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EQUILIBRIUM PROBLEMS ASSOCIATED
WITH FAST DECREASING POLYNOMIALS

A. B. J. KUIJLAARS AND P. D. DRAGNEV

(Communicated by J. Marshall Ash)

Abstract. The determination of the support of the equilibrium measure in
the presence of an external field is important in the theory of weighted polyno-
mials on the real line. Here we present a general condition guaranteeing that
the support consists of at most two intervals. Applying this to the external
fields associated with fast decreasing polynomials, we extend previous results
of Totik and Kuijlaars-Van Assche. In the proof we use the iterated balayage
algorithm which was first studied by Dragnev.

1. Introduction and statement of results

Let w(x) = exp(−Q(x)) be a positive continuous weight defined on a compact
set Σ ⊂ R. The study of weighted polynomials wnPn, deg Pn ≤ n, has found
important applications in the theory of orthogonal polynomials on the real line; see
e.g. [4], [10], [12], [17]. See also [14] where other applications can be found as well.

In this theory a fundamental role is played by a probability measure µw with
compact support Sw ⊂ Σ characterized by the equations

Uµw(x) + Q(x) = Fw, q.e. on Sw,

Uµw(x) + Q(x) ≥ Fw, q.e. on Σ.(1.1)

Here Fw is a uniquely determined constant, Uµw denotes the logarithmic potential
of µw, i.e.,

Uµw (z) =
∫

log
1

|z − t|dµw(t), z ∈ C,

and q.e. means quasi-everywhere, i.e., except for a set of logarithmic capacity zero.
The measure µw is called the equilibrium measure (or extremal measure) associated
with the external field Q. Its support Sw is called the extremal support. See [8] for
an interpretation of (1.1) as a contact problem in elasticity theory.

A complicating factor in solving (1.1) is that the support Sw is not known in
advance. It is part of the problem to determine the nature of Sw. The simplest
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case is that Sw is an interval, since then there are explicit formulas available for
the measure µw. This holds for example, if Σ is an interval and the external field
Q is convex, which is the case that is studied most in the literature.

Recently, external fields of the form

Q(x) = −cxα, x ∈ [0, 1],(1.2)

were found to be of interest in connection with the construction of fast decreasing
polynomials. In this context, a sequence of polynomials {Pn}∞n=0, deg Pn ≤ n, is
fast decreasing if for some M > 0, we have

Pn(0) = 1, |Pn(x)| ≤ M exp(−cnxα), x ∈ [0, 1].(1.3)

The right-hand side gives a prescribed rate of decrease of the polynomials on the
interval [0, 1]. The existence of polynomials satisfying (1.3) depending on the pa-
rameters α and c was investigated in a number of papers [6], [7], [16]. The results
may be summarized as follows. Let w(x) = exp(cxα) on [0, 1] and let µw be the
equilibrium measure associated with the external field (1.2). Then fast decreas-
ing polynomials (1.3) exist if and only if equality holds in (1.1) for x = 0, i.e.,
Uµw(0) = Fw. In particular, a sufficient condition is that 0 ∈ Sw. Therefore, the
determination of the support of µw is of importance here.

The case α ≤ 1 was studied by Lubinsky and Totik [11] and Totik [16], [17], who
found that polynomials satisfying (1.3) exist if and only if

c ≤ c0(α) :=
2
√

πΓ(α)
Γ(α − 1/2)

, 1/2 < α ≤ 1,(1.4)

while for α ≤ 1/2, fast decreasing polynomials satisfying (1.3) do not exist if c > 0.
For α ≤ 1, the external field is convex and the extremal support is an interval
containing 1 for every c. Thus the problem comes down to determining whether
the support is [0, 1].

The case α > 1 is more complicated, since Q is no longer convex and the extremal
supports are not necessarily intervals. This case was studied by Kuijlaars and Van
Assche [7], who determined the optimal constant c0(α), thereby solving a problem
posed in [18]. It is not given by (1.4) but by a more complicated formula; see [7] for
details. What was proved is that for c ≥ c0(α), the extremal support is an interval
of the form [b, 1] with b > 0. For c = c0(α), the support does not contain 0, but
still the equality Uµw (0) = Fw holds.

What remained open is what the extremal support looks like for c < c0(α) and
it is one of the purposes of this paper to fill this gap. We prove that the extremal
support can consist of at most two intervals.

Theorem 1. Let α > 1 and c > 0. Let w(x) = exp(−Q(x)) with Q given by (1.2).
Then there are positive constants c1(α) < c0(α), depending only on α, such that
the following hold.

(1) If c ≤ c1(α), then Sw = [0, 1].
(2) If c ∈ (c1(α), c0(α)), then Sw has the form [0, a] ∪ [b, 1] with 0 < a < b < 1.
(3) If c ≥ c0(α), then Sw has the form [b, 1] with 0 < b < 1.

That the support cannot be worse than two intervals may come somewhat as
a surprise, since numerical calculations of weighted Leja points seemed to indicate
that several intervals could appear and it was even suggested that for some α,
chaos might appear [18]. Knowing the above result one has to conclude that the
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numerical calculations were not reliable. The calculation of a large number of Leja
points seems to be a process which is very unstable.

Theorem 1 will follow from a result which gives general conditions guaranteeing
that the extremal support consists of at most two intervals. To describe these
conditions, we assume that Σ = [a, b] and that Q is differentiable with a Hölder
continuous derivative, i.e., Q ∈ C1+ε([a, b]) for some ε > 0. Then it is well-known
[3], [13] that the singular integral equation∫ b

a

v(t)
x− t

dt = Q′(x), a < x < b,(1.5)

has a unique solution satisfying ∫ b

a

v(t) dt = 1.(1.6)

Note that v(t) is not necessarily ≥ 0. But if it is, then it follows that v(t) dt is
the equilibrium measure with external field Q. The solution v(t) is given by the
explicit expression

v(t) =
1

π
√

(b− t)(t− a)

[
1 +

1
π

∫ b

a

Q′(s)
s− t

√
(b− s)(s− a) ds

]
, a < t < b,(1.7)

where the integral is again a Cauchy principal value integral, see [3, p. 428].
Then we have the following result.

Theorem 2. Suppose w = exp(−Q) with Q ∈ C1+ε([a, b]) for some ε > 0 and let
v(t) be given by (1.7).

(1) If π
√

(b− t)(t− a) v(t) is increasing on [a, b], then the extremal support Sw

is an interval containing b.
(2) If π

√
(b− t)(t− a) v(t) is decreasing on [a, b], then the extremal support is an

interval containing a.
(3) If there is a t0 ∈ (a, b) such that π

√
(b− t)(t− a) v(t) is decreasing on [a, t0]

and increasing on [t0, b], then the extremal support is either an interval con-
taining a, or an interval containing b, or the union of an interval containing
a with an interval containing b.

We note that also parts (1) and (2) have not appeared in the literature before.
The proof of Theorem 2 is based on an algorithmic approach to solve the equi-

librium problem (1.1). This so-called iterated balayage algorithm was first studied
by Dragnev [1] in his thesis. It is described in Section 2 and the properties that
are needed for Theorem 2 are proved. In Section 3 we give the proof of Theorem 2
and in Section 4 we prove Theorem 1 by showing that for the external field Q from
(1.2), the condition of Theorem 2(1) is satisfied.

Throughout the paper we use σ+ and σ− to denote the positive and negative
parts, respectively, in the Jordan decomposition of a signed measure σ = σ+ − σ−.

2. The iterated balayage algorithm

We start with a lemma.

Lemma 3. Suppose w(x) = exp(−Q(x)), x ∈ Σ, and

Q(x) + Uσ(x) = C, for q.e. x ∈ Σ(2.1)
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where C is a constant and σ is a signed measure on Σ such that
∫

dσ = 1. Suppose
Uσ+

is continuous and Uσ− is bounded on Σ. Then

µw ≤ σ+ and Sw ⊂ supp(σ+).(2.2)

Proof. From (1.1) and (2.1) it follows that

Uσ+
(x) = Uµw+σ−(x) + C − Fw , q.e. on Sw,

Uσ+
(x) ≤ Uµw+σ−(x) + C − Fw , q.e. on Σ.(2.3)

Since
∫

dσ = 1, we have ‖σ+‖−‖σ−‖ = 1, so that ‖σ+‖ = ‖µw +σ−‖. Therefore we
can apply the principle of domination for logarithmic potentials (see e.g. [14], [15]),
and we obtain that the inequality (2.3) holds for every x ∈ C. Then by a theorem
of de La Vallée Poussin (see [14] or [17]), we have (µw + σ−) |Sw≤ (σ+) |Sw . Hence
µw ≤ σ+ and the lemma follows.

The lemma is closely related to Theorem 2.6 of [2].
Lemma 3 provides the basis for the iterated balayage algorithm. We recall the

notion of balayage onto a compact set; see [9], [14], [15], [17]. If K is a compact
subset of the real line with positive logarithmic capacity and ν is any finite positive
measure on C with compact support, then there is a unique positive measure ν̂
supported on K such that ‖ν̂‖ = ‖ν‖, ν̂ vanishes on the irregular points of K and
for some constant C,

U ν̂(z) = Uν(z) + C, q.e. on K.(2.4)

The measure ν̂ is called the balayage of ν onto K and we denote it by Bal(ν; K).
For a signed measure ν, we define Bal(ν; K) := Bal(ν+; K)−Bal(ν−; K).

We introduce an operator J defined on a subset of the space of finite signed
measures with compact support in R. The domain of J consists of all signed
measures σ with

∫
dσ = 1 having the property that cap(supp(σ+)) > 0. For such

σ, we define

J(σ) := σ+ −Bal(σ−; supp(σ+)) = Bal(σ; supp(σ+)).(2.5)

Thus the operator J sweeps the negative part of the measure σ onto the support of
the positive part, so that in particular J(σ)+ ≤ σ+. For each k ≥ 1, Jk(σ) denotes
the kth iterate of σ under J , if it is defined.

Suppose we are in the situation of Lemma 3. Then it follows from (2.2) that
cap(supp(σ+)) ≥ cap(Sw) > 0, so that σ1 := J(σ) is defined. Put Σ1 := supp(σ+).
Then we have by (2.1) and the property (2.4) of balayage that

Q(x) + Uσ1(x) = C1, for q.e. x ∈ Σ1.

It can be shown that Lemma 3 applies again so that µw ≤ σ+
1 ≤ σ+. Continuing

in this way, we obtain that σk := Jk(σ) exists for every k, and that

Sw ⊂ supp(σ+
k ) and σ+

k ≥ σ+
k+1 ≥ · · · ≥ µw.(2.6)

It seems reasonable to expect from (2.6) that the sequence {σ+
k } converges to µw

and indeed, this can be proved under quite general assumptions (see [1]). It is
not known if the algorithm converges to µw in the full generality presented here.
However, for the proof of Theorem 2 we need it only in a very special case where
the convergence can be easily shown. This will be done in the next section.
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3. Proof of Theorem 2

We need one more lemma about balayage.

Lemma 4. Let K be a compact subset of R. Let ν be a positive measure with
compact support with ν(K) = 0, and let ν̂ be the balayage of ν onto K.

(1) Suppose K = [a, b]. Then ν̂ is absolutely continuous with respect to Lebesgue
measure. If supp(ν) ⊂ (−∞, a], then π

√
(b− t)(t− a) dν̂/dt is decreasing on

[a, b]. If supp(ν) ⊂ [b,∞), then π
√

(b− t)(t− a) dν̂/dt is increasing on [a, b].
(2) Suppose K = [a, b] ∪ [c, d] with a < b < c < d. If supp(ν) ⊂ [b, c], then ν̂ is

absolutely continuous and π
√

(d− t)(t− a) dν̂/dt is increasing on [a, b] and
decreasing on [c, d].

Proof. (1) This is immediate from the explicit representation

π
√

(b− t)(t− a)
dν̂

dt
=

∫ √
(b− s)(a− s)
|s− t| dν(s), a < t < b;

see e.g. [14, Section II.4].
(2) It is enough to prove (2) for ν = δs, the point mass of a point s where

b < s < c, since for general ν we have

dν̂

dt
=

∫ c

b

dδ̂s

dt
dν(s).

Without loss of generality we may further assume that s = 0. We note that the
usual equilibrium measure (with external field Q ≡ 0) of the set [1/b, 1/a]∪[1/d, 1/c]
has a density given by

u(t) :=
|t−X |

π
√|t− 1/a||t− 1/b||t− 1/c||t− 1/d| , t ∈ [1/b, 1/a]∪ [1/d, 1/c],

with X some point in the interval (1/a, 1/d); see [15, Lemma 4.4.1]. This means
that for some constant C1,

−
∫

log |x− t|u(t)dt = C1, x ∈ [1/b, 1/a]∪ [1/d, 1/c].

If we change variables t 7→ 1/t and write 1/x instead of x, we obtain after simple
calculations

−
∫

log |x− t|u(1/t)
t2

dt = − log |x|+ C2, x ∈ [a, b] ∪ [c, d],

with a (different) constant C2. Thus

dδ̂0

dt
=

u(1/t)
t2

=
|1− tX |
|t|

√
abcd

π
√|t− a||t− b||t− c||t− d| , t ∈ [a, b] ∪ [c, d].

Then (2) easily follows, since X ∈ (1/a, 1/d).

Lemma 5. (1) Let a < b and v ∈ C((a, b)) such that
∫ b

a v(t) dt = 1. Put
dσ(t) = v(t) dt. Suppose π

√
(b− t)(t− a) v(t) is increasing on [a, b]. Then

supp(σ+) = [a∗, b] for some a∗ ∈ [a, b), and J(σ) exists and has density v∗

on [a∗, b] such that π
√

(b− t)(t− a∗) v∗(t) is increasing on [a∗, b].
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(2) Let a < b and v ∈ C((a, b)) such that
∫ b

a v(t) dt = 1. Put dσ(t) = v(t) dt.
Suppose π

√
(b− t)(t− a) v(t) is decreasing on [a, b]. Then supp(σ+) = [a, b∗]

for some b∗ ∈ (a, b], and J(σ) exists and has density v∗ on [a, b∗] such that
π
√

(b∗ − t)(t− a) v∗(t) is increasing on [a, b∗].
(3) Let a < b ≤ c < d and v ∈ C((a, b) ∪ (c, d)) with

∫ b

a
v(t) dt +

∫ d

c
v(t) dt = 1.

Put dσ(t) = v(t) dt. Suppose π
√

(d− t)(t− a) v(t) is decreasing on [a, b] and
increasing on [c, d]. Then there are 3 possibilities:

(a) supp(σ+) = [a, b∗] for some b∗ ∈ (a, b]. Then J(σ) exists and has a
continuous density v∗ on (a, b∗) such that π

√
(b∗ − t)(t− a) v∗(t) is decreasing

on [a, b∗].
(b) supp(σ+) = [c∗, d] for some c∗ ∈ [c, d). Then J(σ) exists and has a

continuous density v∗ on (c∗, d) such that π
√

(d− t)(t− c∗) v∗(t) is increasing
on [c∗, d].

(c) supp(σ+) = [a, b∗] ∪ [c∗, d] for some b∗ ∈ (a, b] and c∗ ∈ [c, d). Then
J(σ) exists and has a continuous density v∗ on (a, b∗) ∪ (c∗, d) such that
π
√

(d− t)(t− a) v∗(t) is decreasing on [a, b∗] and increasing on [c∗, d].

Proof. (1) Since
∫

dσ = 1, it is clear that supp(σ+) has the form [a∗, b] with a∗ < b.
Thus cap(supp(σ+)) > 0, so that J(σ) exists. This measure has a continuous
density

v∗(t) = v(t) − dσ̂−

dt
(t), t ∈ (a∗, b),

where σ̂− is the balayage of σ− onto supp(σ+). From Lemma 4(a) we see that
π
√

(b− t)(t− a∗) dσ̂−/dt decreases on [a∗, b], while we get from the assumptions
that π

√
(b− t)(t− a∗) v(t) increases on [a∗, b]. This proves (1).

(2) The proof of part (2) is analogous.
(3) It is clear that supp(σ+) has one of the forms (a), (b) or (c) and that in all

cases J(σ) exists and has a continuous density

v∗(t) = v(t)− dσ̂−

dt
(t), t ∈ int (supp(σ+)),

where σ̂− is the balayage of σ− onto supp(σ+). Using Lemma 4(1) in cases (a) and
(b) and Lemma 4(2) in case (c), we obtain (3) in the same way as we obtained part
(1).

Having Lemma 5 we are ready for the proof of Theorem 2.

Proof of Theorem 2. (1) Let dσ0(t) := v(t) dt and put σk := Jk(σ0), k ≥ 1. Using
Lemma 5(1) repeatedly, we see that these measures exist. It is also clear from
Lemma 5(1) that for some non-decreasing sequence {ak}∞k=0, we have supp(σ+

k−1) =
[ak, b], so that σk is the balayage of σ0 onto [ak, b], and that π

√
(b− t)(t− ak)vk(t)

increases on [ak, b], where vk is the density of σk. Now let

a∞ := lim
k→∞

ak.

Since µw ≤ σ+
k for every k, see (2.6), it follows that supp(µw) ⊂ [a∞, b] and therefore

a∞ < b. Let σ∞ denote the balayage of σ0 onto [a∞, b]. Since σk is the balayage
onto [ak, b], we have

lim
k→∞

σk = σ∞(3.1)
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where the convergence is in weak∗ sense. Since supp(σ−k ) = [ak, ak+1] and the total
masses ‖σ−k ‖ are decreasing (because of (2.6) and the fact that ‖σ+

k ‖ = 1 + ‖σ−k ‖),
it follows that

lim
k→∞

σ−k = cδa∞(3.2)

with c ≥ 0. Next we note that vk+1 ≤ vk ≤ v on [ak+1, b]. This readily implies that

lim
k→∞

σ+
k = v∞(t) dt, a∞ < t < b,(3.3)

with v∞(t) := limk vk(t), a∞ < t < b. Then by (3.1), (3.2), (3.3), we have that
σ∞ = v∞(t) dt − cδa∞ . This implies that c = 0 since σ∞ has no point masses,
being the balayage onto [a∞, b]. Consequently, σ∞ is a non-negative measure and
it follows that σ∞ = µw. Since π

√
(b− t)(t− a∞) v∞(t) is increasing on [a∞, b], it

follows that Sw is an interval containing b. It could be strictly smaller than [a∞, b]
if v∞ vanishes on some interval containing a∞. This proves part (1) of the theorem.

(2) The proof of (2) is analogous to the proof of part (1).
(3) We closely follow the proof of part (1). We put dσ0(t) := v(t) dt and σk :=

Jk(σ0), k ≥ 1. Also put a0 = a, b0 = c0 = t0 and d0 = b.
Using Lemma 5(3)(c) repeatedly, we find that there is an N ≥ 0, a non-increasing

sequence {bk}N
k=0 and a non-decreasing sequence {ck}N

k=0 such that

supp(σ+
k−1) = [a0, bk] ∪ [ck, d0], k ≥ 1,

and π
√

(d0 − t)(t− a0) dσk/dt(t) decreases on [a0, bk] and increases on [ck, d0]. The
number N may be finite or infinite, depending on whether Lemma 5(3)(c) applies
a finite or infinite number of times. If it is finite, then we have that cases (a) or
(b) of Lemma 5(3) apply to σN and we are back to parts (1) or (2). It then follows
from what has been proven there that Sw is an interval containing a or an interval
containing b.

If N is infinite, we put

b∞ := lim
k→∞

bk, c∞ := lim
k→∞

ck

and we have that σk is the balayage of σ0 onto [a0, bk] ∪ [ck, d0]. Then

lim
k→∞

σk = σ∞

where σ∞ is the balayage of σ0 onto [a0, b∞] ∪ [c∞, d0]. Now, just as in the proof
of part (1) it follows that µw = σ∞ with a density v∞ given by

v∞(t) := lim
k→∞

dσk

dt
(t), t ∈ (a0, b∞) ∪ (c∞, d0).

Since π
√

(d0 − t)(t− a0) v∞(t) decreases on [a0, b∞] and increases on [c∞, d0], it
follows that Sw is either an interval containing a0 or an interval containing d0 or
consists of two intervals. It is, e.g., an interval containing a0 if c∞ = d0 or if v∞
vanishes on (c∞, d0).

This completes the proof of Theorem 2.

4. Proof of Theorem 1

For α > 1, we define

Gα(t) := − 1
π

∫ 1

0

sα−1

s− t

√
s(1− s) ds, 0 ≤ t ≤ 1,(4.1)
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where the integral is a principal value integral if 0 < t < 1. For the proof of
Theorem 1 we need the following property of the function Gα.

Lemma 6. Let α > 1. There is a t0 ∈ (0, 1) such that Gα decreases on [0, t0] and
increases on [t0, 1].

Proof. Put k := [α]+1, where [α] denotes the integer part of α. The lemma follows
from the following three properties of Gα.

(1) G
(l)
α (0) < 0 for all l = 0, 1, . . . , k − 1.

(2) Gα(1) > 0.
(3) G

(k)
α (t) ≥ 0 for 0 < t < 1.

Indeed, it follows from (3) that G
(k−1)
α is increasing on [0, 1] and therefore it has at

most one zero. If there were no zero, then we first get from (1) that G
(k−1)
α < 0 on

(0, 1) and then it would follow from (1) that Gα < 0 on (0, 1), which is impossible
because of (2). Thus G

(k−1)
α has exactly one zero and so G

(k−2)
α decreases until it

reaches a minimum and then increases. By (1) with l = k − 2, G
(k−2)
α has at most

one zero and in the same way as before it has exactly one zero. Continuing in this
way, we obtain that G′α has exactly one zero t0 ∈ (0, 1) and the lemma follows.

So what remains is to prove (1), (2) and (3).
(1) For l ≤ k − 1, it is easy to obtain from (4.1) that

G(l)
α (0) = − l!

π

∫ 1

0

sα−l−3/2(1− s)1/2 ds < 0,

which is (1). Here it may be noted that G
(l)
α (0) = −∞ if l ≥ α− 1/2.

(2) follows immediately from (4.1).
(3) Put φ(x) := xα+1 − xα. From (4.1) we note that

Gα(t) =
1
π

∫ 1

0

φ(s)
s− t

ds√
s(1− s)

=
1
π

∫ 1

0

φ(t)− φ(s)
t− s

ds√
s(1− s)

.(4.2)

The Taylor expansion of φ with remainder term gives

φ(t) − φ(s)
t− s

=
k∑

j=1

1
j!

(t− s)j−1φ(j)(s) +
1
k!

∫ t

s

(t− x)k

t− s
φ(k+1)(x) dx.

The kth derivative of the polynomial part vanishes. Thus(
d

dt

)k (
φ(t)− φ(s)

t− s

)
=

1
k!

∫ t

s

(
d

dt

)k (
(t− x)k

t− s

)
φ(k+1)(x) dx

=
∫ t

s

(x− s)k

(t− s)k+1
φ(k+1)(x) dx.(4.3)

Observe that φ(k+1)(x) ≥ 0 by the choice of k. Thus (4.3) is non-negative for all
s, t ∈ (0, 1) and then (3) follows from this and (4.2).

Remark. The function Gα can be expressed in terms of the Gauss hypergeometric
function as

Gα(t) =
Γ(α + 1/2)√
πΓ(α + 1)

F (−α, 1; 1/2; 1− t);

see formula 3.228.3 in [5]. The proof of Lemma 6 can also be based on this formula.
We thank Walter Van Assche for this remark.
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Proof of Theorem 1. Let v(t), 0 < t < 1, be given by (1.7) with a = 0 and b = 1,
so that

v(t) =
1

π
√

t(1 − t)
[1 + αcGα(t)] , 0 < t < 1,(4.4)

with Gα given by (4.1). Then by Lemma 6 and (4.4), π
√

t(1 − t) v(t) is decreasing
on [0, t0] and increasing on [t0, 1]. It follows from Theorem 2(3) that Sw is either
an interval containing 0, or an interval containing 1, or the union of an interval
containing 0 and an interval containing 1.

If v is non-negative on [0, 1], then Sw = [0, 1] and this is the case if and only if
c ≤ c1(α) with

c1(α) := − 1
αGα(t0)

which is a positive number. Hence we have (1).
It was proved in [7, Theorem 4] that there exists a constant c0(α) such that Sw

is an interval containing 1 for c ≥ c0(α) and 0 ∈ Sw for c < c0(α). This gives (3).
In the remaining case c ∈ (c1(α), c0(α)) the support Sw has to consist of two

intervals, one containing 0 and the other containing 1. This proves (2) and we have
completed the proof of the theorem.
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