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Abstract. We prove two conjectures on pro-p groups made by Herfort, Ribes
and Zalesskii. The first says that a finitely generated pro-p group which has
an open free pro-p subgroup of index p is a free pro-p product H0 ∗ (S1 ×H1)∗
· · ·∗(Sm×Hm), where the Hi are free pro-p of finite rank and the Si are cyclic
of order p. The second says that if F is a free pro-p group of finite rank and
S is a finite p-group of automorphisms of F , then Fix(S) is a free factor of F .
The proofs use cohomology, and in particular a “Brown theorem” for profinite
groups.

1. The results

Let p be a prime number, and let G be a finitely generated pro-p group which
contains an open free pro-p subgroup F of index p. We shall prove the following
structure theorem:

1.1. Theorem. G is isomorphic to a free pro-p product

H0 ∗ (S1 ×H1) ∗ · · · ∗ (Sm ×Hm)

where m ≥ 0, the Si are cyclic groups of order p and the Hi are free pro-p groups
of finite rank.

This theorem was conjectured by Herfort, Ribes and Zalesskii in their recent
preprint [5]. A proof is given there in the case where the rank of F is at most two.
Theorem 1.1 is analogous to a similar theorem for discrete groups, due to Dyer and
Scott: A group which contains a free normal subgroup of index p is a free product
of a free group and groups of the form Z/pZ×Hλ where the Hλ are free groups ([1],
Thm. 1). The proof of this latter theorem is rather straightforward if one uses the
Bass-Serre theory of groups acting on trees, and in particular the fact that every
finite extension of a free group is the fundamental group of a suitable graph of finite
groups.

Unfortunately it seems that no profinite analog of Bass-Serre theory is available
which would be flexible enough to allow such applications. Various authors have
worked on such a profinite theory. One has profinite notions of trees, of graphs
of groups and of their fundamental groups; and many of the results from discrete
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Bass-Serre theory have been transferred to a profinite setting. See in particular [2]
and [11]. These methods seem to work best for the class of pro-p groups. However
what is still missing is something like Stallings’ theory of ends, as an instrument
for splitting up a given group as an amalgamated product.

Therefore other ideas have to be found, in order to attack such questions. While
the proof in [5] (for rk(F ) ≤ 2) splits into many case distinctions and uses extensive
explicit calculations, we propose here a completely different approach based on
group cohomology. As one can see below, this allows a very short and natural
proof of the general case. The principal tool is a profinite “Brown theorem”, which
expresses high-degree cohomology of suitable profinite groups in terms of their finite
subgroups. It is used here as a means for detecting torsion elements of G in the
cohomology of G. The general result in this direction is in [8]. However, the special
case considered in [7], ch. 12, is more easily accessible and suffices for the purpose
of this note.

From Theorem 1.1 we get similar applications as in the discrete case, cf. [1]. For
example, given a free pro-p group F of finite rank, there is a normal form for the
action of an automorphism α ∈ Aut(F ) of order p, which is completely analogous
to the discrete one ([1], Thm. 3). One can copy the proof from [1] once Theorem
1.1 is known. Alternatively one may also obtain the pro-p case as a corollary to the
discrete case, since 1.1 shows that there are Φ, a free discrete group, and β ∈ Aut(Φ)
of order p such that F and α are the pro-p completions of Φ and β.

Another application is the following (cf. [1], Thm. 2, for the case of discrete
groups):

1.2. Theorem. Let F be a free pro-p group of finite rank, and let S be a finite
p-group of automorphisms of F . Then Fix(S), the subgroup of F consisting of the
elements fixed by S, is a free factor of F . In particular, rk Fix(S) ≤ rk(F ).

Here rk denotes the rank of a (free) pro-p group. Note that the last inequality is
strict if S doesn’t consist of the identity alone. The fact that rkFix(S) ≤ rk(F ) was
conjectured by Herfort, Ribes and Zalesskii in [4] for S cyclic, and was proved there
if rk(F ) = 2. In fact, it was also conjectured in [4] that rkFix(α) ≤ rk(F ) should
hold for every automorphism α of F whose order (as a “super-natural number”) is
p∞. Whether or not this last conjecture is true seems still unknown at present. It
is remarkable that, on the other hand, the fixgroup of an automorphism α of finite
order prime to p has always infinite rank (if α 6= id and rk(F ) > 1), as shown by
Herfort and Ribes [3]. This sharply contrasts the case of discrete free groups.

Another application which may perhaps claim some interest is the following. We
say that a pro-p group is virtually free of finite rank if it has an open subgroup
which is a free pro-p group of finite rank.

1.3. Corollary. Let G be a pro-p group which is virtually free of finite rank.

a) G has only finitely many conjugacy classes of finite subgroups.
b) If S is a finite subgroup of G, then the centralizer and the normalizer of S

are again virtually free of finite rank.

The proofs of the two theorems and of the corollary will be given in the next
section.
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2. The proofs

If G, H are pro-p groups, then G ∗H denotes their free pro-p product [6]. We
write Hn(G) := Hn(G, Z/pZ). Observe that Hn(G ∗H) = Hn(G)⊕Hn(H) for all
n ≥ 1 [6]. The rank rk(F ) of a free pro-p group F is the cardinality of a minimal
set of generators of F ; equivalently rk(F ) = dim H1(F ), where dim always means
dimension over Z/pZ. If S is a subgroup of G, then NG(S), resp. CG(S), will denote
the normalizer, resp. the centralizer, of S in G.

As usual, cdp(G) denotes the cohomological p-dimension of a profinite group G
([10], I.3). Recall that a pro-p group G is free pro-p if and only if cdp(G) ≤ 1 (loc.
cit. I.4.2, Cor. 2).

We say that a map f : A → ∏
i∈I Ai between sets is a dense embedding if f

is injective and for every finite subset J of I the induced map A → ∏
i∈J Ai is

surjective. In particular, if the index set I is finite this means that f is bijective.
The principal tool for our proof is the following result. Let G be a profinite

group which has an open subgroup H such that cdp(H) = d < ∞.

2.1. Theorem. If G contains no subgroup isomorphic to Z/pZ × Z/pZ, then the
natural restriction map

Hn(G, A) −→
∏

|S|=p
S mod conj.

Hn
(
NG(S), A

)
(1)

is a dense embedding for every n > d and every finite discrete p-primary G-
module A. Here the direct product is taken over a set of representatives S of the
conjugacy classes of subgroups of G of order p.

This is Corollary 12.19 from [7]. One can remove the condition Z/pZ×Z/pZ 6⊂ G.
Since the formulation becomes more technical then, and since we have no need for
this greater generality here, we refer the interested reader to [8]. It should be
remarked that there is a precise description of the image of (1); see [7], Theorem
12.17.

We will now simultaneously prove Theorems 1.1 and 1.2. Let G be a finitely
generated pro-p group which has an open subgroup F of index p, which is a free
pro-p group. It is clear that r := rk(F ) is finite (cf. also [10], I.4.2, exerc. 4b).
We will assume that G contains an element of order p, i.e. that the extension
1 → F → G → G/F → 1 splits, since otherwise G is itself a free pro-p group [9].
Thus we get short exact sequences

0 → Hn(G/F ) → Hn(G) → Hn−1
(
G/F, H1(F )

) → 0

(n ≥ 1) from the Hochschild-Serre spectral sequence. Since dim H1(F ) = r, we see

dim Hn(G) ≤ 1 + r(2)

for all n.
Applying Theorem 2.1 we find that the restriction map

Hn(G) −→
∏

|S|=p
S modconj.

Hn
(
NG(S)

)
(3)

is a dense embedding for n ≥ 2. If S ⊂ G is a subgroup of order p, then NG(S) =
CG(S) = S × CF (S). So by the Künneth formula,

Hn
(
NG(S)

)
= Hn(S)⊗H0

(
CF (S)

) ⊕ Hn−1(S)⊗H1
(
CF (S)

)
.
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This gives

dim Hn
(
NG(S)

)
= 1 + rkCF (S) for n ≥ 1.(4)

Putting together (2), (3) and (4) we conclude

2.2. Lemma. G has only finitely many conjugacy classes of subgroups of order p,
and the map (3) is bijective for n ≥ 2.

In the following let S1, . . . , Sm be representatives of these conjugacy classes, and
write Hi := CF (Si) for their centralizers. We have

m +
m∑

i=1

rk(Hi) = dim Hn(G) ≤ 1 + r for n ≥ 2.

In particular we see that m ≤ 1 + r, and that Hi = CF (Si) has rank at most r.
(At this point an obvious induction argument already yields part of Theorem 1.2,
namely that rkFix(S) ≤ rk(F ).)

The homomorphism G → G/F ∼= Z/pZ defines an element ζ ∈ H1(G). Let
β : H1(G) → H2(G) be the Bockstein, i.e. the connecting map coming from the
extension 0 → Z/pZ → Z/p2Z → Z/pZ → 0 of discrete G-modules. By a theorem
of Serre ([9], Prop. 5), cup-product Hn(G) → Hn+2(G) with β(ζ) is surjective for
n = 1 (and bijective for n ≥ 2).

Consider the commutative diagram

H1(G) −−−−→ ⊕
i H1(Si ×Hi)

∪β(ζ)

y y∪ res β(ζ)

H3(G) ∼−−−−→ ⊕
i H3(Si ×Hi)

(5)

in which the horizontal arrows are restriction maps. The vertical arrows are sur-
jective by Serre’s result, the lower horizontal map is bijective by Lemma 2.2.

The right vertical map is in fact bijective. This follows already from the fact
that it is surjective and both groups have the same finite order. More conceptually,
one sees it by decomposing both groups à la Künneth and expressing the effect of
the map in terms of these decompositions. In any case we can conclude:

2.3. Lemma. The restriction maps

ρG : H1(G) −→
⊕

i

H1(Si ×Hi) and ρF : H1(F ) −→
⊕

i

H1(Hi)

are surjective.

Indeed, the first assertion follows from (5), the second from the first and from
the commutative diagram

H1(G) −−−−→ H1(F )

ρG

y yρF⊕
i H1(Si ×Hi) −−−−→

⊕
i H1(Hi)

in which all maps are restriction maps. Note that the lower horizontal map is
surjective.
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The following lemma is obvious:

2.4. Lemma. Let A be a subgroup of H1(F ). Then there exists a closed subgroup
K of F such that the restriction H1(F ) → H1(K) maps A isomorphically onto
H1(K).

The kernel of the restriction map H1(G) → H1(F ) is generated by ζ. Since
ρG(ζ) 6= 0, this restriction maps ker(ρG) injectively into ker(ρF ). Therefore, using
Lemma 2.4, we find closed subgroups H and K of F such that

(a) res : H1(G) → H1(H) restricts to an isomorphism ker(ρG) → H1(H), and
(b) res : H1(F ) → H1(K) restricts to an isomorphism ker(ρF ) → H1(K).

This means that the two restriction maps H1(G) → H1(H) ⊕ ⊕
i H1(Si × Hi)

and H1(F ) → H1(K) ⊕ ⊕
i H1(Hi) are bijective. Therefore each of the natural

homomorphisms

H ∗ (S1 ×H1) ∗ · · · ∗ (Sm ×Hm) → G and K ∗H1 ∗ · · · ∗Hm → F(6)

induces a surjection between the respective H1-groups (with coefficients Z/pZ).
Since the induced maps between the H2-groups are bijective as well (cf. Lemma
2.2 for the first case), we conclude that the maps (6) are bijective, by the following
well known

2.5. Lemma. Let f : H → G be a homomorphism of pro-p groups. If H1(G) →
H1(H) is bijective and H2(G) → H2(H) is injective, then f is an isomorphism.
(Compare [6], Satz 4.3.)

This proves Theorem 1.1, and also Theorem 1.2 in the case where S is cyclic of
order p (apply 1.1 to the semi-direct product of F with S). To establish the general
case of 1.2, choose a series 1 = S0 ⊂ S1 ⊂ · · · ⊂ Sr = S of normal subgroups of S
with Si of order pi. From what we know it follows that Fix(Si+1) is a free factor
of Fix(Si) for 0 ≤ i < r. By induction, therefore, Fix(S) is a free factor of F .

We conclude by proving Corollary 1.3. For b) it suffices to treat the centralizer.
Let F be an open normal subgroup of G which is free pro-p. Then CF (S) has finite
rank (≤ rk(F )) by Theorem 1.2.

In order to prove a), it suffices to show: G has up to conjugation only finitely
many subgroups of order pn, for every n ≥ 1. The case n = 1 follows easily from
Lemma 2.2. To do the induction step from pn−1 to pn, it suffices to show the
following. Fix a subgroup T of G of order pn−1. Then the subgroups S of G of
order pn which contain T lie in finitely many G-conjugacy classes.

The last assertion in turn follows easily from b). Indeed, every such S is contained
in NG(T ), so it will be sufficient to show that NG(T )/T has only finitely many
elements of order p, up to conjugation. Since by b) the last group is virtually free
of finite rank, we are done by the case n = 1 already considered.
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