RELATIVE BRAUER GROUPS OF DISCRETE VALUED FIELDS

BURTON FEIN AND MURRAY SCHACHER

(Communicated by Ken Goodearl)

ABSTRACT. Let E be a non-trivial finite Galois extension of a field K. In this paper we investigate the role that valuation-theoretic properties of E/K play in determining the non-triviality of the relative Brauer group, $\operatorname{Br}(E/K)$, of E over K. In particular, we show that when K is finitely generated of transcendence degree 1 over a p-adic field k and q is a prime dividing [E:K], then the following conditions are equivalent: (i) the q-primary component, $\operatorname{Br}(E/K)_q$, is non-trivial, (ii) $\operatorname{Br}(E/K)_q$ is infinite, and (iii) there exists a valuation π of E trivial on k such that q divides the order of the decomposition group of E/K at π .

1. Introduction and preliminaries

Let K be a field finitely generated of transcendence degree $r \geq 1$ over a field k, let E be a non-trivial finite Galois extension of K, and let q be a prime dividing [E:K]. If k is Hilbertian or if k is arbitrary and $r \geq 2$, the proof of [FS1, Corollary 5] shows that the q-primary component of the relative Brauer group of E over K, $Br(E/K)_a$, must be infinite. On the other hand, Roquette [R, Corollary XVIa] has given examples where $Br(E/K) = \{0\}$ when k is a p-adic field, r = 1, K has genus 1 over k, and E is a non-trivial cyclic extension of K. In Roquette's example, every valuation of K trivial on k splits completely in E. In contrast, the proofs of the positive results cited above make use of the fact that there are infinitely many valuations π of E trivial on k such that q divides the order of the decomposition group of E/K at π . In this paper we investigate, for an arbitrary field K and an arbitrary non-trivial finite Galois extension E of K, the role that valuation-theoretic properties of E/K play in determining the non-triviality of Br(E/K). Among other results, we show that when K is finitely generated of transcendence degree 1 over a p-adic field k and E is a non-trivial finite Galois extension of K, then $Br(E/K)_q$ is non-trivial if and only if it is infinite and this occurs if and only if there exists a valuation π of E trivial on k such that q divides the order of the decomposition group of E/K at π .

Received by the editors June 23, 1997.

¹⁹⁹¹ $Mathematics\ Subject\ Classification.$ Primary 12G05; Secondary 12E15.

Key words and phrases. Brauer group, discrete valued field.

The authors are grateful for support under NSA Grants MDA904-95-H-1054 and MDA904-95-H-1022, respectively.

We now establish some of the terminology and notation that we will maintain throughout. We say that L/F is an \mathcal{H} -Galois extension of fields if L is a Galois extension of a field F with Galois group $\operatorname{Gal}(L/F) = \mathcal{H}$. In what follows, K will always be a field with one or more discrete (rank one) valuations, E will be a nontrivial \mathcal{G} -Galois extension of E, and E will be a prime dividing E. Let E be a discrete valuation of E. The completion of E at E will be denoted by E and the residue field by E, when E is understood we sometimes denote E by E. An element E of E generating the maximal ideal of the valuation ring of E will be referred to as a uniformizing element for E. We denote the restriction of E to E by E we denote the decomposition group of E/E at E by E, with the above notation and conventions, E with E is E calois. We denote the ramification degree of E over E by E by a E-Galois. We denote the ramification of the field E over E by E and E in the field E over E by E and E in the field E over E by E and E in the field E over E by E and E in the field E over E and E in the field E in the field E over E in the field E

We say that A/F is central simple if A is a simple algebra with center F which is finite dimensional over F; we denote the class of such an A in $\operatorname{Br}(F)$ by [A]. The exponent of [A], $\exp(A)$, is the order of [A] in $\operatorname{Br}(K)$. If L is a field extension of F, we refer to the map from $\operatorname{Br}(F)$ to $\operatorname{Br}(L)$ defined by $[A] \to [A \otimes_F L]$ as restriction and denote it by res_F^L . If F/K is a finite separable extension of fields, we denote the corestriction map from $\operatorname{Br}(F)$ to $\operatorname{Br}(K)$ by cor_K^F .

Suppose that $K \subseteq F \subseteq E$ and $\operatorname{Gal}(E/F) = \mathcal{H} \subseteq \mathcal{G} = \operatorname{Gal}(E/K)$. Then $\operatorname{Br}(E/F) \cong H^2(\mathcal{H}, E^*)$, $\operatorname{Br}(E/K) \cong H^2(\mathcal{G}, E^*)$, and cor_K^F restricted to $\operatorname{Br}(E/F)$ corresponds to the cohomological corestriction map from $H^2(\mathcal{H}, E^*)$ to $H^2(\mathcal{G}, E^*)$. In particular, if [A] is in the q-primary component, $\operatorname{Br}(E/F)_q$, of $\operatorname{Br}(E/F)$, then $\operatorname{cor}_K^F([A]) \in \operatorname{Br}(E/K)_q$. All of our non-triviality results for relative Brauer groups are obtained by showing that there exists suitable F and F0 as above such that $\operatorname{cor}_K^F([A]) \neq 0$. The algebras F1 that we will need will be cyclic algebras; we next review their construction.

Suppose E/F is a possibly infinite \mathcal{H} -Galois extension of fields. We let the profinite group \mathcal{H} act trivially on the discrete group \mathbb{Q}/\mathbb{Z} and define the character group of E/F, $\chi(E/F)$, to be $H^1(\mathcal{H},\mathbb{Q}/\mathbb{Z})$, the group of continuous homomorphisms of \mathcal{H} into \mathbb{Q}/\mathbb{Z} . If $f \in \chi(E/F)$, then $f(\mathcal{H})$ is a finite subgroup of \mathbb{Q}/\mathbb{Z} and hence is cyclic. Let $L \subseteq E$ be the fixed field of the kernel of f. Then L/F is cyclic and we say that the character f defines L/F. The short exact sequence of trivial \mathcal{H} -modules $0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0$ gives rise to a long exact sequence of cohomology groups. Since $H^1(\mathcal{H},\mathbb{Q}) = H^2(\mathcal{H},\mathbb{Q}) = 0$, we have an isomorphism $d: H^2(\mathcal{H},\mathbb{Z}) \longrightarrow H^1(\mathcal{H},\mathbb{Q}/\mathbb{Z}) = \chi(E/F)$. The cup product (e.g. [B, p. 112]) defines a map: $H^2(\mathcal{H},\mathbb{Z}) \times H^0(\mathcal{H},E^*) \longrightarrow H^2(\mathcal{H},E^*) \cong \operatorname{Br}(E/F)$. Since $H^0(\mathcal{H},E^*) \cong F^*$ and $H^2(\mathcal{H},\mathbb{Z}) \cong \chi(E/F)$, we have a map $\chi(E/F) \times F^* \longrightarrow \operatorname{Br}(E/F)$. We denote the image of (f,b) (where $f \in \chi(E/F)$ and $b \in F^*$) under this map by $\Delta(f,b)$. In algebra terms, $\Delta(f,b)$ is represented by the cyclic crossed product $\Delta(L/F,\sigma,b)$ where f defines L/F and where $\sigma \in \operatorname{Gal}(E/F)$ is the generator satisfying $f(\sigma) = (1/[L:F]) + \mathbb{Z}$.

We shall show that $\operatorname{cor}_K^F([A]) \neq 0$ for suitable A and F as above by showing that $\operatorname{res}_K^{K_{\pi}} \operatorname{cor}_K^F([A]) \neq 0$ for a suitably chosen discrete valuation π of K. In what follows, we shall freely use standard results about the Brauer group of a complete discrete valued field. We refer the reader to [Se, Chapter XII, Section 3] for a complete discussion of the Brauer group of such a field; we briefly summarize the results we will need.

Let K be a field complete with respect to a discrete valuation, let T denote the maximal unramified extension of K, and let b be a fixed uniformizing element for K. Then $\chi(T/K)\cong\chi(\overline{T}/\overline{K})$; we denote the image of $f\in\chi(T/K)$ under this isomorphism by \bar{f} . Now suppose that L/K is a cyclic unramified extension of K of degree n and let $f\in\chi(T/K)$ define L/K. Since the value group of L equals the value group of K and the values of conjugates of an element are equal, n is the smallest positive power of b which is a norm from L to K. In particular, $\Delta(f,b)$ has exponent n in Br(K). Let q be a prime not dividing the characteristic of \overline{K} . Then $Br(K)_q$ is the direct sum of the inertial lift (in the sense of [JW, Theorem 2.8]) of $Br(\overline{K})_q$ and a subgroup isomorphic to $\chi(\overline{T}/\overline{K})_q$ where the isomorphism is given by $\overline{f} \to \Delta(f,b)$ for $\overline{f} \in \chi(\overline{T}/\overline{K})_q$ [Se, Theorem 2, p. 194]. We let ram denote the projection of $Br(K)_q$ onto $\chi(\overline{T}/\overline{K})_q$ defined by this direct sum decomposition of $Br(K)_q$. In particular, $ram(\Delta(f,b)) = \overline{f}$.

The following approximation result is basic to our approach; a slightly weaker version appears implicitly in [FSS2, Lemma 4.7] (see also [FS2, Lemma 4]).

Proposition 1. Let $K \subseteq F \subset L \subseteq E$ where L/F is cyclic of degree q, defined by $f \in \chi(E/F)$. Assume that π is a discrete valuation of E such that $[L_{\pi} : F_{\pi}] = [L : F]$. Identifying $Gal(E_{\pi}/F_{\pi})$ as a subgroup of Gal(E/F), we may view f as an element of $\chi(E_{\pi}/F_{\pi})$ defining L_{π}/F_{π} .

- (1) Let $\hat{b} \in F_{\pi}^*$. Then there exists $b \in F^*$ such that $\operatorname{res}_K^{K_{\pi}} \operatorname{cor}_K^F(\Delta(f,b)) = \operatorname{cor}_{K_{\pi}}^{F_{\pi}}(\Delta(f,\hat{b}))$.
- (2) Assume that there exists $\hat{b} \in F_{\pi}^*$ such that $\operatorname{cor}_{K_{\pi}}^{F_{\pi}}(\Delta(f,\hat{b}))$ has exponent q in $\operatorname{Br}(K_{\pi})$. Then $\operatorname{Br}(E/K)_q \neq \{0\}$.
- (3) If $F_{\pi} = K_{\pi}$ and L_{π}/K_{π} is unramified, then $Br(E/K)_q \neq \{0\}$.
- (4) Assume that there exist infinitely many discrete valuations π of E such that the hypotheses of (2) or (3) above hold. Then $Br(E/K)_q$ is infinite.
- Proof. (1) We argue exactly as in the proof of [FSS2, Lemma 4.7] (see also [FS2, Lemma 4]) but with one minor modification. We need to choose b sufficiently close to \hat{b} π -adically so that $b\hat{b}^{-1}$ is a norm from L_{π} to F_{π} ; since $b\hat{b}^{-1} = 1 + \hat{b}^{-1}(b \hat{b})$, this is possible by [Se, Chapter 5, Section 2, Proposition 3, and Section 6, Corollary 4]. For b so chosen, $\Delta(f,b\hat{b}^{-1}) = 0$ in $\mathrm{Br}(F_{\pi})$ and so $\mathrm{cor}_{K_{\pi}}^{F_{\pi}}(\Delta(f,\hat{b})) = \mathrm{cor}_{K_{\pi}}^{F_{\pi}}(\Delta(f,b))$. The proof of [FSS2, Lemma 4.7] now continues without incident.
- (2) Assume that there exists $\hat{b} \in F_{\pi}^*$ such that $\operatorname{cor}_{K_{\pi}}^{F_{\pi}}(\Delta(f,\hat{b}))$ has exponent q in $\operatorname{Br}(K_{\pi})$. Let b be as in (1). Then $\operatorname{res}_{K}^{K_{\pi}} \operatorname{cor}_{K}^{F}(\Delta(f,b))$ has exponent q. Since restriction is a homomorphism and $\Delta(f,b)$ has exponent dividing q, $\operatorname{cor}_{K}^{F}(\Delta(f,b))$ has exponent q. As noted above, $\operatorname{cor}_{K}^{F}(\Delta(f,b))$ is also an element of $\operatorname{Br}(E/K)$. Thus $\operatorname{Br}(E/K)_{q} \neq \{0\}$.
- (3) Assume that $F_{\pi} = K_{\pi}$ and L_{π}/K_{π} is unramified. Choose \hat{b} a uniformizing element for K_{π} . Then $\Delta(f, \hat{b})$ has exponent q. Since $F_{\pi} = K_{\pi}$, (3) follows from (2).
- (4) Since the hypotheses of (3) imply the hypotheses for (2), we may assume that there exist infinitely many discrete valuations π_i of E and $\hat{b}_i \in F_{\pi_i}^*$ such that $\operatorname{cor}_{K_{\pi_i}}^{F_{\pi_i}}(\Delta(f,\hat{b}_i))$ has exponent q in $\operatorname{Br}(K_{\pi_i})$. Suppose that $|\operatorname{Br}(E/K)_q| < n$ for some positive integer n. For $1 \le i \le n$, we choose $b_i \in F^*$ such that $\operatorname{res}_K^{K_{\pi_i}} \operatorname{cor}_K^F(\Delta(f,b_i)) = \operatorname{cor}_{K_{\pi_i}}^{F_{\pi_i}}(\Delta(f,\hat{b}_i))$ as in the proof of (1) above but with the additional restriction that b_i is a norm from L_{γ} to F_{γ} for all valuations γ of L such that γ restricted to K equals π_j restricted to K for some $1 \le j \le n, j \ne i$.

Let $A_{ij} = \operatorname{res}_K^{K_{\pi_j}} \operatorname{cor}_K^F(\Delta(f, b_i))$. Then $A_{ij} = 0$ for $i \neq j$ and A_{ii} has exponent q. It follows that $\{\operatorname{cor}_K^F(\Delta(f, b_1)), \ldots, \operatorname{cor}_K^F(\Delta(f, b_n))\}$ is a set of n distinct elements in $\operatorname{Br}(E/K)_q$, contradicting the assumption that $|\operatorname{Br}(E/K)_q| < n$. This proves (4).

Remark. Suppose that K is either a global field or a regular extension of transcendence degree ≥ 1 of a Hilbertian field (e.g. a regular extension of transcendence degree ≥ 2 of an arbitrary field) and E is a finite Galois extension of K, $E \neq K$. Let q be a prime dividing [E:K] and let $\sigma \in \operatorname{Gal}(E/K)$ have order q. By the Tchebotarev Density Theorem if K is a global field [T, p. 163] or by the proof of [FSS1, Theorem 2.6] (see also [FS2, Proposition 3]) if K is a regular extension of transcendence degree at least 1 of a Hilbertian field, there exist infinitely many discrete valuations π of E such that $\langle \sigma \rangle$ is the decomposition group of E/K at π . It follows from Proposition 1, (4) that $\operatorname{Br}(E/K)_q$ is infinite. Thus Proposition 1 provides another approach to the results of [FKS] and [FS1], at least for Galois extensions E over K.

2. Relative Brauer groups of function fields over p-adic fields

Let k be a p-adic field, let K be a finitely generated extension of k of transcendence degree $r \geq 1$, let E be a non-trivial finite Galois extension of K, and let q be a prime dividing [E:K]. The proof of [FS1, Corollary 5] shows that if $r \geq 2$, then $\operatorname{Br}(E/K)_q$ is infinite. In this section we consider the case when r=1. In view of Proposition 1, it is natural to begin by considering complete fields having p-adic residue fields.

Lemma 2. Let K be a field complete with respect to a discrete valuation having a p-adic residue field, let E be a non-trivial finite Galois extension of K, and let q be a prime dividing [E:K]. Assume that there exists an unramified cyclic extension L/F of degree q with $K \subseteq F \subset L \subseteq E$ such that $q \nmid e(F/K)$. Let $f \in \chi(E/F)$ define L/F. Then there exists $b \in F^*$ such that $\operatorname{cor}_K^F(\Delta(f,b))$ has exponent q in $\operatorname{Br}(E/K)$.

Proof. Let $\bar{f} \in \chi(\overline{E}/\overline{F})$ be the character defining $\overline{L}/\overline{F}$ corresponding to f. Let v be a uniformizing element for \overline{F} . Since \overline{F} is complete, $\Delta(\bar{f},v)$ has exponent q. Let $\Delta(f,b)$ be the inertial lift of $\Delta(\bar{f},v)$ in the sense of [JW, Theorem 2.8]. $\operatorname{cor}_{K}^{F}(\Delta,b)$ is similar to the inertial lift of the division algebra component of $e(F/K) \cdot \operatorname{cor}_{\overline{K}}^{\overline{F}}(\Delta(\bar{f},v))$ [Hw, Theorem 17]. Since the corestriction map from $\operatorname{Br}(\overline{F})$ to $\operatorname{Br}(\overline{K})$ is injective because \overline{K} is a p-adic field [Se, p. 175] and since $q \nmid e(F/K)$, $\operatorname{cor}_{\overline{K}}^{\overline{F}}(\Delta(\bar{f},v))$ has exponent q. Thus $\operatorname{cor}_{K}^{F}(\Delta,b)$ has exponent q in $\operatorname{Br}(E/K)$. \square

Theorem 3. Let K be a finitely generated field extension of transcendence degree 1 of a p-adic field k, let E/K be a finite Galois extension of K, and let q be a prime dividing [E:K]. Then the following are equivalent:

- (1) $Br(E/K)_q \neq \{0\}.$
- (2) $Br(E/K)_q$ is infinite.
- (3) There exists a valuation π of E trivial on k such that q divides the order of the decomposition group of E/K at π .

Proof. We will prove the circle of implications: $(2) \Rightarrow (1)$, $(1) \Rightarrow (3)$, and $(3) \Rightarrow (2)$. The implication $(2) \Rightarrow (1)$ is clear. Assume next that (1) holds so there exists

 $\alpha \in \operatorname{Br}(E/K)$ of order q. Let $\mathbb{P}(K)$ denote the set of inequivalent valuations of K trivial on k. There is a natural map $\operatorname{Br}(K) \longrightarrow \prod_{\gamma \in \mathbb{P}(K)} \operatorname{Br}(K_{\gamma})$ where $[D] \in \operatorname{Br}(K)$ maps to $(\dots, [D \otimes_K K_{\gamma}], \dots) \in \prod_{\gamma \in \mathbb{P}(K)} \operatorname{Br}(K_{\gamma})$ and a corresponding map $\operatorname{Br}(E) \longrightarrow \prod_{\delta \in \mathbb{P}(E)} \operatorname{Br}(E_{\delta})$. Similarly, there is a natural map $\prod_{\gamma \in \mathbb{P}(K)} \operatorname{Br}(K_{\gamma}) \longrightarrow \prod_{\delta \in \mathbb{P}(E)} \operatorname{Br}(E_{\delta})$

 $\Pi_{\delta \in \mathbb{P}(E)}$ Br (E_{δ}) . Similarly, there is a natural map $\Pi_{\gamma \in \mathbb{P}(K)}$ Br $(K_{\gamma}) \longrightarrow \Pi_{\delta \in \mathbb{P}(E)}$ Br (E_{δ}) induced by the restriction maps from Br (K_{γ}) to Br (E_{δ}) for each $\gamma \in \mathbb{P}(K)$ and each $\delta \in \mathbb{P}(E)$ extending γ . Combining these natural maps with the restriction map from Br(K) to Br(E) leads to a commutative diagram:

$$Br(E) \longrightarrow \prod_{\delta \in \mathbb{P}(E)} Br(E_{\delta})$$

$$\uparrow \qquad \qquad \uparrow$$

$$Br(K) \longrightarrow \prod_{\gamma \in \mathbb{P}(K)} Br(K_{\gamma})$$

Both horizontal maps are monomorphisms by a result due implicitly to Lichtenbaum (see the proof of Theorem 5 of [Li]) and explicitly stated in [Po, Theorem 4.1]. Let D be the underlying division algebra of α . Since α has order q in $\operatorname{Br}(K)$, there exists a valuation π of K trivial on k such that the Brauer class of $D \otimes_K K_{\pi}$ has order q in $\operatorname{Br}(K_{\pi})$. Since $\alpha \in \operatorname{Br}(E/K)$, the image of α in $\prod_{\delta \in \mathbb{P}(E)} \operatorname{Br}(E_{\delta})$ is trivial.

Let δ be any valuation of E extending π . Since E_{δ} splits $D \otimes_K K_{\pi}$, q divides $[E_{\delta}:K_{\pi}]$ [Pi, Proposition 14.4b(ii) and Lemma 13.4]. Thus (3) holds.

It remains to show that (3) implies (2). Assume that there exists a valuation π of E trivial on k such that q divides the order of the decomposition group of E/K at π . Let $\mathcal{G}_{\pi} \subseteq \mathcal{G}$ be the decomposition group of π over K and let \mathcal{H}_{π} denote a Sylow q-subgroup of \mathcal{G}_{π} . Since $q | |\mathcal{G}_{\pi}|$, $\mathcal{H}_{\pi} \neq \{1\}$. Let \mathcal{J}_{π} denote a subgroup of \mathcal{H}_{π} of index q, let F be the fixed field of \mathcal{H}_{π} and let L be the fixed field of \mathcal{J}_{π} . Then L is a cyclic extension of F of degree q and $\pi | L$ is a valuation of L whose decomposition group over F is non-trivial. In particular, there are valuations of F trivial on k not splitting completely in L. By [Sa, Theorem 7.1] there are infinitely many valuations of F trivial on F trivial on F which are unramified in F of residue class degree F is non-trivial on F trivial on F trivial on F trivial on F which are unramified in F of residue class degree F is non-trivial on F trivial on F triv

As an immediate consequence of Theorem 3, we have:

Corollary 4. Let K be a finitely generated extension of transcendence degree one of a p-adic field k and let E be a non-trivial finite Galois extension of K. Then the following statements are equivalent:

- (1) $Br(E/K) \neq \{0\}.$
- (2) Br(E/K) is infinite.
- (3) There exists a valuation of K trivial on k not splitting completely in E.

Corollary 4 explains the example of Roquette [R, Corollary XVIa] mentioned in the Introduction since in Roquette's example every valuation of K trivial on k splits completely in E. In general, for K as in Corollary 4, there will exist extensions E of K such that every valuation of K trivial on K splits completely in E when the smooth projective variety over K with function field K has bad reduction to the residue field of K. Such examples seem to exist for any genus K [Sa, Examples 2.7]

and 7.2] but not if K/k has genus 0 [Sa, page 73 and Theorem 7.1]. We refer the reader to [Sa] for a thorough discussion of the existence of these completely split covers.

Corollary 5. Let k, K, and E be as in Corollary 4 and suppose that K/k has genus 0. Then Br(E/K) is infinite.

Proof. Let k_1 denote the field of constants of K and let $K_1 = Kk_1$. Since K_1/k_1 has genus 0, there are no completely split covers of K_1 (see the references to [Sa] above) and so there exists a valuation π_1 of K_1 trivial on k_1 not splitting completely in E. Let π denote the restriction of π_1 to K. Then π does not split completely in E and so Br(E/K) is infinite by Corollary 4.

3. The ramified case

Let K be a field with a discrete valuation π and let E be a finite Galois extension of K in which π does not split completely. Then there exist L and F with $K \subseteq F \subset L \subseteq E$ where L/F is cyclic and some extension δ of π to F is undecomposed in L. If L/F is unramified at δ , Proposition 1, (3), can sometimes be used to conclude that $\operatorname{Br}(E/K)$ is non-trivial. In this section we consider what can be said if L/F is ramified at δ . As in the preceding section, we begin with a result about complete fields.

Lemma 6. Let K be a field complete with respect to a discrete valuation, let E be a non-trivial finite Galois extension of K of degree not divisible by the characteristic of \overline{K} , and let q be a prime dividing [E:K]. Let $\mathcal{G} = \operatorname{Gal}(E/K)$, let \mathcal{H} be a Sylow q-subgroup of \mathcal{G} , let $F = E^{\mathcal{H}}$, let \mathcal{J} be a subgroup of \mathcal{H} of index q, and let $L = E^{\mathcal{J}}$. Let $f \in \chi(E/F)$ define L/F. Assume that L/F is ramified and that there exists a cyclic extension of \overline{K} of degree q. Then there exists $b \in F^*$ such that $\operatorname{cor}_K^F(\Delta(f,b))$ has exponent q in $\operatorname{Br}(E/K)$.

Proof. By assumption, L/F is tamely ramified so there exists $\beta \in L$ such that $\beta^q = \alpha$, where α is a uniformizing element for F [W, Proposition 3-4-3]. Let r = e(F/K) and let π be a uniformizing element for K. Then $\alpha^r = u\pi$ for some unit $u \in F$. By assumption, there exists a cyclic unramified extension M of K of degree q. Let $g \in \chi(M/K)$ define M/K so g has order q.

Consider $A = \Delta(\operatorname{res}_K^F(g), u\pi) \in \operatorname{Br}(F)$. Since g has order q, $\exp(A)$ is either 1 or q. Moreover, $\operatorname{res}_F^L(A) = \Delta(\operatorname{res}_K^L(g), u\pi) = \Delta(\operatorname{res}_K^L(g), \alpha^r) = \Delta(\operatorname{res}_K^L(g), (\beta^r)^q) = q \cdot \Delta(\operatorname{res}_K^L(g), \beta^r)$. Since $\operatorname{res}_K^L(g)$ has order 1 or q, $\operatorname{res}_F^L(A) = 0$, so $A \in \operatorname{Br}(L/F)$. It follows that there exists $b \in F^*$ such that $A = \Delta(f, b)$ [Pi, Chapter 15]. Since $A \in \operatorname{Br}(E/F)$, $\operatorname{cor}_K^F(A) \in \operatorname{Br}(E/K)$. It thus suffices to show that $\operatorname{cor}_K^F(A)$ has exponent q in $\operatorname{Br}(K)$.

Let \overline{T} be the separable closure of \overline{K} . Recall that we denote the projection map $\operatorname{Br}(F)_q \longrightarrow \chi(\overline{T}/\overline{F})$ by ram. By [FSS1, Theorem 1.4], there is a commutative diagram:

$$Br(F) \xrightarrow{ram} \chi(\overline{T}/\overline{F})$$

$$cor \downarrow \qquad cor \downarrow$$

$$Br(K) \xrightarrow{ram} \chi(\overline{T}/\overline{K})$$

Since $A = \Delta(\operatorname{res}_K^F(g), u\pi) = \Delta(\operatorname{res}_K^F(g), \alpha)^r$ and α is a uniformizing element for F, $\operatorname{ram}(A) = r \cdot \operatorname{res}_{\overline{K}}^{\overline{F}}(\bar{g})$ and so $\operatorname{ram}(\operatorname{cor}_K^F(A)) = \operatorname{cor}(\operatorname{ram}(A)) = r[\overline{F}:\overline{K}]\bar{g} \in \chi(\overline{T}/\overline{K})$.

Since q does not divide $r[\overline{F}:\overline{K}]$, $ram(cor_K^F(A))$ has order q. Thus $cor_K^F(A)$ has exponent q in Br(K), as was to be shown.

We next provide an example to show that Lemma 6 does not hold, in general, with L/F unramified.

Example. Let s,t be independent transcendentals over the complex numbers, \mathbb{C} , and let $K = \mathbb{C}(t)((s))$ be the Laurent series field in s over $\mathbb{C}(t)$. By the Riemann Existence Theorem, there exists an A_5 -Galois extension E_0 of $\mathbb{C}(t)$, where A_5 denotes the alternating group on five letters [M, Folgerung 2, p. 21]. Let $E = KE_0$. Then $\overline{K} = \mathbb{C}(t)$ and $\overline{E} = E_0$. Since E/K is unramified, $\operatorname{Br}(E/K) \cong \operatorname{Br}(\overline{E}/\overline{K}) \oplus \chi(\overline{E}/\overline{K})$ [Se, Exercise 2, p. 195]. Since $\overline{K} = \mathbb{C}(t)$, $\operatorname{Br}(\overline{K}) = \{0\}$ by Tsen's Theorem [Pi, Section 19.4]. Since A_5 is simple, $\chi(\overline{E}/\overline{K}) = \{0\}$. Thus $\operatorname{Br}(E/K) = \{0\}$. Since there exist cyclic extensions of \overline{K} of all possible degrees, this shows that Lemma 6 does not hold, in general, if L/F is unramified.

Theorem 7. Let E/K be a finite Galois extension of fields. Assume that E has a discrete valuation π satisfying the following conditions:

- (1) the decomposition group of E/K at π has a normal subgroup of prime index q, and
- (2) there exists a cyclic extension of degree q of the residue field of K at π .

Then $Br(E/K)_q \neq \{0\}$. If there exist infinitely many inequivalent discrete valuations π satisfying the above conditions, then $Br(E/K)_q$ is infinite.

Proof. Let the hypotheses be as in Theorem 7, let \mathcal{Z} be the decomposition group of E/K at π , and let $T=E^{\mathcal{Z}}$. Then $\operatorname{Gal}(E/T)=\operatorname{Gal}(E_{\pi}/K_{\pi})$. By assumption, there exists a field $M\subseteq E$ with M/T cyclic of degree q. Let $f\in\chi(E/T)$ define M/T (and so also M_{δ}/T_{δ}). If M/T is unramified at $\delta|T$, then $\operatorname{Br}(E/K)_q\neq\{0\}$ by Proposition 1, (2). Suppose then that M/T is ramified. Let F be the fixed field of a Sylow q-subgroup of $\mathcal Z$ and let L=MF. Then L/F is cyclic of degree q and is ramified at δ . By Lemma 6, $\operatorname{Br}(E/K)_q\neq\{0\}$. If there exist infinitely many such π , then $\operatorname{Br}(E/K)_q$ is infinite by Proposition 1, (4).

Example. This example shows that we cannot drop the requirement in Theorem 7 that there exists a cyclic extension of degree q of the residue field of K at π . Let F be an algebraically closed field and let K = F(t) where t is transcendental over F. Then $\text{Br}(K) = \{0\}$ by Tsen's Theorem [Pi, Section 19.7]. Let $E = F(\sqrt{t})$ and let π be the valuation of K trivial on F having t as uniformizing element. Then the decomposition group of E/K at π is cyclic of order 2 and so the first hypothesis of Theorem 7 is satisfied. This shows that the second hypothesis is needed.

As an almost immediate consequence of Lemmas 2 and 6 we have:

Corollary 8. Let K be a field complete with respect to a discrete valuation with residue field a p-adic field and let E be a finite Galois extension of K. Then Br(E/K) is finite and $Br(E/K)_q$ is non-trivial for every prime q dividing [E:K].

Proof. We show first that $\operatorname{Br}(E/K)$ is finite. Let $\beta = e(E/K) \cdot \operatorname{res}_{\overline{K}}^{\overline{E}} : \chi(\overline{T}/\overline{K}) \longrightarrow \chi(\overline{T}/\overline{E})$ where \overline{T} is the separable closure of \overline{K} . It follows from [Se, Chapter XII, Section 3, Exercise 2] that there is an exact sequence $0 \longrightarrow \operatorname{Br}(\overline{E}/\overline{K}) \longrightarrow \operatorname{Br}(E/K) \longrightarrow \ker(\beta)$. To show that $\operatorname{Br}(E/K)$ is finite, it is enough to show that $\operatorname{Br}(\overline{E}/\overline{K})$ and $\ker(\beta)$ are both finite. Since \overline{K} is a p-adic field, $\operatorname{Br}(\overline{K}) \cong \mathbb{Q}/\mathbb{Z}$ [Pi,

Theorem 17.10] and $\operatorname{Br}(\overline{E}/\overline{K})$ corresponds to the kernel of the multiplication map $[\overline{E}:\overline{K}]:\mathbb{Q}/\mathbb{Z}\longrightarrow\mathbb{Q}/\mathbb{Z}$. In particular, $\operatorname{Br}(\overline{E}/\overline{K})$ is finite. Any element of $\ker(\beta)$ is a character of order dividing $[\overline{E}:\overline{K}]$ and there are only finitely many such characters since \overline{K} has only finitely many extensions of any given degree [La, p. 54]. Thus $\ker(b)$ is also finite, proving that $\operatorname{Br}(E/K)$ is finite.

Now let let q be a prime dividing [E:K], let F be the fixed field of a Sylow q-subgroup of $\operatorname{Gal}(E/K)$, and let L/F be a cyclic extension of degree q where $K \subseteq F \subset L \subseteq E$. We note that \overline{K} has a cyclic extension of degree q since \overline{K} is a p-adic field. If L/F is ramified, then $\operatorname{Br}(E/K) \neq \{0\}$ by Lemma 6, while if L/F is unramified, $\operatorname{Br}(E/K) \neq \{0\}$ by Lemma 2. Thus $\operatorname{Br}(E/K)_q \neq \{0\}$, completing the proof of Corollary 8.

References

- [B] K. Brown, Cohomology of groups, Springer-Verlag, New York, Heidelberg, and Berlin, 1982. MR 96a:20072
- [FKS] B. Fein, W.M. Kantor, and M. Schacher, Relative Brauer groups, II, J. Reine Angew. Math. 328 (1981), 39-57. MR 83a:12018
- [FSS1] B. Fein, D. Saltman, and M. Schacher, Brauer-Hilbertian fields, Trans. Amer. Math. Soc. 334 (1992), 915-928. MR 93b:12006
- [FSS2] _____, Crossed products over rational function fields, J. Algebra 156 (1993), 454-493.
 MR 94d:12003
- [FS1] B. Fein and M. Schacher, A conjecture about relative Brauer groups, in K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (B. Jacob and A. Rosenberg, eds.), Proceedings of the Symposia in Pure Mathematics, Vol. 58, Amer. Math. Soc., Providence, pp. 161-169. MR 96e:12006
- [FS2] _____, Crossed products over algebraic function fields, J. Algebra 171 (1995), 531-540.
 MR 96b:12003
- [Hw] Y. S. Hwang, The corestriction of valued division algebras over Henselian fields. II, Pacific J. Math. 170 (1995), 83-103. MR 96j:12005b
- [JW] B. Jacob and A. Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), 126-179. MR 91d:12006
- [La] S. Lang, Algebraic Number Theory, Addison Wesley, Reading, 1968.
- [Li] S. Lichtenbaum, Duality theorems for curves over p-adic fields, Invent. Math. 7 (1969), 120-136. MR 39:4158
- [M] B. H. Matzat, Konstruktive Galoistheorie, Lecture Notes in Mathematics, Vol. 1284, Springer-Verlag, Berlin/Heidelberg/New York, 1987. MR 91a:12007
- [Pi] R. Pierce, Associative Algebras, Springer-Verlag, New York, 1982. MR 84c:16001
- [Po] F. Pop, Galoissche Kennzeichnung p-adisch abgeschlossener Körper, J. reine angewandte Mathematik 392 (1988), 145-175. MR 89k:12014
- [R] P. Roquette, Analytic theory of elliptic functions over local fields, Vandenhoeck and Ruprecht, Göttingen, 1970. MR 41:5376
- [Sa] S. Saito, Class field theory for curves over local fields, J. Number Theory 21 (1985), 44-80. MR 87g:11075
- [Se] J.-P. Serre, Corps Locaux, Hermann, Paris, 1962. MR 27:133
- [T] J. Tate, Global class field theory, Algebraic Number Theory, J.W.S. Cassels and A. Fröhlich, eds., Thompson, Washington, D.C., 1967, pp. 162-203. MR 36:3749
- [W] E. Weiss, Algebraic Number Theory, Mc-Graw Hill, New York, 1963. MR 28:3021

Department of Mathematics, Oregon State University, Corvallis, Oregon 97331 $E\text{-}mail\ address$: fein@math.orst.edu

Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90024

E-mail address: mms@math.ucla.edu