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A ONE-POINT ATTRACTOR THEORY FOR THE
NAVIER-STOKES EQUATION ON THIN DOMAINS

WITH NO-SLIP BOUNDARY CONDITIONS
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(Communicated by Jeffrey B. Rauch)

Abstract. In an earlier paper related to recent results of Raugel and Sell for
periodic boundary conditions, we considered the incompressible Navier-Stokes
equations on 3-dimensional thin domains with zero (“no-slip”) boundary con-
ditions and established global regularity results. We extend those results here
by developing an attractor theory. We first show that under similar thinness
restrictions trajectories of solutions approach each other in L4-norm exponen-
tially. Next, for constant-in-time forcing data f1 = f1 (x) , we suppose that
f (t) → f1 in L2 as t → +∞, and show that if v and w1 solve the equa-
tions with forcing data f and f1, respectively, then ‖v (t) −w1 (t)‖4 → 0 as
t → +∞.

For similar thinness restrictions we show that the steady-flow equations
with forcing data f1 have a unique solution us. Under both thinness assump-
tions we then have that all solutions v (t) converge to us in L4 as t → +∞;
thus we have a one-point attractor for strong solutions. In fact, we have a one-
point attractor for the Leray solutions as well. Moreover, under significantly
more relaxed thinness assumptions we are able to show that Leray solutions
nonetheless eventually become regular.

1. Introduction

We consider the incompressible Navier-Stokes equations

ut + (u · ∇)u− ν∆u +∇p = g,(1.1a)

∇ · u = 0(1.1b)

over a bounded domain Ω ⊂ <3 with smooth boundary ∂Ω. Here u = (u1, u2, u3)
denotes the fluid velocity, p denotes the pressure, g = (g1, g2, g3) is the density
per unit volume, and ν = 1/Re, where Re is the Reynolds number. We have that
u = u(x, t), p = p(x, t), and g = g(x, t), where (x, t) ∈ Ω× [0, +∞).

We will use Lp(Ω) and (Lp(Ω))n interchangeably in what follows as it will be
clear from the context when we are taking Lp-norms component-wise. With this in
mind we reformulate (1.1) in standard fashion as a Cauchy problem on H = L2(Ω) :
let −∆ be equipped with zero Dirichlet boundary conditions, let Hσ be the closure
in H of {h ∈ C∞0 (Ω) | ∇ · h = 0}, and let P be the projection onto Hσ, i.e.
PH = Hσ. For simplicity we set ν = 1; in our concluding remarks we will then
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indicate how our results generalize to the case of arbitrary Reynolds number. With
this in mind let A = −P∆ be the Stokes operator and let f = Pg; then taking
u0 ∈ Hσ and applying P to both sides of (1.1a) we rewrite (1.1) as

ut = −Au− P (u · ∇)u + f,(1.2a)

u(x, 0) = u0(x).(1.2b)

The study of this problem has a vast and well-known history; see e.g. [1], [2],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14] and the references contained therein.
For our purposes here we briefly summarize the development of the existence and
uniqueness theory for strong solutions of (1.2): for suitable u0 and f unique local
strong solutions are known to exist in dimensions n = 2 and n = 3, and these
solutions are known to be global if n = 2. For n = 3 global strong solutions have
until recently only been known to exist for small initial data.

In [11] Raugel and Sell treated (1.2) on thin domains: let Ω = Ω
′ × (0, ε),

where Ω
′
is a domain in <2. Focussing primarily on the case of periodic boundary

conditions (in which case Ω
′

is a rectangle), their results on the existence and
uniqueness of global strong solutions allow || A1/2u0 ||2to be large in proportion
to a fractional negative power of ε. Raugel and Sell also establish the existence
of a unique local maximal attractor for which the strong solutions they establish
are in the basin of attraction; moreover this attractor globally attracts the Leray
(weak) solutions. They also show that the trajectories of their global solutions
asymptotically approximate the flow on the 2-dimensional attractor (as constructed
in e.g. [2]) for small enough ε. While partial results on global strong solutions for
other boundary conditions are also obtained, again we note that the primary focus
in [11] is on the case of periodic boundary conditions.

In [1] we focused on the case of zero Dirichlet boundary conditions (as will be
done in this paper). This case is quite distinct from the periodic case, in that on
thin domains the first eigenvalue of −∆ is large. In particular let Ω = Ω

′ × (0, ε)
for an arbitrary domain Ω

′
in <2. Let 0 < λ

′
1 < λ

′
2... be the eigenvalues for the

2-dimensional version of −∆ on Ω
′
; then by separation of variables the eigenvalues

for −∆ on Ω are λmn = λm + (nπ/ε)2 for m, n ≥ 1. Let λ1 denote the smallest
eigenvalue; then λ1 = (ε2λ

′
1 + π2)/ε2 → +∞ as ε → 0. This property of λ1, plus

the fact that λ1 is a lower bound on the first eigenvalue of A, was observed in [1]
to be quite useful in the construction of global strong solutions that, as in [11], can
have large initial data. Since in fact the analysis in [1] only depends on the size
of λ1, more general thin domains can be considered; we simply define a domain to
be generalized thin in <3 if the first eigenvalue of −∆ equipped with zero Dirichlet
boundary conditions is large.

For a parameter M depending on || u0 ||4 and various norms on f , the analysis in
[1] used a contraction mapping principle to establish the existence and uniqueness
of global strong solutions of (1.2) whenever λ−1/8M < 1/K1. Here K1 is a constant
depending e.g. on a constant appearing in a Sobolev inequality and on a constant
expressing the analyticity of exp(−tA). It was seen in [1] that K1 can be chosen so
as not to increase as λ1 increases. Thus M can be arbitrarily large provided that
λ1 is large enough.

In this way the study of the existence and uniqueness of global regular solutions
with large initial data on thin domains, as initiated by Raugel and Sell, was thus
extended in [1] to the case of zero Dirichlet boundary conditions. Moreover, by
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focusing on λ1, the study was extended to a very general class of thin domains. We
would now like to continue to extend the Raugel/Sell program in this setting by
developing an attractor theory. Since bounds on all derivatives of u were established
in [1], it is easy to establish the existence of a unique local maximal attractor A for
which the strong solutions constructed in [1] are in the basin of attraction; indeed,
the proof is very standard and can safely be omitted. With a little more work
we can show that A globally attracts the Leray solutions. We do this by a fairly
straightforward calculation in section 2 below (see (2.6)-(2.16)). In the discussion
that follows (2.18), in particular, we will see that we have such a global attractor
in a surprisingly large number of cases.

The main purpose of this paper, however, is to show that when further size
restrictions are placed on λ1 beyond those assumed in [1] (but not drastically so,
by any means), then the attractor A consists of a simple point. Let

L ≡ sup
t≥0

‖f(t)‖2
2 ,(1.3)

where here and in what follows we replace f(x, t) by f(t) when it is clear from the
context that we are dealing with a function of t into a Banach space. For any δ > 0
we will first show (in section 2) that if u is any Leray solution of (1.2) then there
exists a τu > 0 such that ∥∥∥A1/2u(t)

∥∥∥2

2
≤ (1 + δ)λ−1/2

1 L(1.4)

for all t ≥ τu. Our first theorem applies to any two strong solutions satisfying
(1.4). Its relationship with the strong solutions constructed in [1] and with the
Leray solutions will be discussed following the statement of the theorem.

Theorem 1.1. Let v and w be two strong solutions of (1.2) satisfying (1.4). Let
γ6 = λ1/6. Then if λ1 is large enough there exists a constant K0 depending only
on Ω and A such that

‖v(t)− w(t)‖4 ≤ K0e
−γ6t(1.5)

for all t ≥ 0.

We will prove this theorem in section 3 below. Meanwhile if v and w are two
Leray solutions, set τvw = max{τv, τw}. It will be shown in section 2 using (1.4) that
if λ1 is large enough, then || v(τvw) ||4 and || w(τvw) ||4 satisfy the size restrictions
imposed on initial data in [1] that guarantee the existence and uniqueness of global
strong solutions of (1.2). Since it is known that strong solutions are unique in the
class of weak solutions, we see that v(t) and w(t) continue as strong solutions of
(1.2) satisfying (1.4) for all t ≥ τvw. Combining these remarks with Theorem 1.1
we thus obtain the following result:

Corollary 1.2. Let v and w be any two Leray solutions of (1.2) with τvw as above.
Then if λ1 is large enough we have that

‖v(t) − w(t)‖4 ≤ K0e
−γ6(t−τvw)(1.6)

for all t ≥ τvw, where K0 and γ6 are as in Theorem 1.1.

Thus if λ1 is large enough all solutions asymptotically approach a single trajec-
tory as t → +∞. We now suppose that there exists an f1 = f1(x) such that

lim
t→+∞ ‖f(t)− f1‖2 = 0.(1.7)
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The next result will be proven in section 3 as a corollary of the proofs of Theorem
1.1 and Corollary 1.2:

Theorem 1.3. Suppose that w1 is a strong solution of (1.2) satisfying (1.4) with
f replaced by f1. For any given f such that (1.7) holds, let v be a Leray solution of
(1.2). Then if λ1 is large enough we have that

lim
t→+∞ ‖v(t)− w1(t)‖4 = 0.(1.8)

In stating this last result we anticipate showing that w1(t) converges to a steady-
flow solution as t → +∞. In fact it does, and this steady-flow solution is unique,
provided that λ1 is large enough. The remarks that follow will establish both facts
from the above developments and the next result.

Theorem 1.4. Let f1 ∈ Hσ. Then if λ1 is large enough the steady-flow problem

Au + P (u · ∇)u = f1(1.9)

has a unique solution us satisfying∥∥∥A1/2us

∥∥∥2

2
≤

∥∥∥λ
−1/2
1 f1

∥∥∥2

2
.(1.10)

We now remark that if λ1 is large enough so that both Theorem 1.1 and The-
orem 1.4 hold, then since the us of Theorem 1.4 clearly satisfies (1.4) by virtue
of (1.10), we have that w1 and us satisfy the estimate (1.5), thus establishing the
convergence of w1 to a unique steady-flow solution. Combining this last observation
with Theorem 1.4, we thus obtain the following one-point attractor result for Leray
solutions on domains that are sufficiently generalized thin:

Theorem 1.5. For any given f such that (1.7) holds, let v be a Leray solution of
(1.2). Then if λ1 is large enough so that Theorems 1.3 and 1.4 hold, then for the
unique solution us of (1.9) we have that

lim
t→+∞ ‖v(t)− us‖4 = 0.(1.11)

It remains to prove Theorems 1.1 and 1.4, and establish the estimate (1.4). This
will be done in sections 3 and 2, respectively. Section 2 will also contain some useful
preliminary observations and remarks.

2. Preliminary observations

We first observe the well-known fact, following from a simple inner product
argument, that for all v ∈ D (A)∥∥∥A1/2v

∥∥∥
2

= ‖∇v‖2 .(2.1)

Next we set Xp = PLp (Ω) and note that by [5, Proposition 1.4] D
(
Aα/2

)
is

continuously embedded in X2 ∩Hα (Ω) for all α ≥ 0. From this and the Sobolev
embedding theorems it follows, as in the proof of [5, Lemma 2.2], that A−α/2 is a
bounded map from X2 = Hσ to Xq provided that q ≤ 2n/ (n− 2α) . Thus there
exists a constant Mq such that

∥∥A−α/2w
∥∥

q
≤ Mq ‖w‖2 for all w ∈ X2. Letting

v = A−α/2w, we see that for all v ∈ D
(
Aα/2

) ∩X2

‖v‖q ≤ Mq

∥∥∥Aα/2v
∥∥∥

2
(2.2)
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whenever q ≤ 2n/(n− 2α). Since Mq comes only from the embedding of D
(
Aα/2

)
into X2 ∩ Hα (Ω) and from the Sobolev inequalities, the arguments in [1] apply
again here to show that the constant Mq can be chosen so as to not increase as λ1

increases, at least for α ≤ 1.
From basically the same calculation that leads to (2.1) we also see that

‖v‖2 ≤ λ
−1/2
1

∥∥∥A1/2v
∥∥∥

2
(2.3)

for all v ∈ D(A) and that ∥∥e−tAv
∥∥

2
≤ ‖v‖2 e−λ1t(2.4)

for all v ∈ L2(Ω) and all t ≥ 0. For the details of these calculations, see e.g. [1,
(2.1) and (2.3)]. The semigroup e−tA is, moreover, analytic on all the Lp-spaces,
1 < p < +∞ ([5]); thus there exists a constant cp (= cp(α)) such that for each
α > 0 ∥∥Aαe−tAv

∥∥
p
≤ cpt

−α ‖v‖p(2.5)

for all v ∈ Lp(Ω) and all t ≥ 0. That cp does not increase as λ1 increases can be
seen from remarks made in [1, §2].

We now verify (1.4). Let v be a Leray solution, then, in particular,

∂

∂t
(v, v) + (A1/2v, A1/2v) = (f, v) = (A−1/2f, A1/2v),(2.6)

where we haved used the standard fact that (v, P (v · ∇) v) = (Pv, (v · ∇) v) =
(v, (v · ∇) v) = − ((∇ · v) v, v) = 0. Hence

1
2

d

dt
‖v‖2

2 +
∥∥∥A1/2v

∥∥∥2

2
≤ 1

2

∥∥∥A1/2v
∥∥∥2

2
+

∥∥∥∥1
2
A−1/2f

∥∥∥∥2

2

,(2.7)

from which we obtain, using (2.3),

d

dt
‖v‖22 +

∥∥∥A1/2v
∥∥∥2

2
≤

∥∥∥∥∥ 1

λ
1/2
1

f

∥∥∥∥∥
2

2

≤ 1

λ
1/2
1

L(2.8)

where L is as in (1.3). Integrating both sides of (2.8) and dividing by t, we have

1
t

∫ t

0

∥∥∥A1/2v
∥∥∥2

2
ds ≤

∥∥∥∥1
t
v0

∥∥∥∥2

2

+
1

λ
1/2
1

L(2.9)

for all t ≥ 0. Setting t = T ≡ (λ1/2
1 || v0 ||22)/(δL) for a given δ ≥ 0, we thus obtain

from (2.9) that

1
T

∫ T

0

∥∥∥A1/2v
∥∥∥2

2
ds ≤ 1 + δ

λ
1/2
1

L,(2.10)

and thus (1.4) is established for some τv ∈ (0, T ).
By combining with (2.2) with q = 4, we thus have that

‖v(τv)‖4 ≤
(1 + δ)

1
2

λ
1/4
1

M4L
1
2 .(2.11)

We now compare the bound (2.11) with the bound imposed on u0 and f in [1]
that guarantees existence and uniqueness of global strong solutions. This bound is
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imposed collectively via the quantity M mentioned in the introduction, which in
light of (1.3) simplifies to

M ≡ C4 ‖u0‖4 + 33/8c2M4L(2/λ1)5/8[8/5 + e−1](2.12)

where L is as in (1.3), c2 is as in (2.5) with p = 2, and C4 is a constant such that∥∥e−tAh
∥∥

4
≤ C4 ‖h‖4(2.13)

for all h ∈ L4(Ω). Basically M is an estimate of∥∥∥∥e−tAu0 +
∫ t

0

e−(t−s)Af(s)ds

∥∥∥∥
4

;(2.14)

for the details of its derivation, see [1, equation (1ML4)] as well as the concluding
remarks of [1].

As noted in the introduction, the bound required in [1] on M is

M <
λ1

1/8

K1
(2.15)

where K1 is a constant depending on M4, c2, etc. To see what this requires so
that v continues as a string solution, we substitute the right-hand side of (2.11) for
|| u0 ||4 in (2.12) and then replace M in (2.15) with the resultant right-hand side
of (2.12); after some arithmetic, we obtain the condition that

(K2 + K3λ
−1/8
1 )L ≤ λ1

5/8

K1M4
,(2.16)

where K2 = C4(1 + δ) and K3 = 25/833/8c2[8/5 + e−1]. Thus we see that if Ω is
generalized thin enough, i.e. if λ1 is large enough, then (2.16), and hence (2.15), is
eventually satisfied; and thus every Leray solution eventually continues as a strong
solution; alternatively, if L is small enough in (2.16), the same conclusion holds. In
particular these are the conditions on λ1 referred to in the statement of Corollary
1.2 and the remarks preceding it, and under these conditions we thus obtain (1.4)
and (2.11) with τv replaced by any t ≥ τv.

We note that the power on λ1 in (2.16) is significantly larger than the corre-
sponding power in (2.15). This means, even in cases when (2.15) imposes signifi-
cant size restrictions on initial data in order to guarantee global strong solutions,
that nonetheless (2.16) may still be satisfied so that Leray solutions will eventually
become regular. This can loosely be characterized as happening on moderately-
thin domains with moderately-sized forcing data f . We now develop an estimate
that will be useful in the next section. For divergence-free v we note the standard
observation that each component of (v · ∇)v can be written as ∇ · (viv), so that
if we define (vˆv) ≡ (v1v, v2v, v3v) ∈ (

R3
)3, we can thus write A−1/2P (v · ∇)v

as T (vˆv), where T ≡ A−1/2Pdiv and it is understood that the ith component of
T (vˆv) is A−1/2P div (viv). But by [5, Lemma 2.1], T is a bounded operator on
L2(Ω); we set B ≡|| T ||2. Set γ3 = λ1/3; then we are ready to state our needed
estimate as a lemma:

Lemma 2.1. Let v = (v1, v2, v3) be in V . Then there exists a constant K such
that ∥∥e−tAPdiv(vˆv)

∥∥
4

=
∥∥e−tAP (v · ∇)v

∥∥
4
≤ K

e−γ3t

t7/8
‖vˆv‖2 .(2.17)
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Proof. Using (2.2), (2.4), and (2.5), we have that

||e−tAP (v · ∇)v ||4 =|| (e−(1/3)tA)3P (v · ∇)v ||4
≤ M4 || A3/8e−(1/3)tA(e−(1/3)tA)2P (v · ∇)v ||2
≤ 33/8c2M4t

−3/8 || e−(1/3)tA(e−(1/3)tAP (v · ∇)v) ||2
≤ 33/8c2M4t

−3/8e−γ3t || e−(1/3)tAP (v · ∇)v ||2
= 33/8c2M4t

−3/8e−γ3t || A1/2e−(1/3)tAT (vˆv) ||2
≤ 37/8c2

2M4t
−7/8e−γ3t || T (vˆv) ||2

≤ 37/8c2
2M4Bt−7/8e−γ3t || vˆv ||2 .

(2.18)

Thus the lemma is proven with K = 37/8c2
2M4B. Lemma 2.1 provides the key

estimate for the developments in [1] as well as what follows here. We now construct
an alternative proof, suggested by the referee, that is less streamlined but has
the advantages of avoiding the complex machinery of fractional powers of A and
producing a constant K that is more explicit, i.e. M4 is replaced by the number
21/2. This new proof replaces the use of (2.2) with the following estimate, which is
a special case of the Gagliardo-Nirenberg estimates; see e.g. [3, Theorem 9.3, and
the Bibliographical Remarks, p. 251]:

‖v‖4 ≤ C ‖∇v‖3/4
2 ‖v‖1/4

2(2.19)

for all v ∈ H1
0 (Ω) .

In fact, (2.19) also appears in [13, Lemma III.3.5] with C ≡ 21/2. Combining
this observation with (2.1), we have for all v ∈ H1

0 (Ω) that

‖v‖4 ≤ 21/2
∥∥∥A1/2v

∥∥∥3/4

2
‖v‖1/4

2 .(2.20)

To estimate the left-hand side of (2.17), we now set γ12 = λ1/12 = γ3/4 and use
(2.20) with (2.4) and (2.5) to obtain

∥∥e−tAP (v · ∇)v
∥∥

4
=

∥∥∥(e−(1/3)tA)3P (v · ∇)v
∥∥∥

4

≤ 21/2
∥∥∥A1/2e−(1/3)tA(e−(1/3)tA)2P (v · ∇)v

∥∥∥3/4

2

×
∥∥∥∥e−(1/3)tA

(
e−(1/3)tA

)2

P (v · ∇) v

∥∥∥∥1/4

2

≤ 33/8c
3/4
2 t−3/821/2

∥∥∥∥(
e−(1/3)tA

)2

P (v · ∇) v

∥∥∥∥3/4

2

×
∥∥∥∥(

e−(1/3)tA
)2

P (v · ∇)v
∥∥∥∥1/4

2

(
e−γ3t

)1/4

= 33/8c
3/4
2 21/2t−3/8

∥∥∥∥(
e−(1/3)tA

)2

P (v · ∇)v
∥∥∥∥

2

e−γ12t

≤ 33/8c
3/4
2 21/2t−3/8e−γ12te−γ3t

∥∥∥A1/2e−(1/3)tAT (vˆv)
∥∥∥

2

≤ 37/8c
7/4
2 21/2Bt−7/8e−(γ3+γ12)t ‖(vˆv)‖2 .

(2.21)



732 JOEL D. AVRIN

Thus the lemma is re-proven with K = 37/8c
7/4
2 21/2B. We have, in fact, a slightly

better exponential decay rate, allowing us to replace γ3 by (λ1/3 + λ1/12) in what
follows, although this will not significantly affect the order of magnitude of our
estimates.

With this we conclude our preliminary observations and we are ready to prove
our main results.

3. Proofs of the main theorems

Let v and w be as in Theorem 1.1. For simplicity we set

M
′ ≡ (1 + δ)

1
2 λ
− 1

4
1 L

1
2 .(3.1)

Let T be a number to be chosen later and let s and t be such that 0 < s ≤ t ≤ T .
We first note that by the standard variation-of-parameters formula we have

v(t) − w(t) ≤ e−tA(v0 − w0) +
∫ t

0

e−(t−s)APdiv(vˆv(s)− wˆw(s))ds.(3.2)

Taking the L4−norm of both sides of (3.2) and using Lemma 2.1, we obtain

|| v(t) − w(t) ||4≤|| e−tA(v0 − w0) ||4 +K

∫ t

0

e−γ3(t−s)

(t− s)7/8
|| vˆv(s)− wˆw(s) ||2 ds.

(3.3)

Now it is clear from the discussion following Theorem 1.1 that we can assume that
for all t ≥ 0 v(t) and w(t) satisfy (1.4). Combining this with (2.2) with q = 4 we
thus have that

|| vˆv(s)− wˆw(s) ||2≤|| v(s) ||4|| v(s) − w(s) ||4 + || w(s) ||4|| v(s)− w(s) ||4
≤ 2M4M

′ || v(s)− w(s) ||4 .

(3.4)

By standard interpolation results there exists a constant C such that

|| h ||4≤ C || h ||3/4
6 || h ||1/4

2(3.5)

for all h ∈ L6(Ω). Combining (1.4), (2.2) with q = 6, (2.4), and (3.5), we have

|| e−tA(v0 − w0) ||4≤ C(2M4M
′
)3/4 || v0 − w0 ||2 e−λ1t

≡ C0e
−λ1t

≤ C0e
−γ6t,

(3.6)

where γ6 = λ1/6. We now combine (3.3), (3.4), and (3.6), and set K0 = 2KM4M
′
,

to obtain

|| v(t)− w(t) ||4≤ C0e
−γ6t + K0e

−γ6t

∫ t

0

e−γ6(t−s)

(t− s)7/8
(eγ6s || v(s)− w(s) ||4)ds.

(3.7)

Setting ρ(t) = eγ6t || v(t) − w(t) ||4 and multiplying both sides of (3.7) by eγ6t, we
have

ρ(t) ≤ C0 + K0

∫ t

0

e−γ6(t−s)

(t− s)7/8
ρ(s)ds.(3.8)
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Clearly ρ ∈ C[0, T ]; if we choose t∗ ∈ [0, T ] such that ρ(t∗) = sup[0,T ] ρ(t), then
using (3.8) we have

ρ(t) ≤ C0 + K0ρ(t∗)
∫ t

0

e−γ6(t−s)

(t− s)7/8
ds

= C0 + K0ρ(t∗)
∫ t

0

e−γ6s

s7/8
ds ≤ C0 + K0ρ(t∗)

∫ ∞

0

e−γ6s

s7/8
ds

≡ C0 + K0ρ(t∗)δ6(λ1)

(3.9)

for all t ∈ [0, T ]. Hence

ρ(t∗) ≤ C0 + K0δ6(λ1)ρ(t∗)(3.10)

and thus

(1 −K0δ6)ρ(t∗) ≤ C0.(3.11)

Now clearly δ6(λ1) → 0 as λ1 → ∞ (see e.g. [1] for explicit details), so choose λ1

large enough so that V1(λ1) ≡ 1−K0δ6(λ1) > 0. Then from (3.11) we have

ρ(t∗) ≤ C0V
−1
1 ≡ V0(λ1).(3.12)

Since T is arbitrary we thus have from (3.12) that

|| v(t)− w(t) ||4≤ V0e
−γ6t(3.13)

for all t ≥ 0; this proves Theorem 1.1.
We now examine how to modify the above proof so as to obtain Theorem 1.3.

To obtain an estimate on v −w1, we can use (3.7) with w1 in place of w, provided
that we add the term

∫ t

0 || e−(t−s)A(f(s) − f1) ||4 ds; using (2.2) with q = 4 and
(2.5) with p = 2, we estimate this term as follows:∫ t

0

∥∥e−(t−s)A(f(s)− f1)
∥∥

4
ds

≤ M4

∫ t

0

∥∥A1/2e−[(t−s)/2]A(e−[(t−s)/2]A (f(s)− f1)
∥∥

2
ds

≤ 21/2M4c2

∫ t

0

(t− s)−1/2
∥∥e−[(t−s)/2]A (f(s)− f1)

∥∥
2
ds

≤ 21/2M4c2

∫ t

0

(t− s)−1/2e−γ2(t−s) ‖(f(s)− f1)‖2 ds

= 21/2M4c2

∫ t

0

s−1/2e−γ2s ‖f (t− s)− f1‖2 ds

≤ 21/2M4c2

∫ ∞

0

s−1/2e−γ2s ‖f(t− s)− f1‖2 ds,

(3.14)

where γ2 = λ1/2. Since the integrand in the last term of (3.14) is dominated by
2Ls−1/2e−γ2s and goes to zero pointwise as t →∞, we see that all terms in (3.14)
vanish as t →∞. In particular the first term can be added to the right-hand sides
of all estimates following (3.7) (in some cases multiplied by e−γ6t), until finally it
appears as an additional vanishing term on the right-hand side of (3.13). With
these observations we obtain Theorem 1.3.

We conclude this section by proving Theorem 1.4. Using the remarks preceding
Lemma 2.1, we rewrite (1.9) as

u = A−1f1 −A−1/2T (uˆu),(3.15)
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which we will now proceed to solve by a contraction mapping argument. Set M =
|| A−1f1 ||4; then A−1f1 ∈ L4(Ω) follows easily from (2.2). Set

E = {v ∈ X4 :
∥∥v −A−1f1

∥∥
4
≤ M}(3.16)

and set S(v) = A−1/2T (vˆv). We first show that S maps E to E if λ1 is large
enough; in fact, using (2.2) with q = 2 and α = 3/4, and noting that (2.3) is true
for any positive power p replacing 1/2, we have

|| S(v)−A−1f1 ||4 =|| A−1/2T (vˆv) ||4
≤ M4 || A3/8A−1/2T (vˆv) ||2 = M4 || A−1/8T (vˆv) ||2

≤ M4λ
−1/8
1 || T (vˆv) ||2 ≤ M4Bλ

−1/8
1 || vˆv ||2

≤ M4Bλ
−1/8
1 || v ||24 ≤ M4B(2M)λ−1/8

1 .

(3.17)

By choosing λ1 large enough, the right hand side of (3.17) can be made to be less
than or equal to M . A similar argument using the way the term vˆv − wˆw is
handled in (3.4) then shows that for λ1 large enough S is a contraction on E. Thus
the existence and uniqueness of the solution us follows.

To obtain (1.10), we multiply both sides of (1.9) by us and use arguments similar
to those employed in (2.6)-(2.8).∥∥A1/2us

∥∥2

2
≤ ∣∣(A−1/2f1, A

1/2us)
∣∣

≤ 1
2

∥∥A1/2us

∥∥
2

+ 1
2

∥∥A−1/2f1

∥∥
2
.

(3.18)

Using (2.3) with v replaced by A−1/2f1, it is now clear how to obtain (1.10) from
(3.18). This completes the proof of Theorem 1.4.

In the spirit of our remarks at the end of section 2, we now provide an alternative
proof of (2.17) that uses (2.19) and (2.3) directly. We have that

∥∥S (v)−A−1f1

∥∥
4

=
∥∥∥A−1/2T (vˆv)

∥∥∥
4

(3.19)

≤ 21/2
∥∥∥A1/2

(
A−1/2T (vˆv)

)∥∥∥3/4

2

∥∥∥A−1/2T (vˆv)
∥∥∥1/4

2

≤ 21/2 ‖T (vˆv)‖3/4
2

(
λ
−1/2
1 ‖T (vˆv)‖2

)1/4

= 21/2λ
−1/8
1 ‖T (vˆv)‖2 ≤ 21/2Bλ

−1/8
1 ‖vˆv‖2

≤ 21/2Bλ
−1/8
1 ‖v‖2

4 ≤ 21/2B (2M)2 λ
−1/8
1 .

We now proceed as before, with M4 replaced by 21/2. With this re-proof of (3.17)
we complete the discussions of this section.

4. Remarks

To incorporate ν 6= 1 into our results, we note that this amounts to replacing
Mq by ν−

α
2 Mq and λ1 by νλ1 throughout the paper. Thus the K of Lemma 2.1

would then be replaced by ν−
3
8 K, according to the proof of that result, and δ6 in

the proof of Theorem 1.1 would also have to be appropriately modified, accordingly
affecting the rate at which V1(λ1) → 0 as λ1 →∞.

The end result of these calculations shows that there is a constant K2 such that
if M ′ < νλ

1
8
1 /K2 then Theorem 1.1 holds. This is similar to the size restriction for
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ν 6= 1 placed on M in [1]; see e.g. the concluding remarks of that paper. In fact the
only difference is in the constant K2. But this constant is calculated in a fashion
very similar to the calculation of K1, so that the two constants are very similar in
magnitude.

Meanwhile M and M ′ are related by the discussion surrounding (2.16), which,
for large λ1, is, if anything, an easier criteria to fullfil than (2.15) is for the initial
and forcing data of global strong solutions. Thus for “most cases” where (1.7) is
satisfied, the attractor consists of the single point us. Since the attractor A still
exists, however, in cases when (1.7) is not true, there remains work to be done
in further characterizing the attractor in cases where f is e.g. periodic or almost
periodic.
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