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RELATIVE BRAUER GROUPS
OF DISCRETE VALUED FIELDS

BURTON FEIN AND MURRAY SCHACHER

(Communicated by Ken Goodearl)

Abstract. Let E be a non-trivial finite Galois extension of a field K. In this
paper we investigate the role that valuation-theoretic properties of E/K play in
determining the non-triviality of the relative Brauer group, Br(E/K), of E over
K. In particular, we show that when K is finitely generated of transcendence
degree 1 over a p-adic field k and q is a prime dividing [E : K], then the
following conditions are equivalent: (i) the q-primary component, Br(E/K)q,
is non-trivial, (ii) Br(E/K)q is infinite, and (iii) there exists a valuation π of E
trivial on k such that q divides the order of the decomposition group of E/K
at π.

1. Introduction and preliminaries

Let K be a field finitely generated of transcendence degree r ≥ 1 over a field k,
let E be a non-trivial finite Galois extension of K, and let q be a prime dividing
[E : K]. If k is Hilbertian or if k is arbitrary and r ≥ 2, the proof of [FS1, Corollary
5] shows that the q-primary component of the relative Brauer group of E over K,
Br(E/K)q, must be infinite. On the other hand, Roquette [R, Corollary XVIa]
has given examples where Br(E/K) = {0} when k is a p-adic field, r = 1, K has
genus 1 over k, and E is a non-trivial cyclic extension of K. In Roquette’s example,
every valuation of K trivial on k splits completely in E. In contrast, the proofs of
the positive results cited above make use of the fact that there are infinitely many
valuations π of E trivial on k such that q divides the order of the decomposition
group of E/K at π. In this paper we investigate, for an arbitrary field K and an
arbitrary non-trivial finite Galois extension E of K, the role that valuation-theoretic
properties of E/K play in determining the non-triviality of Br(E/K). Among other
results, we show that when K is finitely generated of transcendence degree 1 over
a p-adic field k and E is a non-trivial finite Galois extension of K, then Br(E/K)q

is non-trivial if and only if it is infinite and this occurs if and only if there exists
a valuation π of E trivial on k such that q divides the order of the decomposition
group of E/K at π.
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We now establish some of the terminology and notation that we will maintain
throughout. We say that L/F is an H-Galois extension of fields if L is a Galois
extension of a field F with Galois group Gal(L/F ) = H. In what follows, K will
always be a field with one or more discrete (rank one) valuations, E will be a non-
trivial G-Galois extension of K, and q will be a prime dividing [E : K]. Let π be
a discrete valuation of E. The completion of E at π will be denoted by Eπ and
the residue field by Eπ; when π is understood we sometimes denote Eπ by E. An
element b̂ of Eπ generating the maximal ideal of the valuation ring of Eπ will be
referred to as a uniformizing element for π. We denote the restriction of π to K by
πK ; if no misunderstanding is possible, we sometimes write π instead of πK . We
denote the decomposition group of E/K at π by Gπ; with the above notation and
conventions, Eπ/Kπ is Gπ-Galois. We denote the ramification degree of Eπ over
Kπ by e(Eπ/Kπ). By a p-adic field we mean a finite extension of the field Qp of
p-adic numbers.

We say that A/F is central simple if A is a simple algebra with center F which
is finite dimensional over F ; we denote the class of such an A in Br(F ) by [A]. The
exponent of [A], exp(A), is the order of [A] in Br(K). If L is a field extension of F ,
we refer to the map from Br(F ) to Br(L) defined by [A] → [A⊗F L] as restriction
and denote it by resL

F . If F/K is a finite separable extension of fields, we denote
the corestriction map from Br(F ) to Br(K) by corF

K .
Suppose that K ⊆ F ⊆ E and Gal(E/F ) = H ⊆ G = Gal(E/K). Then

Br(E/F ) ∼= H2(H, E∗), Br(E/K) ∼= H2(G, E∗), and corF
K restricted to Br(E/F )

corresponds to the cohomological corestriction map from H2(H, E∗) to H2(G, E∗).
In particular, if [A] is in the q-primary component, Br(E/F )q, of Br(E/F ), then
corF

K([A]) ∈ Br(E/K)q. All of our non-triviality results for relative Brauer groups
are obtained by showing that there exists suitable F and A as above such that
corF

K([A]) 6= 0. The algebras A that we will need will be cyclic algebras; we next
review their construction.

Suppose E/F is a possibly infinite H-Galois extension of fields. We let the
profinite group H act trivially on the discrete group Q/Z and define the character
group of E/F , χ(E/F ), to be H1(H, Q/Z), the group of continuous homomor-
phisms of H into Q/Z. If f ∈ χ(E/F ), then f(H) is a finite subgroup of Q/Z
and hence is cyclic. Let L ⊆ E be the fixed field of the kernel of f . Then L/F
is cyclic and we say that the character f defines L/F . The short exact sequence
of trivial H-modules 0 −→ Z −→ Q −→ Q/Z −→ 0 gives rise to a long exact
sequence of cohomology groups. Since H1(H, Q) = H2(H, Q) = 0, we have an
isomorphism d : H2(H, Z) −→ H1(H, Q/Z) = χ(E/F ). The cup product (e.g.
[B, p. 112]) defines a map: H2(H, Z) × H0(H, E∗) −→ H2(H, E∗) ∼= Br(E/F ).
Since H0(H, E∗) ∼= F ∗ and H2(H, Z) ∼= χ(E/F ), we have a map χ(E/F )×F ∗ −→
Br(E/F ). We denote the image of (f, b) (where f ∈ χ(E/F ) and b ∈ F ∗) under this
map by ∆(f, b). In algebra terms, ∆(f, b) is represented by the cyclic crossed prod-
uct ∆(L/F, σ, b) where f defines L/F and where σ ∈ Gal(E/F ) is the generator
satisfying f(σ) = (1/[L : F ]) + Z.

We shall show that corF
K([A]) 6= 0 for suitable A and F as above by showing

that resKπ

K corF
K([A]) 6= 0 for a suitably chosen discrete valuation π of K. In what

follows, we shall freely use standard results about the Brauer group of a complete
discrete valued field. We refer the reader to [Se, Chapter XII, Section 3] for a
complete discussion of the Brauer group of such a field; we briefly summarize the
results we will need.
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Let K be a field complete with respect to a discrete valuation, let T denote the
maximal unramified extension of K, and let b be a fixed uniformizing element for
K. Then χ(T/K) ∼= χ(T/K); we denote the image of f ∈ χ(T/K) under this
isomorphism by f̄ . Now suppose that L/K is a cyclic unramified extension of K
of degree n and let f ∈ χ(T/K) define L/K. Since the value group of L equals
the value group of K and the values of conjugates of an element are equal, n is the
smallest positive power of b which is a norm from L to K. In particular, ∆(f, b)
has exponent n in Br(K). Let q be a prime not dividing the characteristic of K.
Then Br(K)q is the direct sum of the inertial lift (in the sense of [JW, Theorem
2.8]) of Br(K)q and a subgroup isomorphic to χ(T/K)q where the isomorphism is
given by f̄ → ∆(f, b) for f̄ ∈ χ(T/K)q [Se, Theorem 2, p. 194]. We let ram denote
the projection of Br(K)q onto χ(T/K)q defined by this direct sum decomposition
of Br(K)q. In particular, ram(∆(f, b)) = f̄ .

The following approximation result is basic to our approach; a slightly weaker
version appears implicitly in [FSS2, Lemma 4.7] (see also [FS2, Lemma 4]).

Proposition 1. Let K ⊆ F ⊂ L ⊆ E where L/F is cyclic of degree q, defined by
f ∈ χ(E/F ). Assume that π is a discrete valuation of E such that [Lπ : Fπ] =
[L : F ]. Identifying Gal(Eπ/Fπ) as a subgroup of Gal(E/F ), we may view f as an
element of χ(Eπ/Fπ) defining Lπ/Fπ.

(1) Let b̂ ∈ F ∗π . Then there exists b ∈ F ∗ such that resKπ

K corF
K(∆(f, b)) =

corFπ

Kπ
(∆(f, b̂)).

(2) Assume that there exists b̂ ∈ F ∗π such that corFπ

Kπ
(∆(f, b̂)) has exponent q in

Br(Kπ). Then Br(E/K)q 6= {0}.
(3) If Fπ = Kπ and Lπ/Kπ is unramified, then Br(E/K)q 6= {0}.
(4) Assume that there exist infinitely many discrete valuations π of E such that

the hypotheses of (2) or (3) above hold. Then Br(E/K)q is infinite.

Proof. (1) We argue exactly as in the proof of [FSS2, Lemma 4.7] (see also [FS2,
Lemma 4]) but with one minor modification. We need to choose b sufficiently close
to b̂ π-adically so that bb̂−1 is a norm from Lπ to Fπ ; since bb̂−1 = 1+ b̂−1(b− b̂), this
is possible by [Se, Chapter 5, Section 2, Proposition 3, and Section 6, Corollary 4].
For b so chosen, ∆(f, bb̂−1) = 0 in Br(Fπ) and so corFπ

Kπ
(∆(f, b̂)) = corFπ

Kπ
(∆(f, b)).

The proof of [FSS2, Lemma 4.7] now continues without incident.
(2) Assume that there exists b̂ ∈ F ∗π such that corFπ

Kπ
(∆(f, b̂)) has exponent q

in Br(Kπ). Let b be as in (1). Then resKπ

K corF
K(∆(f, b)) has exponent q. Since

restriction is a homomorphism and ∆(f, b) has exponent dividing q, corF
K(∆(f, b))

has exponent q. As noted above, corF
K(∆(f, b)) is also an element of Br(E/K).

Thus Br(E/K)q 6= {0}.
(3) Assume that Fπ = Kπ and Lπ/Kπ is unramified. Choose b̂ a uniformizing

element for Kπ. Then ∆(f, b̂) has exponent q. Since Fπ = Kπ, (3) follows from (2).
(4) Since the hypotheses of (3) imply the hypotheses for (2), we may assume

that there exist infinitely many discrete valuations πi of E and b̂i ∈ F ∗πi
such

that corFπi

Kπi
(∆(f, b̂i)) has exponent q in Br(Kπi). Suppose that |Br(E/K)q| <

n for some positive integer n. For 1 ≤ i ≤ n, we choose bi ∈ F ∗ such that
resKπi

K corF
K(∆(f, bi)) = corFπi

Kπi
(∆(f, b̂i)) as in the proof of (1) above but with the

additional restriction that bi is a norm from Lγ to Fγ for all valuations γ of L
such that γ restricted to K equals πj restricted to K for some 1 ≤ j ≤ n, j 6= i.
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Let Aij = res
Kπj

K corF
K(∆(f, bi)). Then Aij = 0 for i 6= j and Aii has exponent q.

It follows that {corF
K(∆(f, b1)), . . . , corF

K(∆(f, bn))} is a set of n distinct elements
in Br(E/K)q, contradicting the assumption that |Br(E/K)q| < n. This proves
(4).

Remark. Suppose that K is either a global field or a regular extension of transcen-
dence degree ≥ 1 of a Hilbertian field (e.g. a regular extension of transcendence
degree ≥ 2 of an arbitrary field) and E is a finite Galois extension of K, E 6= K.
Let q be a prime dividing [E : K] and let σ ∈ Gal(E/K) have order q. By the
Tchebotarev Density Theorem if K is a global field [T, p. 163] or by the proof
of [FSS1, Theorem 2.6] (see also [FS2, Proposition 3]) if K is a regular extension
of transcendence degree at least 1 of a Hilbertian field, there exist infinitely many
discrete valuations π of E such that 〈σ〉 is the decomposition group of E/K at π.
It follows from Proposition 1, (4) that Br(E/K)q is infinite. Thus Proposition 1
provides another approach to the results of [FKS] and [FS1], at least for Galois
extensions E over K.

2. Relative Brauer groups of function fields over p-adic fields

Let k be a p-adic field, let K be a finitely generated extension of k of transcen-
dence degree r ≥ 1, let E be a non-trivial finite Galois extension of K, and let q be
a prime dividing [E : K]. The proof of [FS1, Corollary 5] shows that if r ≥ 2, then
Br(E/K)q is infinite. In this section we consider the case when r = 1. In view of
Proposition 1, it is natural to begin by considering complete fields having p-adic
residue fields.

Lemma 2. Let K be a field complete with respect to a discrete valuation having a
p-adic residue field, let E be a non-trivial finite Galois extension of K, and let q be
a prime dividing [E : K]. Assume that there exists an unramified cyclic extension
L/F of degree q with K ⊆ F ⊂ L ⊆ E such that q - e(F/K). Let f ∈ χ(E/F )
define L/F . Then there exists b ∈ F ∗ such that corF

K(∆(f, b)) has exponent q in
Br(E/K).

Proof. Let f̄ ∈ χ(E/F ) be the character defining L/F corresponding to f . Let
v be a uniformizing element for F . Since F is complete, ∆(f̄ , v) has exponent
q. Let ∆(f, b) be the inertial lift of ∆(f̄ , v) in the sense of [JW, Theorem 2.8].
corF

K(∆, b) is similar to the inertial lift of the division algebra component of e(F/K)·
corF

K
(∆(f̄ , v)) [Hw, Theorem 17]. Since the corestriction map from Br(F ) to

Br(K) is injective because K is a p-adic field [Se, p. 175] and since q - e(F/K),
corF

K
(∆(f̄ , v)) has exponent q. Thus corF

K(∆, b) has exponent q in Br(E/K).

Theorem 3. Let K be a finitely generated field extension of transcendence degree
1 of a p-adic field k, let E/K be a finite Galois extension of K, and let q be a prime
dividing [E : K]. Then the following are equivalent:

(1) Br(E/K)q 6= {0}.
(2) Br(E/K)q is infinite.
(3) There exists a valuation π of E trivial on k such that q divides the order of

the decomposition group of E/K at π.

Proof. We will prove the circle of implications: (2) ⇒ (1), (1) ⇒ (3), and (3) ⇒ (2).
The implication (2) ⇒ (1) is clear. Assume next that (1) holds so there exists



RELATIVE BRAUER GROUPS OF DISCRETE VALUED FIELDS 681

α ∈ Br(E/K) of order q. Let P(K) denote the set of inequivalent valuations of K
trivial on k. There is a natural map Br(K) −→ Π

γ∈P(K)
Br(Kγ) where [D] ∈ Br(K)

maps to (. . . , [D⊗K Kγ ], . . . ) ∈ Π
γ∈P(K)

Br(Kγ) and a corresponding map Br(E) −→
Π

δ∈P(E)
Br(Eδ). Similarly, there is a natural map Π

γ∈P(K)
Br(Kγ) −→ Π

δ∈P(E)
Br(Eδ)

induced by the restriction maps from Br(Kγ) to Br(Eδ) for each γ ∈ P(K) and
each δ ∈ P(E) extending γ. Combining these natural maps with the restriction
map from Br(K) to Br(E) leads to a commutative diagram:

Br(E) −−−−→ Π
δ∈P(E)

Br(Eδ)x x
Br(K) −−−−→ Π

γ∈P(K)
Br(Kγ)

Both horizontal maps are monomorphisms by a result due implicitly to Lichtenbaum
(see the proof of Theorem 5 of [Li]) and explicitly stated in [Po, Theorem 4.1]. Let
D be the underlying division algebra of α. Since α has order q in Br(K), there
exists a valuation π of K trivial on k such that the Brauer class of D ⊗K Kπ has
order q in Br(Kπ). Since α ∈ Br(E/K), the image of α in Π

δ∈P(E)
Br(Eδ) is trivial.

Let δ be any valuation of E extending π. Since Eδ splits D ⊗K Kπ, q divides
[Eδ : Kπ] [Pi, Proposition 14.4b(ii) and Lemma 13.4]. Thus (3) holds.

It remains to show that (3) implies (2). Assume that there exists a valuation π
of E trivial on k such that q divides the order of the decomposition group of E/K
at π. Let Gπ ⊆ G be the decomposition group of π over K and let Hπ denote a
Sylow q-subgroup of Gπ. Since q| |Gπ |, Hπ 6= {1}. Let Jπ denote a subgroup of
Hπ of index q, let F be the fixed field of Hπ and let L be the fixed field of Jπ.
Then L is a cyclic extension of F of degree q and π|L is a valuation of L whose
decomposition group over F is non-trivial. In particular, there are valuations of F
trivial on k not splitting completely in L. By [Sa, Theorem 7.1] there are infinitely
many valuations of F trivial on k which are unramified in L of residue class degree
q. Since only finitely many valuations of K ramify in E, there are infinitely many
valuations δ of E trivial on k which are unramified over K and with [Lδ : Fδ] = q.
By Lemma 2 and Proposition 1, (4), Br(E/K)q is infinite.

As an immediate consequence of Theorem 3, we have:

Corollary 4. Let K be a finitely generated extension of transcendence degree one
of a p-adic field k and let E be a non-trivial finite Galois extension of K. Then the
following statements are equivalent:

(1) Br(E/K) 6= {0}.
(2) Br(E/K) is infinite.
(3) There exists a valuation of K trivial on k not splitting completely in E.

Corollary 4 explains the example of Roquette [R, Corollary XVIa] mentioned in
the Introduction since in Roquette’s example every valuation of K trivial on k splits
completely in E. In general, for K as in Corollary 4, there will exist extensions E
of K such that every valuation of K trivial on k splits completely in E when the
smooth projective variety over k with function field K has bad reduction to the
residue field of k. Such examples seem to exist for any genus ≥ 1 [Sa, Examples 2.7
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and 7.2] but not if K/k has genus 0 [Sa, page 73 and Theorem 7.1]. We refer the
reader to [Sa] for a thorough discussion of the existence of these completely split
covers.

Corollary 5. Let k, K, and E be as in Corollary 4 and suppose that K/k has
genus 0. Then Br(E/K) is infinite.

Proof. Let k1 denote the field of constants of K and let K1 = Kk1. Since K1/k1

has genus 0, there are no completely split covers of K1 (see the references to [Sa]
above) and so there exists a valuation π1 of K1 trivial on k1 not splitting completely
in E. Let π denote the restriction of π1 to K. Then π does not split completely in
E and so Br(E/K) is infinite by Corollary 4.

3. The ramified case

Let K be a field with a discrete valuation π and let E be a finite Galois extension
of K in which π does not split completely. Then there exist L and F with K ⊆ F ⊂
L ⊆ E where L/F is cyclic and some extension δ of π to F is undecomposed in L.
If L/F is unramified at δ, Proposition 1, (3), can sometimes be used to conclude
that Br(E/K) is non-trivial. In this section we consider what can be said if L/F is
ramified at δ. As in the preceding section, we begin with a result about complete
fields.

Lemma 6. Let K be a field complete with respect to a discrete valuation, let E be a
non-trivial finite Galois extension of K of degree not divisible by the characteristic
of K, and let q be a prime dividing [E : K]. Let G = Gal(E/K), let H be a Sylow
q-subgroup of G, let F = EH, let J be a subgroup of H of index q, and let L = EJ .
Let f ∈ χ(E/F ) define L/F . Assume that L/F is ramified and that there exists a
cyclic extension of K of degree q. Then there exists b ∈ F ∗ such that corF

K(∆(f, b))
has exponent q in Br(E/K).

Proof. By assumption, L/F is tamely ramified so there exists β ∈ L such that
βq = α, where α is a uniformizing element for F [W, Proposition 3-4-3]. Let
r = e(F/K) and let π be a uniformizing element for K. Then αr = uπ for some
unit u ∈ F . By assumption, there exists a cyclic unramified extension M of K of
degree q. Let g ∈ χ(M/K) define M/K so g has order q.

Consider A = ∆(resF
K(g), uπ) ∈ Br(F ). Since g has order q, exp(A) is either 1 or

q. Moreover, resL
F (A) = ∆(resL

K(g), uπ) = ∆(resL
K(g), αr) = ∆(resL

K(g), (βr)q) =
q ·∆(resL

K(g), βr). Since resL
K(g) has order 1 or q, resL

F (A) = 0, so A ∈ Br(L/F ).
It follows that there exists b ∈ F ∗ such that A = ∆(f, b) [Pi, Chapter 15]. Since
A ∈ Br(E/F ), corF

K(A) ∈ Br(E/K). It thus suffices to show that corF
K(A) has

exponent q in Br(K).
Let T be the separable closure of K. Recall that we denote the projection map

Br(F )q −→ χ(T/F ) by ram. By [FSS1, Theorem 1.4], there is a commutative
diagram:

Br(F ) ram−−−−→ χ(T/F )

cor

y cor

y
Br(K) ram−−−−→ χ(T/K)

Since A = ∆(resF
K(g), uπ) = ∆(resF

K(g), α)r and α is a uniformizing element for F ,
ram(A) = r · resF

K
(ḡ) and so ram(corF

K(A)) = cor(ram(A)) = r[F : K]ḡ ∈ χ(T/K).
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Since q does not divide r[F : K], ram(corF
K(A)) has order q. Thus corF

K(A) has
exponent q in Br(K), as was to be shown.

We next provide an example to show that Lemma 6 does not hold, in general,
with L/F unramified.

Example. Let s, t be independent transcendentals over the complex numbers, C,
and let K = C(t)((s)) be the Laurent series field in s over C(t). By the Riemann Ex-
istence Theorem, there exists an A5-Galois extension E0 of C(t), where A5 denotes
the alternating group on five letters [M, Folgerung 2, p. 21]. Let E = KE0. Then
K = C(t) and E = E0. Since E/K is unramified, Br(E/K) ∼= Br(E/K)⊕χ(E/K)
[Se, Exercise 2, p. 195]. Since K = C(t), Br(K) = {0} by Tsen’s Theorem [Pi,
Section 19.4]. Since A5 is simple, χ(E/K) = {0}. Thus Br(E/K) = {0}. Since
there exist cyclic extensions of K of all possible degrees, this shows that Lemma 6
does not hold, in general, if L/F is unramified.

Theorem 7. Let E/K be a finite Galois extension of fields. Assume that E has a
discrete valuation π satisfying the following conditions:

(1) the decomposition group of E/K at π has a normal subgroup of prime index
q, and

(2) there exists a cyclic extension of degree q of the residue field of K at π.
Then Br(E/K)q 6= {0}. If there exist infinitely many inequivalent discrete valua-
tions π satisfying the above conditions, then Br(E/K)q is infinite.

Proof. Let the hypotheses be as in Theorem 7, let Z be the decomposition group
of E/K at π, and let T = EZ . Then Gal(E/T ) = Gal(Eπ/Kπ). By assumption,
there exists a field M ⊆ E with M/T cyclic of degree q. Let f ∈ χ(E/T ) define
M/T (and so also Mδ/Tδ). If M/T is unramified at δ|T , then Br(E/K)q 6= {0} by
Proposition 1, (2). Suppose then that M/T is ramified. Let F be the fixed field of
a Sylow q-subgroup of Z and let L = MF . Then L/F is cyclic of degree q and is
ramified at δ. By Lemma 6, Br(E/K)q 6= {0}. If there exist infinitely many such
π, then Br(E/K)q is infinite by Proposition 1, (4).

Example. This example shows that we cannot drop the requirement in Theorem
7 that there exists a cyclic extension of degree q of the residue field of K at π. Let
F be an algebraically closed field and let K = F (t) where t is transcendental over
F . Then Br(K) = {0} by Tsen’s Theorem [Pi, Section 19.7]. Let E = F (

√
t) and

let π be the valuation of K trivial on F having t as uniformizing element. Then the
decomposition group of E/K at π is cyclic of order 2 and so the first hypothesis of
Theorem 7 is satisfied. This shows that the second hypothesis is needed.

As an almost immediate consequence of Lemmas 2 and 6 we have:

Corollary 8. Let K be a field complete with respect to a discrete valuation with
residue field a p-adic field and let E be a finite Galois extension of K. Then
Br(E/K) is finite and Br(E/K)q is non-trivial for every prime q dividing [E : K].

Proof. We show first that Br(E/K) is finite. Let β = e(E/K) · resE
K

: χ(T/K) −→
χ(T/E) where T is the separable closure of K. It follows from [Se, Chapter
XII, Section 3, Exercise 2] that there is an exact sequence 0 −→ Br(E/K) −→
Br(E/K) −→ ker(β). To show that Br(E/K) is finite, it is enough to show that
Br(E/K) and ker(β) are both finite. Since K is a p-adic field, Br(K) ∼= Q/Z [Pi,
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Theorem 17.10] and Br(E/K) corresponds to the kernel of the multiplication map
[E : K] : Q/Z −→ Q/Z. In particular, Br(E/K) is finite. Any element of ker(β)
is a character of order dividing [E : K] and there are only finitely many such char-
acters since K has only finitely many extensions of any given degree [La, p. 54].
Thus ker(b) is also finite, proving that Br(E/K) is finite.

Now let let q be a prime dividing [E : K], let F be the fixed field of a Sylow
q-subgroup of Gal(E/K), and let L/F be a cyclic extension of degree q where
K ⊆ F ⊂ L ⊆ E. We note that K has a cyclic extension of degree q since K is a
p-adic field. If L/F is ramified, then Br(E/K) 6= {0} by Lemma 6, while if L/F is
unramified, Br(E/K) 6= {0} by Lemma 2. Thus Br(E/K)q 6= {0}, completing the
proof of Corollary 8.
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