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ON THE QUINTUPLE PRODUCT IDENTITY

HERSHEL M. FARKAS AND IRWIN KRA

(Communicated by Dennis A. Hejhal)

Abstract. In this note we present a new proof of the quintuple product iden-
tity which is based on our study of kth order theta functions with character-
istics and the identities they satisfy. In this context the quintuple product
identity is another example of an identity which when phrased in terms of
theta functions, rather than infinite products and sums, has a simpler form
and is much less mysterious.

1. Introduction

One of the important combinatorial identities which has received much atten-
tion is the celebrated quintuple product identity (QPI). It is in a certain sense, a
generalization of the Jacobi triple product identity. While many proofs of of QPI
are available, [9], [8], [3]1, it seems desirable to give a proof which in a sense ex-
plains the identity and relates it to a circle of ideas which have been quite useful
in studying modular curves and their mappings into projective space of relatively
small dimension. This material can be found in [5] and a survey of results can be
found in [2].

A new proof of QPI was recently given by K. Alladi [1] which used the splitting
of certain series into even and odd parts. Our proof, though related to this idea, is
quite different in that it uses the decomposition of the vector space of theta functions

of order k with characteristic
[

1
1

]
into subspaces of even and odd functions. It is

the even functions, more precisely their values at the origin, which play a crucial
role in other areas. It is these functions that in fact give and explain the QPI.
As in almost all proofs, Euler’s pentagonal theorem and the Jacobi triple product
identity come into play, but now in the context of theta functions where they are
more understandable (to us, at least). Finally we remark that QPI is another
example of an identity that has a much simpler form when written in terms of
theta functions with rational characteristics rather than in some other way.
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From the definition of the theta functions given in §2, we see that for an odd
positive integer k and arbitrary integer l,

θ

[
2l+1

k
1

]
(k(ζ + 1), kτ) = −θ

[
2l+1

k
1

]
(kζ, kτ)

and

θ

[
2l+1

k
1

]
(k(ζ + τ), kτ) = − exp

(
−2πı

[
kζ + k

τ

2

])
θ

[
2l+1

k
1

]
(kζ, kτ).

Hence these are kth order theta functions with characteristic
[

1
1

]
. The space

of kth order theta functions with characteristic
[

1
1

]
is k-dimensional and the

subspace of even functions is k−1
2 -dimensional. Furthermore, each kth order theta

function has precisely k zeros in any period parallelogram determined by 1, τ .
One of the first theorems [6] that one proves in this subject is that for k ≥ 3,

every even kth order theta function with characteristic
[

1
1

]
vanishes at the three

half periods

ζ =
1
2
,

τ

2
,

τ + 1
2

.

If we now restrict ourselves to the case k = 3 we see immediately that

Theorem 1 ([6]). For all (ζ, τ) ∈ C×H2,

θ

[
1
3
1

]
(3ζ, 3τ) + θ

[
1
3
1

]
(−3ζ, 3τ)

= c(τ)θ
[

0
0

]
(ζ, τ)θ

[
0
1

]
(ζ, τ)θ

[
1
0

]
(ζ, τ),

(1)

where

c(τ) =
2θ

[
1
3
1

]
(0, 3τ)

θ

[
0
0

]
(0, τ)θ

[
0
1

]
(0, τ)θ

[
1
0

]
(0, τ)

.

Set x = exp(πıτ), z = exp(2πıζ) in the above theorem and get (for all z ∈ C,
z 6= 0, and all x ∈ C, |x| < 1)

z

∞∑
n=−∞

(−1)nx3n2+nz3n +
∞∑

n=−∞
(−1)nx3n2−nz3n

= (1 + z)
∞∏

n=1

(1 − x2n)(1 − x4n−2z2)
(

1− x4n−2

z2

)
(1 + x2nz)

(
1 +

x2n

z

)
.

In order to get the usual version as in [1], for example, replace x by x
1
2 and z by

−z.
The above proof connects QPI with a circle of ideas related to many other areas.

It is another example, similar to the ones given in [4], where an interesting identity
becomes immensely simplified when expressed in terms of theta functions with
rational characteristics.
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2. Computation

In this section we recall the definitions and elementary properties of theta func-
tions. We list those formulae needed to translate the last theorem to QPI.

Definition 1. The theta function with characteristic
[

ε
ε′

]
∈ R2 is defined on

C×H2 (H2 = upper half plane) by

θ

[
ε
ε′

]
(ζ, τ) =

∞∑
n=−∞

exp 2πı

(
1
2

(
n +

ε

2

)2

τ +
(
n +

ε

2

)(
ζ +

ε′

2

))
.(2)

It is immediate that

θ

[
ε
ε′

]
(−ζ, τ) = θ

[ −ε
−ε′

]
(ζ, τ).(3)

It is a consequence of the Jacobi triple product identity that with x = exp(πıτ),
z = exp(2πıζ), we have

θ

[
ε
ε′

]
(ζ, τ) = exp

(
πıεε′

2

)
x

ε2
4 z

ε
2

∞∏
n=1

(1− x2n)(1 + exp(πıε′)x2n−1+εz)

×
(

1 + exp(−πıε′)
x2n−1−ε

z

)
;

(4)

hence, in particular

θ

[
0
0

]
(ζ, τ) =

∞∏
n=1

(1− x2n)(1 + x2n−1z)
(

1 +
x2n−1

z

)
,

θ

[
0
1

]
(ζ, τ) =

∞∏
n=1

(1− x2n)(1 − x2n−1z)
(

1− x2n−1

z

)
,

θ

[
1
0

]
(ζ, τ) = x

1
4 z

1
2

∞∏
n=1

(1− x2n)(1 + x2nz)
(

1 +
x2n−2

z

)
and

θ

[
1
3
1

]
(0, 3τ) =

(
exp

πı

6

)
x

1
12

∞∏
n=1

(1 − x2n).

As we saw, the infinite product (4) is single-valued for ε = 0; more generally, it
is a single-valued function of x

1
k for rational ε = m

k with m ∈ Z.
From the definition (2) and elementary property (3) we see that

θ

[
1
3
1

]
(3ζ, 3τ) + θ

[
1
3
1

]
(−3ζ, 3τ)

=

(
exp πı

6

)
x

1
12

z
1
2

(
z

∞∑
n=−∞

(−1)nx3n2+nz3n +
∞∑

n=−∞
(−1)nx3n2−nz3n

)
.
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On the other hand, the consequences of the Jacobi triple product identity listed
above tell us that

c(τ)θ
[

0
0

]
(ζ, τ)θ

[
0
1

]
(ζ, τ)θ

[
1
0

]
(ζ, τ)

=

(
exp πı

6

)
x

1
12

x
1
4
∏∞

n=1(1− x2n)2(1− x4n−2)2(1 + x2n)2

×x
1
4 z

1
2

(
1 +

1
z

) ∞∏
n=1

(1− x2n)3(1− x4n−2z2)
(

1− x4n−2

z2

)
(1 + x2nz)

(
1 +

x2n

z

)
.

The equality of Theorem 1 therefore gives

z

∞∑
n=−∞

(−1)nx3n2+nz3n +
∞∑

n=−∞
(−1)nx3n2−nz3n

=
(1 + z)

∏∞
n=1(1− x2n)(1− x4n−2z2)(1− x4n−2

z2 )(1 + x2nz)(1 + x2n

z )∏∞
n=1(1− x4n−2)2(1 + x2n)2

,

and since
∞∏

n=1

(1− x4n−2)2(1 + x2n)2 = 1,

we are done.
The proof of Theorem 1 in [6] is in fact quite easy. We show the points z = 1

2 , τ
2

and 1+τ
2 are all zeros of the function defined by the left hand side of equation (1)

and that this function has precisely three zeros (in a period parallelogram). In
fact, the theorem contains more information and thus suggests that QPI can be
generalized.

3. Generalizations

QPI proven in the previous section is the first in a long string of possible identi-
ties, each more complicated than its predecessor. Our proof was based on the study

of even third order θ-functions with characteristic
[

1
1

]
. We can use various other

functions. Some will have interesting consequences.

3.1. It is rather easy to prove, using elliptic function theory, the following identity

involving second order θ-functions with characteristics
[

0
0

]
and

[
0
1

]
:

θ

[
0
0

]
(2ζ, 2τ) = c(τ)θ

[
0
1
2

]
(ζ, τ)θ

[
0
3
2

]
(ζ, τ),

where

c(τ) =
θ

[
0
0

]
(0, 2τ)

θ

[
0
1
2

]
(0, τ) θ

[
0
3
2

]
(0, τ)

and

θ

[
1
1

]
(2ζ, 2τ) = d(τ)θ

[
1
1

]
(ζ, τ)θ

[
1
0

]
(ζ, τ),
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where

d(τ) = 2
θ′
[

1
1

]
(0, 2τ)

θ′
[

1
1

]
(0, τ) θ

[
1
0

]
(0, τ)

.

The last two formulae are also immediate consequences of the Jacobi triple product
identity which also tells us that

c(τ) =
∞∏

n=1

1 + x2n

1− x2n
= d(τ).

3.2. We describe in this subsection another identity which can be called the sep-
tagonal numbers identity. It is a consequence of the following result proven in [6].

Theorem 2. For all (ζ, τ) ∈ C×H2,

θ

[
3
5
1

]
(0, 5τ)

(
θ

[
1
5
1

]
(5ζ, 5τ) + θ

[ − 1
5−1

]
(5ζ, 5τ)

)

−θ

[
1
5
1

]
(0, 5τ)

(
θ

[
3
5
1

]
(5ζ, 5τ) + θ

[ − 3
5−1

]
(5ζ, 5τ)

)

= c(τ)θ
[

0
0

]
(ζ, τ)θ

[
0
1

]
(ζ, τ)θ

[
1
0

]
(ζ, τ)θ2

[
1
1

]
(ζ, τ),

where

c(τ) =
a

θ

[
0
0

]
(0, τ)θ

[
0
1

]
(0, τ)θ

[
1
0

]
(0, τ)

and a ∈ C, 6= 0.

Substitutions similar to the ones used previously now yield

∞∑
n=−∞

(−1)nx5n2+n

( ∞∑
n=−∞

(−1)nx5n2+3nz5n+3 +
∞∑

n=−∞
(−1)nx5n2−3nz5n

)

−
∞∑

n=−∞
(−1)nx5n2+3n

( ∞∑
n=−∞

(−1)nx5n2+nz5n+2 +
∞∑

n=−∞
(−1)nx5n2−nz5n+1

)

= (1 + z)(1− z)2
∞∏

n=1

(1− x2n)2(1− x2nz)
(

1− x2n

z

)
(1 − x4n−2z2)

(
1− x4n−2

z2

)

×(1− x4nz2)
(

1− x4n

z2

)
.
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3.3. We proceed to explain the role of kth order θ-functions in this work. For

odd k ≥ 3, every nontrivial element in the k−1
2 -dimensional vector space Ek

[
1
1

]
of even kth order θ-functions with characteristic

[
1
1

]
vanishes at the three half

periods 1
2 , τ

2 , 1+τ
2 and at k − 3 additional points. A function

f(ζ, τ) = θ

[
0
0

]
(ζ, τ)θ

[
0
1

]
(ζ, τ)θ

[
1
0

]
(ζ, τ)

k−3∏
i=1

θ

[
εi

ε′i

]
(ζ, τ)

belongs to Ek

[
1
1

]
if and only if (the additional zeros of this function are at

1−ε′i
2 + 1−εi

2 τ)
k−3∑
i=1

εi ≡
k−3∑
i=1

ε′i ≡ 0 mod 2,

and for each integer i, 0 ≤ i ≤ k−3, there exists an integer i′, 0 ≤ i′ ≤ k−3, i 6= i′,
such that [

εi

ε′i

]
≡ −

[
εi′

ε′i′

]
mod 2

(in particular, for εi = 1 = ε′i)
2.

The k−1
2 functions

ϕl(ζ, τ) =
θ

[
2l+1

k
1

]
(kζ, kτ) + θ

[
2l+1

k
1

]
(−kζ, kτ)

2 θ

[
2l+1

k
1

]
(0, kτ)

, l = 0, 1, ...,
k − 3

2
,

form a basis for Ek

[
1
1

]
. We have normalized these basis functions to assume the

value 1 at ζ = 0; their Taylor expansions at the origin are

ϕl(ζ, τ) = 1 +
∞∑

i=1

αliζ
i.

There exist constants cj(τ) such that

f(ζ, τ) =

k−3
2∑

l=0

cl(τ)ϕl(ζ, τ).

Rewriting these identities in terms of appropriate local coordinates (x and z) leads
to product formulae.

QPI is the case k = 3. The next case of interest is k = 5. For this k, it involves
no loss of generality to take

ε1 = ε, 0 ≤ ε < 2, ε′1 = ε′, 0 ≤ ε′ < 2,

which implies that
ε2 = 2− ε, ε′2 = 2− ε′

2These necessary and sufficient conditions are a translation of the fact that in an N-dimensional
vector space of analytic functions, we can always find a function that vanishes at a prescribed set
of N − 1 points.
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(these conditions also suffice). The septagonal numbers identity is obtained by
studying the case ε = 1 = ε′. The cases ε = 1, ε′ = 0 and ε = 0, ε′ = 1 should also
be interesting.

3.4. Among the consequences of QPI are the following two identities for functions
closely related to the Ramanujan partition functions PN studied in our paper [7]:

∞∑
n=−∞

(6n + 1)x
3n2+n

2 =
∞∏

n=1

(1− xn)3(1− x2n−1)2(5)

and
∞∑

n=−∞
(−1)n(3n + 2)x3n2+4n+1 =

∞∏
n=1

(1− x2n)3(1 + xn)2 =
∞∏

n=1

(1− x2n)3

(1 − x2n−1)2
.

The first of these identities has the following combinatorial interpretation. Partition
the positive integers using three copies of the even integers and five copies of the
odd integers. Let E(n) (respectively, O(n)) be the number of even (odd) such
partitions of n ∈ Z+. Then

E(n)−O(n) =

{
0 if n 6= 3m2+m

2 for all m ∈ Z,

(6m + 1) if n = 3m2+m
2 for m ∈ Z.

The combinatorial interpretation of the equality of the first and third terms of
the (it is obvious that the second and third terms are equal) second identity is a bit
more complicated. Our partitions now use three copies of the even integers, each
one with a different color, and we allow repetitions of the odd integers although
we still think of the odd integers with two colors. As in the previous situation we
denote by E(n) and O(n) the number of even and odd partitions, respectively. The
definition of even partition now is that there are an even number of even integers in
the partition. In this case the difference E(n)−O(n) is zero unless n is of the form
3m2 +4m+1. In the latter case the difference is (−1)m(3m+2). As usual, the first
equality of the second identity gives us an alternate combinatorial interpretation.
We use three primary colors of even integers and two secondary colors of all the
integers for our partitions, without allowing repetitions. We consider a partition to
be even if we use an even number of (even) integers of primary colors.

The proof of the identities is based on Theorem 1. We differentiate the identity
of that theorem and set ζ = 1

2 . This yields

3θ′
[

1
3
1

] (
3
2 , 3τ

)− 3θ′
[

1
3
1

] (− 3
2 , 3τ

)
= c(τ)θ′

[
1
0

] (
1
2 , τ
)
θ

[
0
0

] (
1
2 , τ
)
θ

[
0
1

] (
1
2 , τ
)
.

If we now use the definition of c(τ) given in Theorem 1 and the most elementary
properties of theta functions, we rewrite the last equation as

3
(

exp
(

2πı

3

)
− exp

(
−πı

3

))
θ′
[

1
3
0

]
(0, 3τ) = 2

θ

[
1
3
1

]
(0, 3τ)θ′

[
1
1

]
(0, τ)

θ

[
1
0

]
(0, τ)

.
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Use of Jacobi’s identity and elementary manipulations replaces the last equality by

−3 exp
(

2πı

3

)
θ′
[

1
3
0

]
(0, 3τ) = πθ

[
1
3
1

]
(0, 3τ)θ

[
0
0

]
(0, τ)θ

[
0
1

]
(0, τ).

It thus follows that

−3 exp
(

2πı

3

)
θ′
[

1
3
0

]
(0, 3τ) = π exp

(πı

6

)
x

1
12

∞∏
n=1

(1 − x2n)3(1− x4n−2)2.

All that remains in order to obtain the formula we seek is the expansion of the left
hand side as a power series in x = exp(πıτ). Since

θ′
[

1
3
0

]
(0, 3τ) =

∑∞
n=−∞ 2πı

(
n + 1

6

)
exp(2πı

(
1
2

(
n + 1

6

)2 3τ
)

= πı
3 x

1
12
∑∞

n=−∞(6n + 1)x3n2+n,

the final identity is
∞∑

n=−∞
(6n + 1)x3n2+n =

∞∏
n=1

(1− x2n)3(1 − x4n−2)2,

which after the obvious change of variables becomes (5).
The second identity is obtained in a similar fashion by evaluating the identity

in Theorem 1 at ζ = τ
2 instead of ζ = 1

2 . In fact it is possible to obtain a third
identity in this way by evaluating at ζ = 1+τ

2 .
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