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UNIFORM FACTORIZATION FOR COMPACT
SETS OF OPERATORS

R. ARON, M. LINDSTRÖM, W. M. RUESS, AND R. RYAN

(Communicated by Theodore W. Gamelin)

Abstract. We prove a factorization result for relatively compact subsets of
compact operators using the Bartle and Graves Selection Theorem, a charac-
terization of relatively compact subsets of tensor products due to Grothendieck,
and results of Figiel and Johnson on factorization of compact operators. A fur-
ther proof, essentially based on the Banach-Dieudonné Theorem, is included.
Our methods enable us to give an easier proof of a result of W.H. Graves and
W.M. Ruess.

Introduction

The purpose of this note is to obtain a factorization result for relatively compact
subsets of the Banach space of all compact weak*-weak continuous linear maps
using a Banach space version of Michael’s Selection Theorem which Bartle and
Graves [BG] proved in the early fifties. Precisely, they showed that if X and Y are
Banach spaces and u is a continuous linear map from Y onto X , then there exists
a continuous map f : X → Y such that f(x) ∈ u−1(x) for all x ∈ X . In addition
to the Selection Theorem, our approach is to use Grothendieck’s characterization
of relatively compact sets in the projective tensor product and factorization results
of compact operators through a universal Banach space, due to Johnson [J] and
Figiel [F]. We further present a second method of proof for our factorization result,
based on the Banach-Dieudonné Theorem. From our main theorem we obtain
extensions of results of Graves and Ruess [GR]. Their methods are different and,
in our opinion, more complicated. We also obtain a new proof of a result of Toma,
characterizing polynomials that are weakly uniformly continuous on bounded sets.

1. Preliminaries

Generally, our notation and terminology are standard and we refer to the books
[Di] and [G]. For the definition and properties of Lp-spaces the reader is referred
to [LT].
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Lw∗(X ′, Y ) [Kw∗(X ′, Y )] is the space of all [compact] weak*-weak continuous
linear operators with the usual operator norm. There is an isometric isomorphism
K(X, Y ) ' Kw∗(X ′′, Y ) [ W (X, Y ) ' Lw∗(X ′′, Y ) ] given by T 7→ T ′′, where
K(X, Y ) [W (X, Y )] denotes the space of all [weakly] compact operators from X into
Y . The closed unit ball of a Banach space X is denoted BX . X ′

c [X ′
τ ] denotes the

dual of X endowed with the topology c(X ′, X) [ τ(X ′, X)] of uniform convergence
on the [weakly] compact subsets of X. Uc [ Uτ ] denotes a c- [τ -] neighborhood base
of zero consisting of closed absolutely convex sets (disks). If U ∈Uc [Uτ ], we denote
by X ′

(U) the completion of the quotient of X ′ by the nullspace of U, endowed with
the norm defined by the Minkowski-functional of U. If C ⊂ X is a closed bounded
disk, we denote by XC the span of C in X, endowed with the norm given by the
Minkowski-functional of C.

In [F], [J], the authors proved that there is a universal Banach space Z such that
every operator T ∈ K(X, Y ) can be factored as T = v ◦ u, where u ∈ K(X, Z) and
v ∈ K(Z, Y ). In particular, Z can be chosen as Z = (

∑
W⊂Cp

W )p, 1 ≤ p ≤ ∞,

where W runs through the subspaces of Cp (and where, as usual, p = ∞ is the
c0-sum).

We can show that Z also serves as a universal factorization space for Kw∗(X ′, Y )-
operators. One way to see this is by an application of Johnson’s factorization
methods to the norm closure in L(X ′, Y ) of the finite-rank, weak*-weak continuous
operators. Another way is the following approach, which makes use of [Ru1, Thm.
1.7 (e)]: if T ∈ Kw∗(X ′, Y ), there exists U ∈ Uc such that T (U) is relatively
compact in Y. (For details, compare (2) – (6) of the method 2 of proof of Theorem
1 below.) Defining T̃ : X ′/U−1(0) → Y by T̃ (x′+U−1(0)) := T (x′), and extending
to X ′

(U) by continuity, T can be decomposed in the following way:

X ′ id−→ X ′
c

πU−→ X ′
(U)

T̃−→ Y.(1.1)

Factoring T̃ through Z, the conclusion of the above is the following result.
(1) For every pair of Banach spaces X, Y, and for every T ∈ Kw∗(X ′, Y ) there

are operators u ∈ Kw∗(X ′, Z) and v ∈ K(Z, Y ) such that T = v ◦ u.
If X or Y is an L1-space (resp. an L∞-space), then Randtke [R2] (resp. Dazord

[D], cf. also Randtke [R1], Johnson [J]) has shown that every operator in K(X, Y )
factors compactly through l1 (resp. c0).

2. The results

Given Banach spaces X, Y , let the universal Banach space Z be as above. Ac-
cording to (1), the continuous, bilinear map

τ : Kw∗(X ′, Z)×K(Z, Y ) → Kw∗(X ′, Y ), τ(u, v) = v ◦ u,

is onto. The linearization τ̂ : Kw∗(X ′, Z)⊗̂πK(Z, Y ) → Kw∗(X ′, Y ) of τ is a
continuous linear onto map. Therefore we can apply the Bartle and Graves se-
lection theorem which asserts that there is a continuous map σ : Kw∗(X ′, Y ) →
Kw∗(X ′, Z)⊗̂πK(Z, Y ) such that τ̂ ◦ σ = idKw∗(X′,Y ). We remark that the lin-
earization argument is necessary if we wish to apply the Bartle and Graves selection
theorem. Indeed, C. Fernandez [Fe] has recently shown that there are continuous
bilinear surjections τ : X × Y → Z between Banach spaces X, Y and Z for which
there is no one-sided inverse.
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Theorem 1. Let X and Y be Banach spaces. For every relatively compact subset H
of Kw∗(X ′, Y ) there exist an operator u ∈ Kw∗(X ′, Z), a relatively compact subset
{BT : T ∈ H} of K(Z) and an operator v ∈ K(Z, Y ) such that T = v ◦BT ◦ u for
all T ∈ H.

Proof. Method 1. By continuity, the set σ(H) is relatively compact in Kw∗(X ′, Z)
⊗̂πK(Z, Y ). Now, by Grothendieck [G, p. 51], there exist null sequences (ri) in
Kw∗(X ′, Z) and (si) in K(Z, Y ) and a relatively compact subset K of l1 such that
for each T ∈ H we can write σ(T ) =

∑∞
i=1 λT

i ri ⊗ si where λT = (λT
i ) ∈ K.

Define r : X ′ → c0(Z) by r(x′) = (ri(x′)). That r ∈ Kw∗(X ′, c0(Z)) follows
directly from ‖ri‖ → 0. For each T ∈ H define AT : c0(Z) → l1(Z) by AT (z) =
(λT

i zi), z = (zi) ∈ c0(Z). Since
∞∑

i=1

∥∥λT
i zi

∥∥ ≤ sup
i
‖zi‖ ·

∞∑
i=1

∣∣λT
i

∣∣ ,
we have AT ∈ L(c0(Z), l1(Z)). Now consider the continuous map A : l1 →
L(c0(Z), l1(Z)) defined by A(λ)z = (λizi). Since A(K) ⊃ {AT : T ∈ H}, it follows
that the subset {AT : T ∈ H} of L(c0(Z), l1(Z)) is relatively compact. Now we
define a compact operator s : l1(Z) → Y by s(w) =

∑∞
i=1 si(wi), w = (wi) ∈ l1(Z).

Compactness of s follows from ‖si‖ → 0. Since τ̂ ◦ σ = idKw∗ (X′,Y ), we conclude
that T = τ̂ (σ(T )) =

∑∞
i=1 λT

i si ◦ ri and so T = s ◦ AT ◦ r. Finally, we factor r
and s through Z. Thus, there exist operators u ∈ Kw∗(X ′, Z), α ∈ K(Z, c0(Z)),
β ∈ K(l1(Z), Z) and v ∈ K(Z, Y ) such that r = α ◦ u and s = v ◦ β. Let
BT = β ◦AT ◦α for each T ∈ H . Then {BT : T ∈ H} is a relatively compact subset
of K(Z) and T = v ◦BT ◦ u for every T ∈ H .

Method 2: The following facts will be needed:
(2) Given any compact disk C in Y, there exists another such, C1 say, with

C ⊂ C1 such that the C1-topology of YC1 restricted to C is equal to ‖·‖Y | C.
(Simply take C1 =

⋂∞
n=1(nC + (1/n)BY ). )

(3) c(X ′, X) is the finest locally convex topology on X ′ agreeing with c(X ′, X)
on all nBX′ , n ∈ N. (Banach-Dieudonné Theorem.)

Now, if H ⊂ Kw∗(X ′, Y ) is relatively compact, then
(4) H(BX′) is relatively compact in Y.

Since, accordingly, H∗(BY ′) ⊂ K1 a compact disk in X,
(5) H(K◦

1 ) ⊂ BY .
Let U =

⋂∞
n=1(nBX′ + (1/n)H(−1)(BY )); then U ∈ Uc by (3) and (5), and

(6) H(U) ⊂ K2 a compact disk in Y. (This follows from (4) and H(U) ⊂
nH(BX′)+(1/n)BY for all n ∈ N, and, actually, is a special case of [Ru1, Theorem
1.7 (e)].)

Choose a compact disk K in Y related to K2 according to (2). Then we have:
(7) Every sequence (Tn)n ⊂ H has a subsequence that is uniformly Cauchy over

U with respect to the K-topology. (This follows from operator-norm relative com-
pactness of H, together with U ⊂ nBX′ + (1/n)H(−1)(BY ) for all n ∈ N, H(U) ⊂
K2 and K | K2 = ‖·‖Y | K2.)

Now, given T ∈ H, define T̃ : X ′/U (−1)(0) → YK by T̃ (x′+U (−1)(0)) = T (x′),
and extend continuously to X ′

(U). We then have the following uniform factorization
for the operators T ∈ H :

X ′ id−→ X ′
c

πU−→ X ′
(U)

T̃−→ YK
idK−→ Y.(2.1)
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Now, factor both (the compact weak*-weak-continuous map) πU ◦ id through Z as
πU ◦ id = r ◦ u, u ∈ Kw∗(X ′, Z), r ∈ K(Z, X ′

(U)), and (the compact map) idK as
idK = v ◦ s, s ∈ K(YK , Z), v ∈ K(Z, Y ), and let BT = s ◦ T̃ ◦ r ∈ K(Z). Then, by
(7), {BT | T ∈ H} is relatively compact in K(Z), and T = v ◦BT ◦ u, T ∈ H. This
completes the proof.

The above method 2 of proof also applies to the case of Lw∗-operators, except
that the factor space Z may depend on X and Y. Specifically, the following result
holds.

Proposition 2. Let X and Y be Banach spaces. There exists a reflexive Banach
space Z = Z(X, Y ) such that, for every relatively compact subset H of Lw∗(X ′, Y ),
there exist an operator u ∈ Lw∗(X ′, Z), a relatively compact subset {BT : T ∈ H}
of W (Z) and an operator v ∈ W (Z, Y ) such that T = v ◦BT ◦ u for all T ∈ H.

Proof. Given the assumptions of Proposition 2, in method 2 of proof above, state-
ments (2) to (7) hold with C and C1 in (2) weakly compact, c(X ′, X) in (3) being
replaced by τ(X ′, X) (the assertion then following from the fact that X ′

τ is a gDF-
space, cf. [Ru2]), and, in (4) – (6), “compact” being replaced by “weakly compact”.
Altogether, the corresponding reasoning thus leads to the following uniform factor-
ization of the T ′s in H :

X ′ id−→ X ′
τ

πU−→ X ′
(U)

T̃−→ YK
idK−→ Y,(2.2)

for some U ∈ Uτ and some weakly compact disk K ⊂ Y. At this point, let

Z = Z(X, Y ) := (
∑
C,U

RC,U )2 ⊕2 (
∑
K

RK)2,

where U runs through an X ′
τ -neighbourhood base, C runs through the weakly com-

pact disks in X ′
(U), and K runs through the weakly compact disks in Y, and the

corresponding R-spaces are the associated reflexive Banach spaces in the Davis-
Figiel-Johnson-Pelczynski factorization [Di] for the range spaces X ′

(U) and Y, re-
spectively. Applying now the factorizations corresponding to (1.1) and (2.1) to the
mappings of (2.2) completes the proof.

Corollary 3. Let X and Y be Banach spaces. For every relatively compact sub-
set H of K(X, Y ) [W (X, Y )], there exist an operator u ∈ K(X, Z) [W (X, Z)],
a relatively compact subset {BT : T ∈ H} of K(Z) [W (Z)] and an operator
v ∈ K(Z, Y ) [W (Z, Y )] such that T = v ◦ BT ◦ u for all T ∈ H. (Here, the
spaces Z are those of Theorem 1 and Proposition 2, respectively.)

In the compact case, this corollary can be combined with factorization results
through nice spaces for compact operators between special spaces. In the following
result, we apply Corollary 3 when X is an L1-space or an L∞-space and obtain
Theorem 2.1 in [GR]. When Y is an L1-space or an L∞-space, a similar result can
be stated.

Corollary 4. Assume that X is an L1-space (resp. an L∞-space ). For every
relatively compact subset H of K(X, Y ) there exist an operator p ∈ K(X, l1) (resp.
p ∈ K(X, c0)) and a relatively compact subset {QT : T ∈ H} of K(l1, Y ) (resp. of
K(c0, Y )) such that T = QT ◦ p for all T ∈ H.
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Proof. Assume that X is an L1-space (resp. an L∞-space). We apply Corollary 3;
then, as we have pointed out in the preliminaries, u factors compactly through l1
(resp. c0) such that u = q ◦ p. Put QT := v ◦BT ◦ q and we are done.

Finally, we show how Corollary 3 yields a new proof of a result of E. Toma
[T]. Recall that P(nX) denotes the space of continuous n-homogeneous polynomi-
als on X . Each such polynomial P is associated with a unique element A of the
space Ls(nX) of n-linear, symmetric mappings on X , satisfying P (x) = A(x, ..., x)
for each x ∈ X . The space of n-homogeneous polynomials that are weakly uni-
formly continuous on the unit ball of X is denoted Pwu(nX) and the corre-
sponding space of symmetric n-linear forms is denoted Ls

wu(nX). For each n-
homogeneous polynomial P there is a linear operator TP : X → Ls(n−1X), defined
by TP (x1)(x2, ..., xn) = A(x1, x2, ..., xn). P belongs to Pwu(nX) if and only if the
operator TP is compact; furthermore, if P ∈ Pwu(nX), then TP takes its values
in the space Ls

wu(n−1X) [AP]. The following corollary is shown in [T]; we offer a
different proof, based on the above results.

Proposition 5. Let X be a Banach space and Hn a relatively compact subset of
the space K(X,Ls

wu(n−1X)). Then there is a compact subset K ′ of X ′ such that for
all T ∈ Hn and all x ∈ X, |T (x)(x, ..., x)| ≤ supk′∈K′ |k′(x)|n.

Proof. We proceed by induction on n = 2, 3, .... Let H2 be a relatively compact
subset of the space K(X, X ′) of compact linear maps from X to Ls

wu(X, C) = X ′.
By Corollary 2, there are a Banach space Z, a relatively compact subset {LT : T ∈
H2} of K(X, Z), and an operator w ∈ K(Z, X ′) such that T = w ◦ LT for all
T ∈ H2. Thus, for each x ∈ X and for each T ∈ H∈, we have

|T (x)(x)| = |w ◦ LT (x)(x)| = |〈LT (x), wt(x)〉|,
regarding x ∈ X ⊂ X ′′, and so |T (x)(x)| ≤ ||LT (x)|| · ||wt(x)||. Now,

||LT (x)|| = sup
z′∈BZ′

|〈LT (x), z′〉| = sup
z′∈BZ′

|〈x, Lt
T (z′)〉| ≤ sup

k′∈K′
1

|〈x, k′〉|

where K ′
1 = {Lt

T (z′) : T ∈ H2, z′ ∈ BZ′} is easily seen to be compact. Furthermore,

||wt(x)|| = sup
z∈BZ

|〈wt(x), z〉| = sup
z∈BZ

|〈x, w(z)〉| = sup
k′∈K′

2

|〈x, k′〉|,

where K ′
2 = w(BZ ) is compact. Therefore, if K ′ = K ′

1 ∪K ′
2, then

|T (x)(x)| ≤ sup
k′∈K′

|k′(x)|2

for all T ∈ H2 and all x ∈ X.
Assume now that the result is true for all j < n and let Hn be a relatively

compact subset of the space K(X,Ls
wu(n−1X)). As before, there are a Banach

space Z, a relatively compact subset {LT : T ∈ Hn} of K(X, Z), and an oper-
ator w ∈ K(Z,Ls

wu(n−1X)) such that T = w ◦ LT for all T ∈ Hn. Thus, for
each x ∈ X and each T ∈ Hn, we have |T (x)(x, ..., x)| = |w ◦ LT (x)(x, ..., x)| =
|〈LT (x), wt(x, ..., x)〉| ≤ ||LT (x)|| · ||wt(x, ..., x)||, where we are regarding (x, ..., x)
as an element of Ls

wu(n−1X)′. Hence, for a compact subset K ′
1 ⊂ X ′, ||LT (x)|| ≤

supk′∈K′
1
|〈x, k′〉|. Next, we have

||wt(x, ..., x)|| = sup
z∈BZ

|〈wt(x, ..., x), z〉| = sup
z∈BZ

|w(z)(x, ..., x)|.
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Now {w(z) : ||z|| ≤ 1} ≡ Hn−1 is a relatively compact subset of Ls
wu(n−1X), which

by [AP] means that Hn−1 is a relatively compact subset of K(X,Ls
wu(n−2X)). By

the induction hypothesis, there is a compact subset K ′
2 ⊂ X ′ such that for all x ∈ X

and all z ∈ BZ , |w(z)(x, ..., x)| ≤ supk′∈K′
2
|k′(x)|n−1. Letting K ′ = K ′

1 ∪ K ′
2, it

follows that
|T (x)(x, ..., x)| ≤ sup

k′∈K′
|k′(x)|n

for all T ∈ Hn and all x ∈ X, and the result is proved.

Corollary 6 ([T]). For any n, a continuous n-homogeneous polynomial P belongs
to Pwu(nX) if and only if there is a compact subset K ′ of X ′ such that |P (x)| ≤
supk′∈K′ |k′(x)|n for all x ∈ X.

Proof. If P ∈ Pwu(nX), then TP : X → Ls
wu(n−1X) is compact and the result

follows by applying the proposition to Hn ≡ {TP}.
Conversely, suppose there exists a compact subset K ′ of X ′ such that |P (x)| ≤

supk′∈K′ |k′(x)|n for all x ∈ X . Let J be the polar of K ′ in X and let π be the
canonical mapping of X onto the Banach space XJ associated with J . Now the
dual of XJ is (X ′)K′ and it follows that π is compact. Hence π is weakly uniformly
continuous on the unit ball of X . But by the assumption P factors through π.
Therefore P is weakly uniformly continuous on the unit ball of X .

Added in proof

The authors are indebted to K. Floret for pointing out that in Method 1 of the
proof of Theorem 1, the Bartle-Graves selection theorem is not needed. In fact, by
the lifting property of quotient mappings for compact sets, there is a compact set
L ∈ Kw∗(X ′, Z)⊗̂πK(Z, Y ) such that τ̂ (L) = H̄.
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