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THE MULTIDIMENSIONAL p-ADIC GREEN FUNCTION
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(Communicated by Dennis A. Hejhal)

Abstract. A proof much simpler than the one given by Bikulov (Investigation
of the p-adic Green function, Teoret. Mat. Fiz. 87 (1991), 376–390) for
properties of the 2-dimensional p-adic Green function is shown. By this method
one can treat a multidimensional case, and some sharp estimates are obtained.

1. Introduction

In recent years there has been a growing interest in p-adic analysis (see for
instance [1]-[8]). In [8] by V. S. Vladimirov, P. V. Volovich and E. I. Zelenov and in
[1] by A. Kh. Bikulov, some properties of 1-dimensional and 2-dimensional p-adic
Green functions were studied.

In this note, a proof much simpler than the one in [1] is shown. In this way a
multidimensional case with some sharp estimates is proved.

Let us recall here the definition of the p-adic Green function. As for the classical
Green function on the field of real numbers (even on a Riemannian manifold), the
p-adic Green function can be defined as the solution of the equation

(∆p + m2)G(x) = δ(x),(*)

where m is a positive real, δ(x) is the Dirac function, ∆p is an operator defined by

(∆pϕ)(x) =
∫

Qn
p

|(y, y)|pϕ̃(y)χ((x, y))dy,(**)

where y = (y1, . . . , yn) ∈ Qn
p , |(y, y)|p = |y2

1 + . . .+y2
n|p, |.|p is the p-adic norm ([7],

[8]), (x, y) = x1y1 + . . . + xnyn, ϕ(x) is the test function on Qn
p (ϕ(x) ∈ D(Qn

p )),
ϕ̃(y) denotes the p-adic Fourier transform of ϕ(x), χ(x) is the additive character on
Qp, and dy denotes the Haar measure on Qn

p (see [1], [2], [3], [8]).
By applying the p-adic Fourier transform to equality (*), from equalities (*),

(**) we get

(|(y, y)|p + m2)G̃(−y) = δ̃(−y) = 1,

and the p-adic inverse Fourier transform gives an equivalent definition of the p-adic
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Green function as follows:

G(x) =
∫

Qn
p

χ((x, y))dy

|(y, y)|p + m2
,

which we use in the present paper.
Note that even though the p-adic Green function can be defined in the usual way,

its properties are essentially different from respective properties of the classical
Green one. This statement can be easily seen by the theorems in the following
sections.

2. 2-Dimensional case

In this section we study properties of the 2-dimensional p-adic Green function

G(x) =
∫

Q2
p

χ((x, y))dy

|(y, y)|p + m2
,

where m is a positive real.
If we set z = (x, x), then |z|p = |x2

1 + x2
2|p and we obtain

Theorem 1. The Green function G(x) has the following properties: For p ≡
3 (mod 4)

i) G(x) = (1 − 1
p2 )

∑+∞
k=0

p−2k

m2|z|p+p−2k − 1
m2|z|p+p2 , for z 6= 0;

ii) G(x) = G(|z|p) > 0, ∀z 6= 0;
iii)

1
p2

ln
m2|z|p + 1

m2|z|p +
p2 − 1

p2

1
m2|z|p + 1

− 1
m2|z|p + p2

≤ G(|z|p)

≤ ln
m2|z|p + 1

m2|z|p − 1
m2|z|p + p2

.

Proof. i) Since p ≡ 3 (mod 4) we get |z|p = |x2
1 + x2

2|p = max(|x1|2p, |x2|2p) (see [8]),
so from x 6= 0, it implies that z 6= 0 and

G(|z|p) =
+∞∑

γ=−∞

∫
|y|p=pγ

1
p2γ + m2

χ((x, y))dy

=
+∞∑

γ−∞

1
p2γ + m2

·


p2γ(1 − 1

p2 ), for |x|p ≤ p−γ ,

−p2(γ−1), for |x|p = p−γ+1,

0, for |x|p ≥ p−γ+2.

By x 6= 0, we set |x|p = pN , so |z|p = p2N , and

G(|z|p) =
+∞∑

γ=−∞

1
p2γ + m2

·


p2γ(1− 1

p2 ), for γ ≤ −N,

−p2(γ−1), for γ = −N + 1,

0, for γ ≥ −N + 2.

=
−N∑

γ=−∞

1
p2γ + m2

p2γ(1− 1
p2

)− p−2N

p2(−N+1) + m2
.
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Setting k = −γ −N and p2N = |z|p we get

G(|z|p) = (1 − 1
p2

)
+∞∑
k=0

p−2k

m2|z|p + p−2k
− 1

m2|z|p + p2
.

ii) It is easy to see

G(|z|p) =
+∞∑
k=0

p−2k

m2|z|p + p−2k
−

+∞∑
k=0

p−2k−2

m2|z|p + p−2k
− p0

m2|z|p + p0.p2

or

G(|z|p) =
+∞∑
k=0

p−2k

[
1

m2|z|p + p−2k
− 1

m2|z|p + p−2kp2

]

=
+∞∑
k=0

(p2 − 1)p−4k

(m2|z|p + p−2k)(m2|z|p + p−2kp2)
> 0, ∀z 6= 0.

iii) Set m2|z|p = a > 0, p−2 = q. Obviously 0 < q < 1 and from i) of the theorem

G(|z|p) =
+∞∑
k=0

1
a + qk

(qk − qk+1)− 1
a + p2

(1)

= −
+∞∑
k=0

1
a + qk

∫ k+1

k

d(qx)− 1
a + p2

.

By 0 < q < 1

−
∫ k+1

k

d(qx) = −
∫ k+1

k

qx ln qdx > 0,
1

a + qk
≤ 1

a + qx
,

1
a + qk

≥ 1
a + qx−1

.

So

− 1
a + qk

∫ k+1

k

qx ln qdx ≤ −
∫ k+1

k

qx ln qdx

a + qx
.

In view of (1) we get

G(|z|p) ≤ −
∞∑

k=0

∫ k+1

k

qx ln qdx

a + qx
− 1

a + p2

= ln
m2|z|p + 1

m2|z|p − 1
m2|z|p + p2

,

that is the second inequality in iii) is proved.
For proving the first inequality in iii) we do as follows:

G(|z|p) = (1− q)
+∞∑
k=0

qk

a + qk
− 1

a + p2

≥ 1− q

a + 1
− 1

a + p2
− q

∫ ∞

0

qt ln qdt

a + qt

=
1− p−2

m2|z|q + 1
− 1

m2|z|p + p2
+

1
p2

ln
a + 1

a
.
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Remark. The estimates in iii) can be made sharper as follows:

G(|z|p) = −
+∞∑
k=0

1
a + qk

∫ k+1

k

qx ln qdx− 1
a + p2

=
1− q

a + 1
− 1

a + p2
−

∞∑
k=1

1
a + qk

∫ k+1

k

qx ln qdx

<
1− q

a + 1
− 1

a + p2
−

∞∑
k=1

∫ k+1

k

qx ln q

a + qx
dx

=
1− q

a + 1
− 1

a + p2
−

∫ ∞

1

qx ln qdx

a + qx

=
1− p−2

a + 1
− 1

a + p2
+ ln

a + p−2

a
.

For the inequality >, obviously

G(|z|p) >
1− q

a + 1
+

1− q

a + q
− 1

a + p2
+

1
p2

ln
a + q

a
.

Theorem 2. For p ≡ 1 (mod 4), p is a prime number, we have

G(x) = G(|z|p)

=
+∞∑
n=0

(1− 1
p
)p−n

[ (n + 1)(1− 1
p )

p−n + m2|z|p − 2
p−np + m2|z|p

]
+

1
p2 + m2|z|p ,

where

G(x) =
∫ ∫

Q2
p

χ((x, y))dy

|y2
1 + y2

2 |p + m2
.

Proof. Since p ≡ 1 (mod 4) there exists τ ∈ Qp such that τ2 = −1. Let us denote
τ =

√−1. We get

y2
1 + y2

2 = (y1 + τy2)(y1 − τy2).

Setting

t = y1 + τy2, t = y1 − τy2

we have dy1dy2 = dtdt and (x, y) = at+at with a = 1
2 (x1 + 1

τ x2), a = 1
2 (x1− 1

τ x2).
So |aa| = |z|p, and

G(x) =
∫

Q2
p

χ(at)χ(at)dtdt

|t|p|t|p + m2

= lim
N→+∞

∫
|t|≤pN

χ(at)dt

∫
|t|p≤pN

1
|t|p|t|p + m2

χ(at)dt.

(2)
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Setting |a|p = pk, with sufficiently large N such that |a|p > p−N , i.e. −k < N , we
obtain

I1 =
∫
|t|p≤pN

1
|t|p|t|p + m2

χ(at)

=
N∑

γ=−∞

1
pγ |t|p + m2

·


(1− 1

p )pγ , γ ≤ −k,

−pγ−1, γ = −k + 1,

0, γ ≥ −k + 2,

(3)

=
−k∑

γ=−∞
(1− 1

p
)pγ 1

pγ |t|p + m2
− p−k

p−k+1|t|p + m2
.

Obviously (2), (3) with |t|p = pβ, |a|p = ph > p−N give

G(x) =
+∞∑
γ=k

+∞∑
β=h

(1− 1
p
)2

p−(γ+β)

p−(γ+β) + m2

+
+∞∑
γ=k

(
1
p
− 1)

p−γ−h

p−γ−h+1 + m2
(4)

+
+∞∑
k=h

(
1
p
− 1)

p−β−k

p−β−k+1 + m2
+

1
p2 + m2|z|p .

It is not difficult to calculate the first term I2 in (4)

I2 =
+∞∑
n=0

(n + 1)(1− 1
p
)2

p−n

p−n + m2|z|p
and to see that, in (4) the second term I3 is equal to the third term I4 and

I3 = I4 =
+∞∑
n=0

(
1
p
− 1)

p−n

pp−n + m2|z|p .

Therefore
G(x) = G(|z|p)

=
+∞∑
n=0

[ (n + 1)(1− 1
p )2p−n

p−n + m2|z|p +
2( 1

p − 1)p−n

p−np + m2|z|p

]
+

1
p2 + m2|z|p .

3. n-Dimensional case

We now study the properties of the n-dimensional p-adic Green function.

Theorem 3. Let n be a positive interger and p be a prime number satisfying

a2
1 + a2

2 + . . . + a2
n 6≡ 0 (mod p), ∀a1, a2, . . . , an ∈ {1, 2, . . . , p− 1}.

Then the Green function defined by

G(x) =
∫

Qn
p

χ((x, y))dy

|(y, y)|p + m2
(5)
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is calculated as follows:

G(x) = G(|z|p) =
(+∞∑

k=0

p−nk(1− 1
pn )

m2|z|p + p−2k
− 1

m2|z|p + p2

)
1

|z|
n−2

2
p

,

where z = x2
1 + . . . + x2

n, |(y, y)|p = |y2
1 + . . . + y2

n|p, z 6= 0.

Proof. By the assumptions on p, if |y|p = pγ , then |(y, y)|p = |y|2p = p2γ . Conse-
quently

G(x) =
+∞∑

γ=−∞

∫
|y|p=pγ

χ((x, y))dy

p2γ + m2

=
+∞∑

γ=−∞

1
p2γ + m2

·


pnγ(1 − 1

pn ), for γ ≤ −N(|x|p = pN ),
−pn(γ−1), for γ = −N + 1,

0, for γ ≥ −N + 2,

=
−N∑

γ=−∞

pnγ(1− 1
pn )

p2γ + m2
− 1

p2(−N+1) + m2
p−nN

= (1− 1
pn

)
1

|z|
n−2

2
p

+∞∑
k=0

p−nk

m2|z|p + p−2k
− 1

|z|
n−2

2
p (p2 + m2|z|p)

.

Theorem 4. Consider the same assumptions as in Theorem 3. Then the Green
function G(|z|p) defined by (5) has the following properties:

a) G(|z|p) > 0, ∀z 6= 0;
b)

G(|z|p) =
p2 − 1

1− p−(n+2)
· 1

m4|z|1+ n
2

p

+ O(
1

|z|1+ n
2

p

)

as m2|z|p → +∞;
c)

1

|z|
n−2

2
p

(
1− q

a + 1
− 1

a + p2
+ qIn

)
< G(|z|p) <

1

|z|
n−2

2
p

(
− 1

a + p2
+ In

)
,

where a = m2|z|p > 0, q = 1
pn ,

In = n

[
1

n− 2
− a

n− 4
+

a2

n− 6
− . . . +

(−1)k−1ak−1

2
ln

a + 1
a

]
,(6a)

if n = 2k, k is an integer ≥ 1 and

In = n

[
1

n− 2
− a

n− 4
+

a2

n− 6
− . . . + (−1)k−1ak−1 1√

a
arctan

1√
a

]
,(6b)

if n = 2k − 1, k is an integer ≥ 1 (for k = 1 there are no n− 2j terms in In).
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Proof. a) From Theorem 3 it follows that

G(|z|p) =
1

|z|
n−2

2
p

[+∞∑
k=0

p−nk(1 − p−n)
m2|z|p + p−2k

− 1
m2|z|p + p2

]

=
1

|z|
n−2

2
p

[+∞∑
k=0

p−nk

m2|z|p + p−2k
−

+∞∑
k=1

p−nk

m2|z|p + p2p−2k
− p−n.0

m2|z|p + p2p−2.0

]
.

Consequently

G(|z|p) =
1

|z|
n−2

2
p

+∞∑
k=0

[
p−nk

m2|z|p + p−2k
− p−nk

m2|z|p + p2p−2k

]

=
1

|z|
n−2

2
p

+∞∑
k=0

(p2 − 1)
p−(n+2)k

(m2|z|p + p−2k)(m2|z|p + p2p−2k)
> 0.

(7)

b) Setting t = 1
m2|z|p we have

1
m2|z|p + p−2k

= t(
1

1 + p−2kt
) = t(1 − p−2kt + O(t))(8)

=
1

m2|z|p −
p−2k

m4|z|2p
+ O(

1
|z|2p

),

as m2|z|p → +∞.
Similarly

1
m2|z|p + p2p−2k

=
1

m2|z|p −
p2p−2k

m4|z|2p
+ O(

1
|z|2p

).(9)

By (8), (9) and (7)

G(|z|p) =
1

|z|
n−2

2
p

+∞∑
k=0

p−nk

[
− p−2k

m4|z|2p
+

p2p−2k

m4|z|2p
+ O(

1
|z|2p)

]

=
1

|z|
n−2

2
p

+∞∑
k=0

(p2 − 1)p−(n+2)k

m4|z|2p
+ O(

1

|z|1+ n
2

p

)

=
1

|z|
n−2

2
p

· p2 − 1
1− p−(n+2)

· 1
m4|z|2p

+ O(
1

|z|1+ n
2

p

)

=
p2 − 1

1− p−(n+2)
· 1

m4|z|1+ n
2

p

+ O(
1

|z|1+ n
2

p

).

c) By Theorem 3

G(|z|p) =
1

|z|
n−2

2
p

[+∞∑
k=0

p−nk(1− p−n)
m2|z|p + p−2k

− 1
m2|z|p + p2

]
.(10)
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Setting a = m2|z|p > 0, q = p−n we get

s =
+∞∑
k=0

p−nk(1 − p−n)
m2|z|p + p−2k

=
+∞∑
k=0

(1− q)
qk

a + q
2k
n

=
+∞∑
k=0

1

a + q
2k
n

(qk − qk+1)(11)

= −
+∞∑
k=0

1

a + q
2k
n

∫ k+1

k

d(qx).

By k ≤ x ≤ k + 1, 0 < q < 1

1

a + q
2(x−1)

n

≤ 1

a + q
2k
n

≤ 1
a + q

2x
n

.

But

−
∫ k+1

k

d(qx) > 0,

consequently

−
∫ k+1

k

d(qx)

a + q
2(x−1)

n

< − 1

a + q
2k
n

∫ k+1

k

d(qx) < −
∫ k+1

k

d(qx)
a + q

2x
n

.(12)

By (11), (12) it is easy to see

1− q

a + 1
−

+∞∑
k=1

∫ k+1

k

d(qx)

a + q
2(x−1)

n

< s < −
+∞∑
k=0

∫ k+1

k

d(qx)
a + q

2x
n

.(13)

From (13) it follows that

1− q

a + 1
− q

∫ +∞

0

d(qx)
a + q

2x
n

< s < −
∫ +∞

0

d(qx)
a + q

2x
n

.(14)

Setting

In = −
∫ +∞

0

d(qx)
a + q

2x
n

we obtain

In = −
∫ 0

1

ntn−1dt

a + t2
= n

∫ 1

0

tn−1dt

a + t2
.

Let n ≥ 3. Then

In = n

∫ 1

0

(
tn−3 − a

tn−3

a + t2

)
dt = n

(
1

n− 2
− aIn−2

)
.
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By induction it is not difficult to prove

In = n

[
1

n− 2
− a

n− 4
+

a2

n− 6
− . . . +

(−1)k−1ak−1

2
ln

a + 1
a

]
,(15a)

if n = 2k

In = n

[
1

n− 2
− a

n− 4
+

a2

n− 6
− . . . +

(−1)k−1ak−1

√
a

arctan
1√
a

]
,(15b)

if n = 2k − 1,

k ≥ 1; for k = 1 it is assumed there are no n− 2j terms in In.
From (15a), (15b) and (10) with

G(|z|p) =
1

|z|
n−2

2
p

[
s− 1

a + p2

]
we get the estimates

1

|z|
n−2

2
p

[
1− q

a + 1
− 1

a + p2
+ qIn

]
< G(|z|p) <

1

|z|
n−2

2
p

[
− 1

a + p2
+ In

]
.

Corollary 1. For n = 1 we obtain

(1− 1
p
)

√|z|p
m2|z|p + 1

−
√|z|p

m2|z|p + p2
+

1
mp

arctan
1

m
√|z|p

< G(|z|p)

< −
√|z|p

m2|z|p + p2
+

1
m

arctan
1

m
√|z|p

.

Corollary 2. For n = 2 we have the estimates iii) in Theorem 1.
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