 2n+1+k−i > 2n+1 cosets, and
since |∆F| = 2n+1 there are cosets of H which do not contain any element of ∆F.
If Y ∆H is one of them, then necessarily Y ∆H 6= H, and then H ∪ (Y ∆H) is (by
Proposition 2.2.2) a subgroup of G of order 2i+1 which contains X and no element
of ∆F but ∅.

Suppose now that A, B are such that A∆B /∈ ∆F. Let H be a subgroup of G
of order 2k such that A∆B ∈ H and H ∩∆F = {∅}. By Proposition 2.2.1 A and
B belong to the same coset of H, and by the proof of Theorem 2.3 if |∆F| = 2n+1,
then at most one of A, B is in ∆F. Hence if A, B ∈ ∆F, then A∆B ∈ ∆F and ∆F
is closed under ∆.

To prove that ii) implies iii), assume ii) holds, fix any A ∈ F, and let F′ =
A∆(∆F). F′ ⊇ F holds because A′ = A∆(A∆A′) for every A′ ∈ F, and hence
∆F ⊆ ∆(F′). Since ∆F is a group F′ is a coset of ∆F within ∆̄F, so that |F′| =
|∆F|, and ∆(F′) ⊆ ∆F. Therefore ∆(F′) = ∆F and hence |∆(F′)| = |F′|.

iii) implies i) is immediate because iii) implies that |F′| = |∆(F′)| = 2n+1 and
∆F ⊆ ∆(F′). Hence |∆F| = 2n+1 since by Theorem 2.3, |∆F| ≥ 2n+1.

Remark 2.5. The proof that ii) implies iii) of Theorem 2.4 shows that if F pro-
duces as few as possible symmetric differences, then either |∆̄F| = 2n+1 or |∆̄F| =
2n+2. Nevertheless |∆̄F| being small is not equivalent to |∆F| being least: F =
{{1}, {2}, {3}, {4}, {1, 2, 3, 4}} is a family of 22 + 1 sets such that |∆̄F| = 24 but
|∆F| = 23 + 3.

Remark 2.6. In ii) of Theorem 2.4 both conditions are necessary: any family of
4 sets producing 7 symmetric differences shows that |F| > |∆F|/2 alone does not
suffice to ensure that |∆F| is least, while F = {∅, {1}, {2}, {3}, {4}, {1, 2, 3, 4}} is a
family of 22 +2 sets such that ∆F is a group of order 24 under ∆, and hence shows
that the closure of ∆F under ∆ does not suffice to ensure that |∆F| is least.
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3. Venn diagrams

Theorem 2.4 shows that if a family has few symmetric differences then it is
contained in some F satisfying |∆F| = |F|. In this and in the next section we will
study families satisfying |∆F| = |F|.

A special case is of course offered by the families F such that F = ∆F, i.e. such
that (F, ∆) is a Boolean group; a condition which is clearly equivalent to |F| = |∆F|
and ∅ ∈ F. A typical example of a family F satisfying the equality F = ∆F is the
power set Pow(X) of any given set X . On the other hand every finite Boolean group
G is easily seen to be isomorphic to a power set with the operation of symmetric
difference. Indeed if X is a minimal set of generators of G, every product of elements
of X equals the product of the elements of X which actually occur in it an odd
number of times, so that to every element of G corresponds a unique subset of
X . Furthermore the product of two elements in G is exactly the product of the
elements in the symmetric difference of their corresponding subsets of X .

Therefore from the algebraic point of view there are no solutions to the equation
F = ∆F but the power sets. Moreover, since |F| = |∆F| implies ∆F = ∆(∆F),
from the same algebraic point of view the families F such that |F| = |∆F| are
again just the power sets. But this is far from being true as far as the set-theoretic
structure of F is concerned.

In this section we explore the Venn diagrams that families satisfying |F| = |∆F|
can have. We will give first a characterization of the families satisfying F = ∆F, and
then show how to characterize the remaining solutions to the equation |F| = |∆F|
by making use of the operation, to be defined below, of forming a Venn variant of
a family of sets.

Definition 3.1. • Let Gn be the family of sets of cardinality n of the form

{{s1} ∪A1, . . . , {sn} ∪ An}
where the si are all distinct and {s1, . . . , sn} ∩ (A1 ∪ . . . ∪ An) = ∅.
• Let Dn =

{
∆̄G | G ∈ Gn

}
.

We will use the following set-theoretic notion, which has been introduced in [1].

Definition 3.2. S is a differentiating set for the family F if for every A, B ∈ F with
A 6= B we have A∩S 6= B∩S, i.e. (A∆B)∩S 6= ∅. S is a minimal differentiating set
for F if it is a differentiating set and for every s ∈ S, S \ {s} is not a differentiating
set for F.

In [1] it is shown that if |F| = m, then F has a differentiating set S of cardinality
m− 1.

Theorem 3.3. 1) If F ∈ Dn, then |F| = 2n and F = ∆F;
2) If F = ∆F, then for every minimal differentiating set S for F the map A 7→

A ∩ S is a bijection between F and Pow(S);
3) F = ∆F if and only if for some n, F ∈ Dn.

Proof. 1) Let G = {{s1} ∪ A1, . . . , {sn} ∪An} ∈ Gn and F = ∆̄G ∈ Dn. Then
∅ ∈ F and obviously F = ∆F. Furthermore the fact that the si are all distinct
and the condition {s1, . . . , sn} ∩ (A1 ∪ . . . ∪ An) = ∅ ensure that no element
of G can be generated from the others by means of ∆. Hence they are a
minimal set of generators of F, which therefore has cardinality 2n.
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2) Assume that F = ∆F so that F is closed under ∆. In general for F closed
under ∆, from the identity A∆(A∆(B∆C)) = B∆C, it follows that for every
A ∈ F we have ∆F = A∆F. Let S be a minimal differentiating set for F.
For X ∈ ∆F let π(X) = X ∩ S. Since S is a differentiating set for F, π
is one-to-one. In fact if (A∆B) ∩ S = (A∆C) ∩ S then (B∆C) ∩ S = ∅;
therefore if for A, B, C ∈ F with B 6= C we had π(A∆B) = π(A∆C), S
would fail to be a differentiating set for F. Furthermore, from the identity
(X∩S)∆(Y ∩S) = (X∆Y )∩S and the closure of ∆F under ∆, it follows that
the range of π is closed under ∆ as well. Finally, by the minimality of S, for
every s ∈ S there exist X ∈ ∆F such that π(X) = X ∩ S = {s}. Thus every
subset of S, being the symmetric difference of the singletons of its elements,
is in the range of π. π is therefore a bijection between ∆F and Pow(S).

3) The “if” part follows immediately from 1). For the “only if” part let S =
{s1, . . . , sn} be a minimal differentiating set for F as in the proof of 2). If
X1 = {s1} ∪ A1, . . . , Xn = {sn} ∪ An are the elements of ∆F that intersect
S in singletons, we have

∆F = ∆̄{{s1} ∪ A1, . . . , {sn} ∪ An}
and {s1, . . . , sn} ∩ (A1 ∪ . . . ∪ An) = ∅. Thus F ∈ Dn.

Remark 3.4. Dn does not exhaust all the families F with 2n elements such that
|F| = |∆F|; for example the family F = {{1}, {2}} is such that ∆F = {∅, {1, 2}},
so that |F| = |∆F|, although F 6= ∆F.

We now prove that if |∆F| is minimal then the size of any minimal differentiating
set for F is minimal.

Proposition 3.5. If |F| > 2n, |∆F| = 2n+1 and S is a minimal differentiating set
for F, then |S| = n + 1.

Proof. If S is a minimal differentiating set for F, then |S| ≥ n+1. For every s ∈ S,
{s} ∈ S ∩ ∆F. By Theorem 2.4 ∆F is closed under ∆, and therefore S ∩ ∆F is
closed under ∆. It follows that Pow(S) = S ∩∆F and thus |S| ≤ n + 1.

Remark 3.6. The converse of Proposition 3.5 is false even in the special case |F| =
2n+1: F can be such that |F| = 2n+1 and have only minimal differentiating sets of
the smallest possible size, i.e. n + 1, but fail to satisfy |∆F| = 2n+1. An example is
provided by F = {∅, {1}, {2}, {1, 2, 3}}which is a family of 22 sets generating 22 +3
symmetric differences, although its only minimal differentiating set is {1, 2}.

Starting with families in Dn, new families satisfying the equality |F| = |∆F| can
be obtained by the operation of making what we call Venn variants.

Definition 3.7. • Let V (F) denote the Venn diagram of F, namely the parti-
tion induced on

⋃
F by the equivalence relation ∼F defined by

x ∼F y if and only if ∀A ∈ F(x ∈ A ←→ y ∈ A).

• For v ∈ V (F) we let

Fv = {A \ v | A ∈ F ∧ v ⊆ A } ∪ {A ∪ v | A ∈ F ∧ A ∩ v = ∅ }
and call Fv the Venn variant of F determined by v.

The following proposition is immediate from the definition.
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Proposition 3.8. For all v ∈ V (F), |Fv| = |F| and ∆(Fv) = ∆F, i.e. a Venn
variant of F has the same cardinality and produces the same collection of symmetric
differences as F.

Definition 3.9. Vn is the least family which contains Dn and is closed under for-
mation of Venn variants, namely
• if F ∈ Dn, then F ∈ Vn;
• if F ∈ Vn and v ∈ V (F), then Fv ∈ Vn.

By Theorem 3.3 and iterated application of Proposition 3.8 we obtain:

Proposition 3.10. If F ∈ Vn, then |F| = |∆F| = 2n.

The analysis we will now carry out will show that not even Vn exhausts the
families of cardinality 2n which have only 2n symmetric differencies.

Definition 3.11. For v, v′ ∈ V (F) we say that v is opposite to v′ in F if

{A ∈ F | v ⊆ A } = {A ∈ F | A ∩ v′ = ∅ }
or, equivalently, if

{A ∈ F | v ⊆ A } = F \ {A ∈ F | v′ ⊆ A } .
Proposition 3.12. Let F be a family and v, v′, v′′ ∈ V (F):

1) v is not opposite to v in F;
2) if v is opposite to v′ in F, then v′ is opposite to v in F;
3) if v′ and v′′ are opposite to v in F, then v′ = v′′;
4) if no element of V (F) is opposite to v in F, then V (Fv) = V (F), so that for

every u ∈ V (F) Fvu is defined; furthermore Fvv = F;
5) if v and v′ are opposite in F, then

V (Fv) = (V (F) \ {v, v′}) ∪ {v ∪ v′},
so that for every u ∈ V (F) \ {v, v′} Fvu is defined; furthermore Fv = Fv′ ;

6) if v ∈ V (F), then either v (if v has no opposite in F) or v ∪ v′ (if v and v′

are opposite in F) has no opposite in Fv;
7) for any v ∈ V (F), if v′ and v′′ are not opposite in F then v′ and v′′ are not

opposite in Fv.

Proof. 1) and 2) are immediate.
3) Let A ∈ F. v′ ⊆ A is equivalent (since v and v′ are opposite) to v ∩ A = ∅

which is equivalent (since v and v′′ are opposite) to v′′ ⊆ A. Hence

{A ∈ F | v′ ⊆ A } = {A ∈ F | v′′ ⊆ A } ,
which entails v′ = v′′.

4) It suffices to show that ∼F and ∼Fv are the same equivalence relation. Let
x, y ∈ ⋃

F. If x ∼F y, then either x, y ∈ v or x, y /∈ v, from which it follows
immediately that x ∼Fv y. Conversely let us assume that x �F y so that at
most one of x, y is in v. If x, y /∈ v let A ∈ F be such that x ∈ A and y /∈ A;
then one of A\v and A∪v is in Fv and witnesses that x �Fv y. Now suppose
x ∈ v, and hence y /∈ v. Since v has no opposite element in F, there is B ∈ F
such that either x, y ∈ B or x, y /∈ B. In the former case B \ v contains y but
does not contain x; in the latter case B ∪ v contains x but does not contain
y. In both cases we have that x �Fv y.

Fvv = F follows immediately from the definitions.
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5) The proof of 4) shows that if u ∈ V (F), u 6= v and u 6= v′, then u is a ∼Fv

equivalence class, namely an element of V (Fv). On the other hand if x ∈ v
and y ∈ v′, then x ∼Fv y so that v ∪ v′ replaces both v and v′ in V (Fv).

6) Let v̄ be either v (if v has no opposite in F) or v ∪ v′ (if v and v′ are opposite
in F). Suppose u ∈ V (Fv) is opposite to v̄ in Fv. By 1) u 6= v̄ and hence
by 4) or 5) u ∈ V (F). Since u 6= v let A ∈ F be such that either u ⊆ A and
v * A or u * A and v ⊆ A. In the former case A∪ v ∈ Fv and contains both
u and v̄; in the latter case A \ v ∈ Fv and contains neither u nor v̄. In both
cases u and v̄ are not opposite in Fv.

7) If v is either v′ or v′′, then the conclusion follows immediately from 6). Oth-
erwise v′, v′′ ∈ V (F) and, since v′ and v′′ are not opposite in F, there exists
A ∈ F such that either v′ ⊆ A and v′′ ⊆ A or v′ ∩ A = ∅ and v′′ ∩ A = ∅.
Then either A ∪ v, if v ∩ A = ∅, or A \ v, if v ⊆ A, witnesses that v′ and v′′

are not opposite in Fv.

As an immediate consequence we have the following:

Corollary 3.13. If V (F) has no pair of opposite elements, then for every v ∈
V (F), V (Fv) has no pair of opposite elements.

The following proposition relates the absence of opposite elements in the Venn
diagram of a family with the Venn diagram of the family of its symmetric differences.

Proposition 3.14. V (F) has no pair of opposite elements if and only if V (F) =
V (∆F).

Proof. Let x ∼−
F y stand for ∀A ∈ F(x ∈ A ←→ y /∈ A). As it is easy to check

x ∼∆F y if and only if either x ∼F y or x ∼−
F y, so that V (∆F) is the partition

induced on
⋃

F by the equivalence relation x ∼F y ∨ x ∼−
F y. If V (F) has no pair

of opposite elements, ∼−
F is the empty relation and ∼∆F coincides with ∼F so that

V (F) = V (∆F). Conversely if V (F) = V (∆F), then ∼F=∼∆F and ∼−
F must be

empty, which entails that in V (F) there are no pairs of opposite elements.

Proposition 3.15. If F ∈ Vn, then V (F) has no pair of opposite elements.

Proof. If F ∈ Dn, then F = ∆F; thus V (F) = V (∆F) so that by the previous
proposition V (F) has no pair of opposite elements. Since the families in Vn are
obtained from those in Dn by iterating the operation of Venn variant, by Corollary
3.13 their Venn diagrams have no pairs of opposite elements.

Remark 3.16. If F = {{1}, {2}, {1, 3}, {2, 3}}, then ∆F = {∅, {1, 2}, {3}, {1, 2, 3}}
so that |F| = |∆F|. However {1} and {2} are elements of V (F) which are opposite
in F, so that F /∈ V2 by Proposition 3.15.

The following proposition shows that the families in Vn are precisely those which
have the least possible number of symmetric differences and, at the same time, have
no pair of opposite elements in their Venn diagram.

Proposition 3.17.

Vn = {F | |F| = |∆F| = 2n ∧ V (F) has no pair of opposite elements } .
Proof. Propositions 3.10 and 3.15 show that Vn is included in the set on the right
hand side of the equality.
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To prove the reverse inclusion assume that |F| = |∆F| = 2n and V (F) has no
pair of opposite elements. Let S be a minimal differentiating set for F. Since S is a
differentiating set for F, the map λ : F→ Pow(S) defined by λ(A) = A ∩ S is one-
to-one. Since |F| = |∆F|, ∆F = ∆(∆F), and, by Theorem 3.3.2, |∆F| = |Pow(S)|.
Therefore λ is actually a bijection. Thus there exists a unique A0 ∈ F such that
A0 ∩ S = ∅. Let v1, . . . , vk ∈ V (F) be such that A0 = v1 ∪ . . . ∪ vk. Since V (F)
has no pair of opposite elements G = Fv1...vk

is well defined. Clearly ∅ ∈ G and by
Proposition 3.8 |G| = |∆G|. As noticed earlier these conditions entail G = ∆G.
Thus by Theorem 3.3 we have that G ∈ Dn. Finally, since by Proposition 3.12.4

F = Fv1...vkvkvk−1...v1

= Gvk...v1 ,

we have that F ∈ Vn.

By Proposition 3.12.6 and 7, eliminating pairs of opposite elements is simply a
matter of iterating the operation of making Venn variants.

Definition 3.18. If (v1, v
′
1), . . . , (vk, v′k) are all the pairs of opposite elements in

F, we let
F∗ = Fv1...vk

.

Note that F∗ depends neither on the order in which v1, . . . , vk are taken (since, in
general, Fvu = Fuv as long as both Venn variants are legal), nor on which element
of the pair (vi, v

′
i) is used to make the Venn variant (by Proposition 3.12.5). As an

immediate consequence of Proposition 3.12.6 and 7 we have the following:

Proposition 3.19. V (F∗) has no pair of opposite elements.

We can now state our characterization of the finite families satisfying |F| = |∆F|.
Theorem 3.20. |F| = |∆F| = 2n if and only if F∗ ∈ Vn.

Proof. Since by Proposition 3.8 |F| = |F∗| and ∆F = ∆(F∗), the if part follows
from Proposition 3.10, while the only if part follows from Propositions 3.19 and
3.17.

4. Trees describing a family

In this section we provide a different characterization of the familes F satisfying
|F| = |∆F|. This characterization is based on the analysis of how elements of
(
⋃

F) \ (
⋂

F) discriminate between the sets in F.

Definition 4.1. Given a family F and an element x ∈ (
⋃

F) \ (
⋂

F), we let

Fx = {A ∈ F | x ∈ A } and Fx̄ = {A ∈ F | x /∈ A } .
We begin with some simple facts that will turn out to be useful.

Proposition 4.2. For any x ∈ (
⋃

F) \ (
⋂

F) we have
1) ∆F = (∆Fx) ∪ (∆Fx̄) ∪ (Fx∆Fx̄);
2) [(∆Fx) ∪ (∆Fx̄)] ∩ (Fx∆Fx̄) = ∅;
3) |∆F| ≥ 2 max(|Fx|, |Fx̄|).

Proof. 1) is immediate. 2) follows from the fact that for every A ∈ (∆Fx)∪ (∆Fx̄)
we have x /∈ A while for every B ∈ Fx∆Fx̄ we have x ∈ B. 3) is a consequence of
1) and 2) together with |F∆G| ≥ max(|F|, |G|).
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Proposition 4.3. If |F| = |∆F| and x ∈ (
⋃

F) \ (
⋂

F), then |∆Fx| = |Fx| =
|∆Fx̄| = |Fx̄| = |F|/2 and ∆Fx = ∆Fx̄.

Proof. |Fx| = |Fx̄| = |F|/2 follows immediately from the hypothesis and Proposi-
tion 4.2.3. Since |Fx∆Fx̄| ≥ |F|/2 by Proposition 4.2.2 we must have ∆Fx = ∆Fx̄

and |∆Fx| = |∆Fx̄| = |F|/2.

Definition 4.4. A tree describing F is a binary tree satisfying the following prop-
erties:

1. the nodes are pairwise different subsets of F,
2. the root is F,
3. the leaves are singleton subsets of F,
4. the children of any internal node G ⊆ F are Gx and Gx̄ for some x ∈

(
⋃

G) \ (
⋂

G).

The height h(F) of a family F is the height of the highest tree describing F.

The next theorem gives another characterization of the finite families satisfying
|F| = |∆F|.
Theorem 4.5. |F| = |∆F| if and only if h(F) = log2(|F|).
Proof. By induction on |F|.

If |F| = 1 the only tree describing F consists only of the root, and hence the
theorem holds.

If |F| > 1 consider any tree describing F and let x ∈ (
⋃

F) \ (
⋂

F) be such
that Fx and Fx̄ are the children of the root. The subtrees lying above these nodes
describe respectively Fx and Fx̄; if |F| = |∆F| by Proposition 4.3 and the inductive
hypothesis we have that their heights are log2(|F|)− 1 and hence that the original
tree has height log2(|F|).

If h(F) = log2(|F|), then both Fx and Fx̄ have height less than or equal to
log2(|F|)−1. Hence their size is bounded by 2log2(|F|)−1 = |F|/2. From this we can
conclude that |Fx| = |Fx̄| = |F|/2 and that h(Fx) = h(Fx̄) = log2(|F|) − 1. By
inductive hypothesis we have that |Fx| = |∆Fx| = |Fx̄| = |∆Fx̄| = |F|/2.

We begin by showing that |F| = |∆F| holds if |F| = 4. Let F = {A, B, C, D}
and notice that C∆D = A∆B; otherwise A∆B∆C∆D 6= ∅ and there exists x ∈
(
⋃

F) \ (
⋂

F) belonging to either exactly one or exactly three elements of F: in
both cases we could construct a tree describing F of height 3. Therefore we have
also B∆C = A∆D and B∆D = A∆C, so that ∆F = {A∆A, A∆B, A∆C, A∆D}
and hence |F| = |∆F|.

We now turn to the general case. Let α be a sequence indexing a node in a
tree describing F, and let β be a sequence obtained from α replacing zero or more
characters x by x̄, and zero or more characters x̄ by x. For example: α = xȳzw̄
and β = x̄ȳzw.

Let also denote by γ̄ the sequence obtained from γ replacing each x by x̄ and
each x̄ by x.

The following equality will be proved by induction on |F|:
Fα∆Fβ = Fᾱ∆Fβ̄ .

The base case is immediate.
The inductive step is proved by a further induction on log2(|F|)− |α|.
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The base case corresponds to the case in which |α| = log2(|F|) and is the most
complex. In this case, let Fα = {A}, Fβ = {B}, Fᾱ = {A′} , and Fβ̄ = {B′}; we
must prove that A∆B = A′∆B′.

If α = β̄ the result is obvious. Otherwise let x be an element occurring both
in α and in β (the argument for the case where only elements of the form x̄ occur
both in α and in β is analogous). We can assume without loss of generality that
α = xα1 and β = xβ1. By inductive hypothesis on the cardinality of the family,

Fα∆Fβ = Fxα1∆Fxβ1 = Fxᾱ1∆Fxβ̄1
.

Moreover

Fᾱ = Fx̄ᾱ1 = {A′} =⇒ Fᾱ1 = {A′, A′′} with x ∈ A′′,

Fβ̄ = Fx̄β̄1
= {B′} =⇒ Fβ̄1

= {B′, B′′} with x ∈ B′′.

From this it follows that Fxᾱ1 = {A′′} and Fxβ̄1
= {B′′}. Hence Fα∆Fβ =

Fxᾱ1∆Fxβ̄1
implies that A∆B = A′′∆B′′ and it suffices to prove A′′∆B′′ = A′∆B′.

To this end consider the family G = {A′, B′, A′′, B′′}. We show that h(G) =
log2(|G|) = 2: let H be the first common ancestor of Fᾱ1 = {A′, A′′} and Fβ̄1

=
{B′, B′′}, and let Hy and Hȳ be the children of H. Since y discriminates between
{A′, A′′} and {B′, B′′}, either y appears in ᾱ1 or it appears in β̄1. Assuming,
without loss of generality, that the former is the case, we have that for some ξ,
Fᾱ = Fξx̄y and hence Fξ = {A′, A′′, B′, B′′} = G. If we had a tree describing G of
height greater than two, we could graft such a tree in place of Fξ in a tree describing
F and produce a tree describing F of height greater than log2(|F|), contradicting
the hypothesis.

Hence h(G) = 2 and by the case |F| = 4 considered above, A′′∆B′′ = A′∆B′,
which concludes the base case.

For the inductive step pick x ∈ ⋃
(Fα∆Fβ) \⋂

(Fα∆Fβ) and notice that

Fα∆Fβ = (Fα∆Fβ)x ∪ (Fα∆Fβ)x̄

= [(Fαx∆Fβx̄) ∪ (Fαx̄∆Fβx)] ∪ [(Fαx∆Fβx) ∪ (Fαx̄∆Fβx̄)]

= [(Fᾱx̄∆Fβ̄x) ∪ (Fᾱx∆Fβ̄x̄)] ∪ [(Fᾱx̄∆Fβ̄x̄) ∪ (Fᾱx∆Fβ̄x)]

= (Fᾱ∆Fβ̄)x ∪ (Fᾱ∆Fβ̄)x̄

= Fᾱ∆Fβ̄

where the third equality has been obtained by induction hypothesis.
If α = β = x, the equality we just proved shows that ∆Fx = ∆Fx̄. Since we

already have |∆Fx| = |F|/2, Proposition 4.2.1 entails that our thesis |F| = |∆(F)|
will follow from

|Fx∆Fx̄| = |F|/2.

Since |∆Fx| = |Fx| and |∆Fx̄| = |Fx̄| for any A ∈ Fx and B ∈ Fx̄, we have
∆Fx = {A∆A′ | A′ ∈ Fx } and ∆Fx̄ = {B∆B′ | B′ ∈ Fx̄ }. Fix B ∈ Fx̄ and
consider the function ϕ : Fx → Fx∆Fx̄ defined by ϕ(A′) = A′∆B.

Clearly ϕ is injective. ϕ is also surjective: for any A′∆B′ ∈ Fx∆Fx̄, since
B∆B′ ∈ ∆Fx̄ = ∆Fx there exists A′′ ∈ Fx such that B∆B′ = A′∆A′′. Hence

A′∆B′ = A′′∆B = ϕ(A′′).

Hence ϕ is a bijection between Fx and Fx∆Fx̄: we have |Fx∆Fx̄| = |Fx| = |F|/2
and the proof is complete.
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Remark 4.6. The generalization of Theorem 4.5 stating that for any family F,
|∆F| = 2dlog2(|F|)e if and only if h(F) = dlog2(|F|)e is false. The “only if” direction
follows easily by Theorems 2.4 and 4.5, but the “if” direction does not hold. A coun-
terexample is provided by F = {∅, {1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}, which is a family of
22+1 sets generating 23+3 symmetric differences, although h(F) = dlog2(|F|)e = 3.
Notice also that this family has only minimal differentiating sets of size 3 (see Re-
mark 3.6).

The result in this section can be interpreted in the following, playful, way. A
family of sets F is given and players I and II have full knowledge of F. Player I
picks X ∈ F. Player II has to discover X , by asking, one after another, questions of
the form “does a belong to X?”. Player I has to give correct yes/no answers. Player
II asks only questions whose answer he/she cannot recover from his/her knowledge
of F and from the answers to the previous questions. When F is finite, player II will
always discover X after asking at most |F|− 1 questions. In general, the number of
questions II has to ask depends on X as well as on the sequence of the questions
asked. For F finite, Theorem 4.5 says that the number of questions player II has to
ask depends neither on X nor on the sequence of the questions asked if and only if
|F| = |∆F|. The results in Section 3 then give a way of constructing plays of that
sort.
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