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INTEGRATION AND HOMOGENEOUS FUNCTIONS

JEAN B. LASSERRE

(Communicated by David H. Sharp)

Abstract. We show that integrating a (positively) homogeneous function f
on a compact domain Ω ⊂ Rn reduces to integrating a related function on the
boundary ∂Ω. The formula simplifies when the boundary ∂Ω is determined
by homogeneous functions. Similar results are also presented for integration
of exponentials and logarithms of homogeneous functions.

1. Introduction

We consider the integration of a continuous (positively) homogeneous function
f : Rn → R on a compact domain Ω with boundary ∂Ω. Using Euler’s identity
for homogeneous functions, Green’s formula simplifies so that integrating f on Ω
reduces to integrating a (simply related) function on the boundary ∂Ω. In the
particular case where Ω := {x ∈ Rn| gi(x) ≤ ai, i = 1, . . . , m} and where the func-
tions gi are each (positively) homogeneous of degree pi, the formula is even simpler.
Actually, an alternative proof that uses only Euler’s formula is also outlined.

We thus extend to more general domains a result in [4] for integrating a homo-
geneous function on a convex polytope.

A potential application is the integration of arbitrary continuous functions on a
compact set Ω. Indeed, as the polynomials are sums of homogeneous polynomials,
and are dense in C(Ω), the space of continuous functions on Ω with the sup norm,
or even in L1(Ω), one could approximate

∫
Ω

fdx by
∑

i

∫
Ω

Pidx, where the Pi’s are
homogeneous polynomials, and therefore use the previous result. This result could
also be used in finite element methods for the integration of a poynomial on each
individual volume element.

Finally, we also provide simple formulas for the integration of exponentials and
logarithms of homogeneous functions. For instance, integrating log f on a convex
polytope Ω reduces to integrating log f on ∂Ω and to computing the volume of Ω.

2. Integration of a homogeneous function

Let f : Rn → R be a real (positively) homogeneous function of degree p (or
in short, f is p-homogeneous), i.e. f(λx) = λpf(x) for all λ > 0, x ∈ Rn. For
a (positively) p-homogeneous function that is continuously differentiable, Euler’s
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formula states that

pf(x) = 〈∇f(x), x〉 for all x.(2.1)

2.1. On the Riemann-Green formula. We first treat the 2-dimensional case.
Let Ω be a compact domain in R2 with boundary ∂Ω. Let P (x, y) and Q(x, y)
be continuously differentiable on Ω. Then, under some regularity conditions, the
well-known Riemann-Green formula (cf. [5]) states that∫∫

Ω

(
∂Q

∂x
− ∂P

∂y
) dx dy =

∫
∂Ω

P dx + Q dy.(2.2)

This yields:

Lemma 2.1. Let f(x, y) be a continuously differentiable p-homogeneous function
on Ω. Then

(p + 2)
∫∫

Ω

f dx dy =
∫

∂Ω

f(x, y)(x dy − y dx).(2.3)

Proof. As f is p-homogeneous, from (2.1)

pf(x, y) = x
∂f

∂x
+ y

∂f

∂y
∀(x, y) ∈ Ω.

Let P (x, y) := −yf(x, y) and Q(x, y) := xf(x, y) for every (x, y) ∈ Ω.
∂Q

∂x
− ∂P

∂y
= 2f(x, y) + x

∂f

∂x
+ y

∂f

∂y
= (p + 2)f(x, y) ∀(x, y) ∈ Ω.

Hence, applying the Riemann-Green formula (2.2) to P and Q yields

(p + 2)
∫∫

Ω

f dx dy =
∫

∂Ω

f(x, y)(x dy − y dx),

the desired result.

When f ≡ 1 (i.e. p = 0), one immediately retrieves the well-known formula

area(Ω) =
1
2

∫
∂Ω

x dy − y dx.

2.2. The general case. The previous result generalizes to Rn as follows:

Lemma 2.2. Let f : Rn → R be a continuously differentiable p-homogeneous func-
tion and Ω a compact domain Rn with boundary ∂Ω. Then

(n + p)
∫

Ω

fdω =
∫

∂Ω

〈 ~M,~n〉f(M) dσ,(2.4)

where ~n is the unit outward-pointing normal to ∂Ω.

Proof. With notation as in [6], let X be the vector field X :=
∑

j xj
∂

∂xj
. From

Proposition 2.3 in [6], we have∫
Ω

div(X)f dω +
∫

Ω

Xf dω =
∫

∂Ω

〈X,~n〉 f dσ.(2.5)

Now, div(X) = n and from (2.1), Xf = pf so that the result follows.

Thus, integrating f on Ω reduces to integrating 〈 ~M,~n〉f on the boundary ∂Ω.
We next show that Lemma 2.2 further simplifies in the case where the boundary
∂Ω is determined by homogeneous functions.
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3. Boundary determined by homogeneous functions

We now consider the special case where

Ω(⊂ Rn) := {x ∈ Rn| gi(x) ≤ ai, i = 1, . . . , m},(3.1)

and the functions gi are each continuously differentiable (positively) pi-homogeneous
functions, i = 1, . . . , m. We still assume that Ω is compact. Finally, let Ωi := {x ∈
Ω | gi(x) = ai} so that ∂Ω =

⋃m
i=1 Ωi.

Theorem 3.1. Assume that f is a continuously differentiable q-homogeneous func-
tion and the functions gi are each continuously differentiable and pi-homogeneous,
i = 1, . . . , m. Then

(n + q)
∫

Ω

fdω =
m∑

i=1

piai

∫
Ωi

f

||∇gi||dσ.(3.2)

In particular, with f ≡ 1, one obtains

n× vol(Ω) =
m∑

i=1

piai

∫
Ωi

||∇gi||−1dσ.(3.3)

Proof. Lemma 2.2 applies so that

(n + q)
∫

Ω

fdω =
m∑

i=1

∫
Ωi

〈X,~n〉fdσ.(3.4)

Now, ~n = ||∇gi||−1∇gi on Ωi. Therefore, using (2.1), we have on Ωi

〈X,∇gi〉 = 〈x,∇gi(x)〉 = pigi(x) = piai,

which yields the desired result.

Remark. When Ω is a convex polytope, i.e. gi(x) = 〈Ai, x〉 and pi = 1, i = 1, . . . , m,
then ||∇gi|| = ||Ai|| and thus (3.2) simplifies to

(n + q)
∫

Ω

fdω =
m∑

i=1

ai

||Ai||
∫

Ωi

fdσ.

In addition, one may iterate the process for
∫
Ωi

fdσ (cf. [4] for more details).

An alternative proof. Interestingly enough, there is a direct proof that does not use
Green’s formula. It was used in [4] for the case where Ω is a convex polytope.

Write ai = bpi

i , i = 1, . . . , m, and let

h(b) :=
∫

Ω

fdω =
∫
{gi(x)≤b

pi
i , i=1,...,m.}

fdx.(3.5)

It is immediate that h(λb) = λn+qh(b), i.e. h is (n + q)-homogeneous and continu-
ously differentiable. In addition, one may show that

∂h

∂bi
= pib

pi−1
i

∫
Ωi

f

||∇gi||dσ.

Hence, applying Euler’s formula to h yields

(n + q)h(b) = 〈∇h(b), b〉 =
m∑

i=1

piai

∫
Ωi

f

||∇gi||dσ,(3.6)

the desired result.
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Example. In R2, consider the domain

Ω := {(x, y) ∈ R2 |xy ≤ 1; x2 + y2 ≤ R2; x, y ≥ 0}
and its volume

∫
Ω dω (i.e. f ≡ 1 is 0-homogeneous).

Note that in (3.3), the coordinate axis boundaries of Ω do not contribute since
the boundary values ai are zero in this case.

Both gi(x, y) := xy and g2(x, y) := x2 + y2 are 2-homogeneous. Ω1 := {(x, y) ∈
Ω| xy = 1} and Ω2 := {(x, y) ∈ Ω| x2 + y2 = R2}. ||∇g1(M)|| =

√
x2 + y2 so

that on Ω1 we have ||∇g1(M)|| = √
(x4 + 1)/x2 and dσ =

√
(x4 + 1)/x4dx, which

yields ∫
Ω1

||∇g1||−1dσ =
∫ a

a−1
x−1dx = 2 log (a),(3.7)

where x = a is the solution to x2 + y2 = R2, xy = 1.
Similarly, ||∇g2|| = 2R on Ω2, so that∫

Ω2

||∇g2||−1dσ = 2× (1/2R)× (Rα) = α,

where α = arctan (a−2). Hence, Theorem 3.1 yields

2 vol(Ω) = 4 log (a) + R2 arctan (a−2),

i.e. vol(Ω) = 2 log (a) + R2 arctan (a−2)/2. This can be retrieved directly.
If we now take Ω := {(x, y)| xy ≤ 1; b ≤ y ≤ a; x ≥ 0} with a ≥ b > 0, we get

Ω2 := {(x, y) ∈ Ω| y = a} and Ω3 := {(x, y) ∈ Ω| − y = −b}. Therefore,∫
Ω1

||∇g1||−1dσ = log (
a

b
);

∫
Ω2

||∇g2||−1dσ =
1
a
;

∫
Ω3

||∇g3||−1dσ =
1
b
,

so that Theorem 3.1 yields

2vol(Ω) = 2 log (
a

b
) + a

1
a
− b

1
b

= 2 log (
a

b
),

i.e. vol(Ω) = log (a/b), which is immediate to check.

4. Integrating exponentials and logarithms

In this section, we consider exponentials and logarithms of homogeneous func-
tions. Indeed, we show that integrating such functions on Ω reduces to integrating
a related function on the boundary ∂Ω.

4.1. Exponentials. We first consider the case of an exponential eh(x) where h :
Rn → R is q-homogeneous. The particular case where h = 〈c, x〉 was considered
in [1] and [2] and was used to compute the number of integral points in a convex
polytope. We have the following result.

Theorem 4.1. Let Ω be the convex polytope {x ∈ Rn | 〈Ai, x〉 ≤ ai, i = 1, . . . , m}.
(a) Let h : Rn → R be q-homogeneous and continuously differentiable. Then,

for every k = 0, 1, . . . ,

(n + qk)
∫

Ω

hkeh dω + q

∫
Ω

hk+1eh dω =
m∑

i=1

ai

||Ai||
∫

Ωi

hkeh dσ.(4.1)
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(b) Let h : Rn → R be q-homogeneous, continuously differentiable and strictly
positive on Ω. Then, for every k = 1, . . . ,

(n− qk)
∫

Ω

h−keh dω + q

∫
Ω

h−k+1eh dω =
m∑

i=1

ai

||Ai||
∫

Ωi

h−keh dσ.(4.2)

(c) If p := n/q is an integer, then

q

∫
Ω

h−p+1eh dω =
m∑

i=1

ai

||Ai||
∫

Ωi

h−peh dσ(4.3)

and
∫
Ω hkeh dω, k = −p + 1, . . . ,−1, 0, 1, . . . , can all be expressed as integrals on

∂Ω. In particular,

q

∫
Ω

eh dω =
m∑

i=1

ai

||Ai||
∫

Ωi

eh[h−1 − (p− 1)h−2 + (p− 1)(p− 2)h−3(4.4)

+ · · ·+ (−1)p+1(p− 1)!h−p]dσ.

(d) With h := 〈c, x〉, and for every ξ ∈ Rn, we get

〈c, ξ〉
∫

Ω

e〈c,x〉 dω =
m∑

i=1

〈Ai, ξ〉
||Ai||

∫
Ωi

e〈c,x〉 dσ.(4.5)

Proof. Again, with f := hkeh and with the vector field X :=
∑

i xi
∂

∂xi
, Green’s

formula yields

n

∫
Ω

f dω +
∫

Ω

Xf dω =
∫

∂Ω

〈X,~n〉 f dσ.(4.6)

Using

Xf = (khk−1 + hk)eh
n∑

i=1

xi
∂h

∂xi
= q(khk + hk+1)eh, and 〈X,~n〉 =

ai

||Ai|| on Ωi,

we obtain

(n + qk)
∫

Ω

hkeh dω + q

∫
Ω

hk+1eh dω =
m∑

i=1

ai

||Ai||
∫

Ωi

hkeh dσ,(4.7)

i.e. (4.1). Similarly, with f := h−keh and similar arguments we obtain (4.2).
To get (c), just notice from (4.2) that

∫
Ω h−n/q+1ehdω is expressed directly as an

integral over ∂Ω, which yields (4.3). Using (4.2) with k := n/q − 1 and (4.3), one
obtains

∫
h−n/q+2ehdω as an integral on ∂Ω. Therefore, iterating and using (4.2)

and (4.1), all the
∫
Ω hkehdω, for k := −n/q + 1, . . . ,−1, 0, 1, . . . , are expressed as

integrals on ∂Ω.
To get (d), apply Green’s formula (4.6), but now with X =

∑
i ξi∂/∂xi, so that

div(X) = 0.

The formula (4.1) remains valid even with h ≡ 0 and k = 0. With the convention
00 = 1, (4.1) reduces to the volume formula (3.3) of Ω.

Note that (4.5) was obtained in [1] using Stokes’ formula, and a similar argument
was used to show that it suffices to consider the vertices of the polyhedron. The
same can be done using the above argument.

Indeed, let Hi be the (n − 1)-dimensional affine variety that contains Ωi, and
{u1, . . . , un−1} an orthonormal basis of the associated vector space. x ∈ Ωi can be
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written x0 +
∑n−1

i=1 yiui with x0 ∈ Ωi, arbitrary. On Ωi, consider the vector field∑n−1
1 ξi∂/∂yi. Green’s formula yields

〈c,
n−1∑
i=1

ξiui〉
∫

Ωi

e〈c,x〉dσ =
∑
j 6=i

〈ξ, ~ni〉
∫

Ωij

e〈c,x〉dν,

where Ωij := Ωi ∩ Ωj and ~ni (in the basis {u1, . . . , un−1}) is the unit outward-
pointing normal to Ωij . Obviously, the process can be repeated up to the 0-
dimensional faces, i.e. the vertices of Ω.

4.2. Logarithms. Consider now the function log f where f : Rn → R is continu-
ously differentiable, q-homogeneous and strictly positive on Ω.

Lemma 4.2. Let Ω ⊂ Rn be a compact domain with boundary ∂Ω, and let f :
Rn → R be continuously differentiable, q-homogeneous and strictly positive on Ω.
Then

n

∫
Ω

log f dω + q × vol(Ω) =
∫

∂Ω

〈 ~M,~n〉 log f(M) dσ.(4.8)

In addition, if Ω := {x ∈ Rn | 〈Ai, x〉 ≤ ai, i = 1, . . . , m}, and Ωi := {x ∈
Ω | 〈Ai, x〉 = ai}, then

n

∫
Ω

log f dω + q × vol(Ω) =
m∑

i=1

ai

||Ai||
∫

Ωi

log f dσ.(4.9)

Proof. The proof is again the same as for the exponential. Note that with the
vector field X :=

∑
j xi∂/∂xj, we have X log f = q and div(X) = n, so that (2.5)

reduces to (4.9).

Hence, integrating log f on a convex polytope Ω reduces to integrating log f on
the boundary ∂Ω and to computing the volume of the polyhedron.
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