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Abstract. Fibrators are n-manifolds which automatically induce approxi-
mate fibrations, in the following sense: given any proper mapping p from an
(n+k)-manifold onto a finite-dimensional metric space such that, up to shape,
each point-preimage is a copy of the fibrator, p is necessarily an approximate
fibration. This paper sets forth new examples, for the case k = 2, of nonfibra-
tors whose fundamental groups are finite.

Fibrators are manifolds which, in context, automatically induce approximate
fibrations. The appropriate context involves a surjective, proper map p : M → B
defined on a manifold M , under relatively mild restrictions on B, where all the
point preimages have the shape (i.e., the approximate homotopy type) of a fixed
closed, connected n-manifold N . The manifold N is called a fibrator if all such
maps p are approximate fibrations. To appreciate the fibrator concept, it helps to
regard approximate fibrations as beneficial; they are essentially as efficacious as the
notable class of fibrations (see [CD1], [CD2] for evidence).

Nonfibrators are surprisingly scarce. The most obvious manifold to consider,
the 1-sphere, fails to be a fibrator, due to a partition of the Möbius band into
circles, and, perhaps even more familiarly, in codimension 2 due to the singularities
typically present in Seifert fibrations. Somewhat similarly, the n-sphere, n > 1,
is a nonfibrator, but only in case the dimension of the supermanifold exceeds 2n.
Among closed 2-manifolds merely the torus and Klein bottle fail to be fibrators in
codimension 2 [D1]. No manifold N admitting a regular self-covering map N → N
with a cyclic group of covering transformations can be a codimension 2 fibrator [D1,
Theorem 4.2]. Otherwise, known counterexamples in codimension 2 are relatively
sporadic, arising from certain special bundles over S1 whose fibers themselves are
bundles over S1; [D4, §6] presents concrete examples. Conversely, in the orientable
setting, reasonable manifolds N with nonzero Euler characteristic or hyperhopfian
fundamental group are codimension 2 fibrators [D5].

This paper unveils new examples of codimension 2 nonfibrators with finite fun-
damental groups. It provides thereby a negative answer to a question raised in [D2]
and treated, with only partial success, in [D3]. Unlike all previous constructions,
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this necesarily entails PL knottedness. On the positive side, it establishes (Theorem
3.4) that manifolds having finite first homology and possessing a modest amount
of homological asymmetry ordinarily are codimension 2 fibrators.

1. Definitions

An n-manifold is understood to be a separable metric space modelled on Rn,
and an n-manifold with boundary , a separable metric space modelled on the n-cell,
In.

A proper map p : M → B between locally compact ANR’s is called an ap-
proximate fibration if it has the following approximate homotopy lifting property:
given an open cover Ω of B, an arbitrary space X , and two maps f : X →M and
F : X× I → B with pf = F0, there exists a map F ′ : X× I →M such that F ′

0 = f
and pF ′ is Ω-close to F . The latter means: to each z ∈ X × I there corresponds
Uz ∈ Ω such that {F (z), pF ′(z)} ⊂ Uz.

Fix a closed n-manifold N . A surjective, proper map p : M → B defined on
a manifold M is said to be N -like if each p−1b, b ∈ B, has the same shape as
N . Furthermore, N is a codimension k (orientable) fibrator if every N -like map
p : M → B from a (respectively, orientable) (n + k)-manifold M onto a finite-
dimensional metric space B is an approximate fibration and B necessarily is an
ANR.

Given closed, connected n-manifolds N and N ′, oriented by choices of generators
ξ ∈ Hn(N ; Z), ξ′ ∈ Hn(N ′; Z), the degree of a map f : N → N ′ is the integer d
such that f∗(ξ) = d · ξ′. A standard consequence of Poincaré duality promises that
maps of degree ±1 induce epimorphisms at all homology levels.

Recall that a group Γ is hopfian if every epimorphism Γ → Γ is an automorphism;
more generally, Γ is hyperhopfian if every homomorphism ψ : Γ → Γ with ψ(Γ)
normal and Γ/ψ(Γ) cyclic is an automorphism.

A closed manifold N is hopfian if it is orientable and if every degree one map
N → N inducing a π1-automorphism is a homotopy equivalence. The term aids in
efficiently identifying approximate fibrations — cf. Theorem 3.2 here.

Consider an N -like map p : M → B defined on a manifold M , where N is
orientable. (The ensuing discussion presumes each point preimage to be an ANR;
in the general case, where they merely have the shape of a manifold, the retractions
and deformation retractions described below must be taken in a shape-theoretic
sense, and the singular homology groups must be replaced with Čech homology
groups.) There are useful winding functions defined locally on B in the following
way: each b ∈ B has neighborhoods U ⊃ U0 such that p−1(U) retracts to p−1b and
p−1(U0) strong deformation retracts to p−1b in p−1(U). Therefore, the inclusion-
induced

ψb : Hn(p−1b; Z) → Hn(p−1U ; Z)

is an isomorphism onto the image of

ψ : Hn(p−1U0; Z) → Hn(p−1U ; Z).

For each c ∈ U0 the image of

ψc : Hn(p−1c; Z) → Hn(p−1U ; Z)

is contained in im(ψ). Thus,

ψ−1
b ◦ ψc : Hn(p−1c; Z) → Hn(p−1b; Z)
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is a well-defined homomorphism between two copies of Z, meaning that (up to sign)
it amounts to multiplication by some integer qc ≥ 0. The local winding function
αb : U0 → Z at b is defined by the rule αb(c) = qc. The continuity set C of p
consists of those b ∈ B such that αb is continuous in some neighborhood of b;
in other words, the retractions p−1U → p−1b mentioned above restrict to maps
p−1c → p−1b of degree ±1 for all c ∈ B sufficiently close to b. According to [CD3,
Proposition 3], C is an open, dense subset of B.

When studying N -like maps p : M → B, N nonorientable, one can use Z2 coef-
ficients to define completely analogous notions of winding functions and continuity
set. The latter will be called the mod 2 continuity set , for emphasis.

2. Examples

Example 2.1. A 6-manifold with finite π1 which is NOT a codimension 2 ori-
entable PL fibrator.

Let Γm denote the cyclic group of odd order m > 2. The manifold will be
Lm,q ×S3 , where Lm,q is any 3-dimensional Lens space having fundamental group
Γm.

Build a 5-manifold with boundary M5 partitioned into copies of Lm,q and a
single (knotted) 3-sphere S, equipped with a semi-free Γm action which is pointwise
fixed on S and which permutes those copies of the Lens spaces comprising the
partition. To get started, find a knotted 2-sphere K in S4 whose complement is
fibered by punctured Lens spaces — namely, objects equivalent to the closure of
(Lm,q\ PL 3-cell). For any choice of m (odd) and q, Zeeman [Z] shows how to get
a knotted PL 2-sphere K in S4 whose (compactified) complement is fibered by the
punctured Lm,q; Giffen [G] has a slightly different perspective on the construction
which clarifies the existence of a semifree Γm action fixing K. Just as in [DW, §5],
M5 arises by attaching a 3-handle to B5 along a regular neighborhood of K in ∂B5.
The attaching is regulated throughout this regular neighborhood to superimpose
parallel copies of the attaching sphere atop boundaries of the punctured Lens spaces.
The 3-sphere, S, equals the core of the 3-handle plus the cone (in B5) over K. The
Lens spaces in ∂M5 arise by adjoining 3-balls parallel to the handle core to the
various punctured Lens spaces; those in the interior run parallel to those in ∂M5.
The Γm action on M5 is determined on B5 by coning over the given action on
S4 = ∂B5, and then on the 3-handle it is determined to fix the core and to extend
the action of the attaching region so as to permute the (unpunctured) Lens spaces.

Endow S3 with the standard free Γm action having Lm,q as orbit space. Form
a new manifold (IntM5) × S3 with (free) diagonal Γm action, and let M8 denote
its orbit space. It follows that M8 is partitioned into copies of Lm,q × S3 — the
images of the various L × S3 (L a Lens space from the partition), which descend
homeomorphically — and the image of S × S3, which in turn is homeomorphic
to S3 × Lm,q, since the diagonal action fixes all first coordinate points. One can
easily confirm that the quotient map for this partition fails to be an approximate
fibration, precisely because its continuity set excludes the image of S × S3.

Theorem 2.2. Suppose Ln is an n-dimensional Lens space such that π1(Ln) ∼=
Γm, where m is odd and n is congruent to 3 modulo 4. Then Ln × Sn fails to be a
codimension 2 orientable fibrator.

Proof. The heart of the construction, like the preceding for n = 3 , involves pro-
duction of a knotted (n− 1)-sphere K (locally flatly) embedded in Sn+1 = ∂Bn+2
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whose complement is fibered by punctured copies of Ln and which itself is the fixed
point set of a semifree Γm action on Sn+1. Once all this structure is arranged, the
rest of the argument coincides with that of Example 2.1 above.

Write n = 4k−1. Regard Sn as the join of 2k copies of S1, and Ln as the quotient
of a Γm action operating via rotation of period m on each circle factor in this join.
Name an involution φ : Sn → Sn determined by reflection in each circle factor; φ
covers a degree one involution Φ : Ln → Ln leaving some n-cell D invariant and
acting by inversion on π1(L). Let L∗ = Ln \ IntD, and form the mapping torus
Map(Φ∗) of Φ | L∗, namely, the space resulting from L∗× [0, 1] under identification
of each 〈x, 1〉 with 〈Φ∗(x), 0〉 . Map(Φ∗) admits a natural free Γm action, generated
by the map sending the class of 〈x, t〉 to that of 〈x, t′〉, where t′ ∈ [0, 1] is congruent
to t + (2/m) modulo 1; as Φ2 = Identity, this yields a Γm action (indeed, the
same idea affords a free Γ2d+1 action on Map(Φ∗) for all d ≥ 0, but only Γm is
significant here). Since Φ∗ | ∂L∗ has degree 1, it is isotopic to the identity, which
implies ∂(Map(Φ∗)) ≈ S1 × Sn−1. We concoct a new (PL or smooth) manifold
Y by attaching B2 × Sn−1 to Map(Φ∗) via an obvious homeomorphism between
boundaries. As Giffen [G] described, the free action on Map(Φ∗) extends to a
semifree Γm action on Y fixing the (n− 1)-sphere K = 0× Sn−1 ⊂ B2 × Sn−1.

The claim, of course, is that Y ≈ Sn+1 . Routine computation indicates π1(Y )
is trivial (here π1(Map(Φ∗)) has presentation〈

ζ, s : sζs−1 = ζ−1, ζm = 1
〉
;

upon inclusion in Y = Map(Φ∗) ∪ B2 × Sn−1, s is nullhomotopic, leading to the
presentation

π1(Y ) =
〈
ζ : ζ2 = 1 = ζm

〉 ∼= 1).

Furthermore, Y has the homology of Sn+1 . One confirmation exploits the Wang
exact sequence of the fibration L∗ ↪→ Map(Φ∗) → S1 to compute the cohomology
of Map(Φ∗) with Γm coefficients:

· · · → Hq(Map(Φ∗)) → Hq(L∗) θ→ Hq(L∗) → Hq+1(Map(Φ∗)) → · · ·
where θ(u ^ v) = θ(u) ^ v + u ^ θ(v). The analysis of π1(Map(Φ∗)) implies
H1(Map(Φ∗); Z) ∼= Z; by Universal Coefficient Theorems, H1(Map(Φ∗); Γm)) ∼=
Γm. Since each Hq(L∗) is in the subring generated by H1(L∗), one can combine
the formula for θ with the conclusion that θ acts isomorphically onH1(L∗) (deduced
from the data that each cohomology group in this Wang sequence at levels 0 and 1
is a copy of Γm) to discover that θ acts isomorphically on all cohomology above level
0. Hence, Hq(Map(Φ∗); Γm) ∼= 0 whenever q > 1. Express Map(Φ∗) as a union of
two copies of L∗× [0, 1]; the associated Mayer-Vietoris sequence gives that elements
of Hq(Map(Φ∗; Z)), q > 1, have order m. Universal Coefficient computations then
give that Map(Φ∗) has the integral homology of S1, from which the conclusion
about the homology of Y follows. That Y then is (smoothly or PL) equivalent to
Sn+1 stems from the high dimensional Poincaré Conjecture [RS, p. 9].

The methods employed here do not address the following unsolved question, first
raised in [D4]: Is each Lens space a codimension 2 fibrator? If so, the property
of being a codimension 2 fibrator would not be preserved under the operation of
Cartesian product. In the next section we will see that some Lens spaces are
codimension 2 fibrators, but their dimensions are congruent to 1 modulo 4, so they
have no overlap with the ones mentioned in Theorem 2.2.
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3. Conditions yielding approximate fibrations

For convenience and efficiency, we begin by restating two key results about struc-
tures surrounding N -like mappings.

Theorem 3.1 ([DW, Theorem 4.1], [D1, Theorem 3.1 & Proposition 4.1]). Sup-
pose N is a closed, connected n-manifold and p : Mn+2 → B an N -like map.
When M and N are both orientable, B is a 2-manifold and D = B \ C is locally
finite in B (where C denotes the continuity set of p); otherwise, B is a 2-manifold
with boundary, and D′ = IntB \ C′ is locally finite in IntB (where C′ denotes the
mod 2 continuity set of p).

Theorem 3.2 ([D2, Proposition 2.7]). Let N be a closed, connected, orientable,
hopfian n-manifold with hopfian fundamental group, and let p : Mn+2 → B be an
N -like map defined on an (n+ 2)-manifold M . Then p restricts to an approximate
fibration on p−1(C).

Remark. The result claimed here, which is a bit more general than the one cited,
follows by the same argument.

Lemma 3.3. Let N be a closed, connected, orientable n-manifold with finite first
homology group, and let p : M → R2 be an N -like map defined on an (n + 2)-
manifold M that restricts to an approximate fibration on M \ p−1(origin). Then
the continuity set of p equals R2 if and only if H1(M) ∼= Z⊕H1(N).

Proof. Throughout the remainder of this section we use O to denote the origin in
R2. Since p is an approximate fibration over R2\{O}, the homotopy exact sequence
for the approximate fibration [CD1, Corollary 3.5] shows that π1(M \p−1(O)) is an
extension of π1(N) by Z. In particular,H1(M\p−1(O)) is infinite. Also, p−1(O) is a
(shape) deformation retract of M . (To check this claim, given a neighborhood U of
p−1(O), construct a homotopy ht of R2 starting at the identity, ending with a map
into R2\p(M \U) , fixing a neighborhood of O, and preserving R2\{O} throughout.
Since p is an approximate fibration over R2 \ {O}, by [CD1, Proposition 1.5] ht

can be approximately lifted to a homotopy of M starting at the identity, ending
with a map into U , fixing a neighborhood of p−1(O), and preserving M \ p−1(O)
throughout.) Hence, H1(M) ∼= H1(p−1(O)) ∼= H1(N). Examine the following part
(∗) of the long exact homology sequence for the pair {M,M \ p−1(O)}:

H2(M,M \ p−1(O)) → H1(M \ p−1(O)) → H1(M) → H1(M,M \ p−1(O)).(∗)
Here, by duality, H2(M,M \p−1(O)) ∼= Hn(p−1(O)) ∼= Z and H1(M,M \p−1(O)) ∼=
Hn+1(p−1(O)) ∼= 0, while the deformation retraction R : M → p−1(O) can be
regarded as inducing an isomorphism H1(M) → H1(N). Thus, (∗) reduces to

Z → H1(M \ p−1(O)) → H1(N) → 0.(∗∗)
Assume that C, the continuity set of p, equals R2. For all z ∈ R2 \ {O},

H1(p−1z) → H1(M) ∼= H1(N) is an isomorphism factoring throughH1(M\p−1(O)),
implying that H1(M \ p−1(O)) has H1(N) as a direct summand. In view of the
assurance that H1(M \ p−1(O)) is infinite, diagram chasing in (∗∗) above yields
H1(M \ p−1(O)) ∼= Z⊕H1(N).

Conversely, assume H1(M \ p−1(O)) ∼= Z⊕H1(N). In this case (∗∗) becomes

Z → Z⊕H1(N) → H1(N) → 0,
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where the H1(N) summand in the second term is carried by any fiber p−1(z) ⊂
M \p−1(O), because π1(M \p−1(O)) is known to be an extension of π1(N) by Z. As
H1(N) is torsion, inspection of (∗) confirms that ∂ : H2(M,M \p−1(O)) → H1(M \
p−1(O)) is 1-1 and, therefore, the inclusion-induced H1(M \ p−1(O)) → H1(M)
restricts to an isomorphism H1(p−1z) → H1(M) ∼= H1(p−1(O)). By [Im, Lemma
3.2] (or see [D5, Lemma 5.2]) C = R2.

We define a special class Asym of homologically asymmetric (closed, connected)
manifolds: N ∈Asym if it is orientable and each homotopy equivalence N → N of
degree +1 induces the identity automorphism H1(N) → H1(N).

Theorem 3.4. Let Nn ∈ Asym be a hopfian manifold such that H1(Nn) is finite
and π1(Nn) is a hopfian group. Then Nn is a codimension 2 orientable fibrator.

Simple examples like S1 ∈ Asym clarify the need for the finite H1 hypothesis in
3.4.

Corollary 3.5. Every Nn ∈ Asym for which π1(N) is finite is a codimension 2
orientable fibrator.

Corollary 3.6. Some Lens spaces are codimension 2 fibrators.

Proof. Among Lens spaces of dimension n = 4k+ 1, some belong to Asym — they
are characterized by having all units a ∈ Γm

∼= π1(L) satisfy a2k+1 ≡ +1 mod m
[Co, 29.6]. (When n = 4k−1, however, as in 2.2 there always exists a degree 1 map
F : L → L such that F∗(ζ) = ζ−1 for all ζ ∈ H1(L).) Restrict attention to those
Lens spaces in Asym with odd order fundamental groups. Then any such example in
a nonorientable (n+2)-manifold has an orientable neighborhood [Ch1, Proposition
3.2], which quickly promotes the conclusion of 3.5 about being a codimension 2
orientable fibrator to the nonorientable case.

In a related vein, Chinen [Ch2] has shown every Lens space with fundamental
group of order equal to a power of 2 is a codimension 2 fibrator.

Proof of 3.4. In light of 3.2, it suffices to show each Nn-like map p : M → B has C
= B. Using 3.1, we localize to the setting where B = R2 and p is an approximate
fibration over R2 \ {O}. The point will be that M \ p−1(O) has the homotopy
type of the mapping torus of a degree +1 homotopy equivalence g : Nn → Nn; a
straightforward computation, based on the hypothesis Nn ∈ Asym, then will give
H1(M \ p−1(O)) ∼= Z⊕H1(Nn), and 3.3 will complete the argument.

Let S1 denote the unit circle in R2 centered at O. Approximate homotopy
lifting features imply p−1(S1) has the same shape as the mapping torus of some
homotopy equivalence g : Nn → Nn. If g had degree −1 instead of the desired
degree, a straightforward cohomology computation would yield Ȟn+1(p−1(S1)) ∼=
Z2. Using duality in T = M \ p−1(O) and part of the homology exact sequence for
{T, T \ p−1(S1)},
Ȟn+1(p−1(S1)) ∼= H1(T, T \ p−1(S1)) → H̃0(T \ p−1(S1)) ∼= Z → 0 ∼= H̃0(T ),

we would reach the contradiction that Ȟn+1(p−1(S1)) is infinite.

The examples of §2 tolerate PL wildness; wildness crops up upon coning over a
knotted codimension 2 sphere. We close by establishing the necessity of wildness
in such counterexamples.
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Lemma 3.7. If p : M → R2 is an approximate fibration over R2 \ {O} and Q =
p−1(O) is a compact, locally flatly embedded, simply connected n-manifold, then
π1(M \Q) is cyclic.

Proof. By [KS], Q has a neighborhood U in M which is a locally trivial open disk
bundle overQ. The homotopy exact sequence of the induced punctured disk bundle
with total space U \Q and base Q,

Z ∼= π1( punctured disk bundle ) → π1(U \Q) → π1(Q) ∼= 0,

reveals that π1(U \Q) is cyclic. Repeating the technique outlined in a parenthetical
note early in the proof of 3.3, we can apply the regular approximate homotopy
lifting property for p |M \Q [CD1, Proposition 1.5] to produce a homotopy of M
starting at the identity, ending with a map into U , fixing a neighborhood of Q, and
preserving M − Q throughout. This means π1(M \ Q) is a retract of π1(U \ Q),
and consequently it must be cyclic as well.

Theorem 3.8. Let N be a closed, orientable n-manifold with finite fundamental
group, B a 2-manifold, and p : Mn+2 → B a surjective mapping defined on an
(n + 2)-manifold M such that each p−1b is an n-manifold homotopy equivalent to
N and locally flatly embedded in M . Then p is an approximate fibration.

Proof. Without loss of generality restrict to the setting where B = R2 and p is an
approximate fibration over R2\{O}. Then there exists a retractionR : M → p−1(O)
(n.b., a genuine retraction, not just a shape retraction, since p−1(O) really is a
manifold). Fix z ∈ R2 \ {O}.

Let Θ : M ′ → M denote the universal covering. Here M ′ is partitioned into
codimension 2 manifolds via the components of (pΘ)−1(b), b ∈ B. As (pΘ) is
an approximate fibration over R2 \ {O} [D2, Lemma 2.5], (pΘ)−1(O) is a strong
deformation retract of M ′. By construction Q = (pΘ)−1(O) is simply connected; it
is also locally flatly embedded, since its image under Θ is.

Suppose p fails to be an approximate fibration. Then R | p−1z : p−1z → p−1(O)
cannot induce a surjection at the fundamental group level, for otherwise again the
continuity set of p would equal R2 [Im, Lemma 3.2] and Theorem 3.2 here would
imply p is an approximate fibration. Let N ′ denote the cover of N corresponding
to ker(R | p−1z)#, under the equivalence p−1z ↔ N ; the nontriviality of π1(N ′)
is a crucial feature. Moreover, M ′ is partitioned into copies of N ′ and the simply-
connected manifold Q. Let q : M ′ \ Q → B′ denote the quotient map determined
by the restricted partition. Applying [D2, Lemma 2.5] locally, we find that q is an
approximate fibration, and then we can readily check that B′ is a covering space of
R2 \{O}. Finally, from the homotopy exact sequence of q |M ′ \Q [CD1, Corollary
3.5] we deduce that π1(M ′ \ Q) is an extension of π1(N ′) by Z ∼= π1(B′). As this
group cannot be cyclic, we have a contradiction to Lemma 3.7.
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