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ALAN DOW AND JINYUAN ZHOU
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Abstract. A topological space X is pseudoradial if each of its non closed
subsets A has a sequence (not necessarily with countable length) convergent
to outside of A. We prove the following results concerning pseudoradial spaces
and the spaces ω ∪ {p}, where p is an ultrafilter on ω:

(i) CH implies that, for every ultrafilter p on ω, ω ∪ {p} is a subspace of
some regular pseudoradial space.

(ii) There is a model in which, for each P-point p, ω ∪ {p} cannot be
embedded in a regular pseudoradial space while there is a point q such that
ω ∪ {q} is a subspace of a zero-dimensional Hausdorff pseudoradial space.

1. Introduction and definitions

In [1] the authors asked if ω ∪ {p} is a subspace of a pseudoradial space for
p ∈ βω \ω, where ω∪{p} takes the subspace topology in βω, i.e, p is the only non-
isolated point and a neighbourhood of p is A∪{p} for A ∈ p . It is proved in [9] that
under the assumption p = c, each space with countable tightness is a subspace of
some pseudoradial space. It is essentially proved that, under the assumption p = c ,
ω∪{p} is a subspace of a Hausdorff pseudoradial space for p ∈ βω \ω. However the
pseudoradial space constructed in [9] is not regular. In a communication with the
second author, J. Vaughan asked if it is possible to make the pseudoradial space in
[9] regular. In [7] P. Nyikos asked whether each topological space can be embedded
into a pseudoradial space (Problem 6.22 ). Our discussion will be focused on the
class of regular spaces. We first prove, in section 2 , that, under CH, ω ∪ {p} is
a subspace of a regular pseudoradial space for each ultrafilter p on ω . However,
the question of whether CH can be replaced by MA remains open. In section 3, we
prove that if the ground model satisfies CH, then in the forcing extension obtained
by adding ℵ2 many Cohen reals, ω ∪ {p} , for any P-point p, is not a subspace of
any regular pseudoradial space. In section 4, we show that, for a special ultrafilter
p constructed in [5], if there exists a special stationary set and c = ω2, then ω∪{p}
can be embedded into a zero-dimensional Hausdorff pseudoradial space. We also
prove that it is consistent that c = ω2 while there is such a stationary set. We
conclude that there is a forcing extension in which, for every P-point p, ω ∪ {p}
cannot be embedded in any regular pseudoradial space while there is an ultrafilter
q on ω such that ω∪{q} is a subspace of a zero-dimensional Hausdorff pseudoradial
space.
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Definition 1.1. A sequence {xα : α < λ} of points in X is said to be convergent
to x provided that for each neighbourhood U of x, there exists α < λ such that
{xβ : β > α} ⊆ U . (We will call any transfinite sequence a sequence.)

A space X is radial if for each subset A of X and x in Ā, there is a sequence
in A convergent to x. The pseudoradial spaces have weaker properties. This is
analogous to the relationship between sequential spaces and Frechét spaces.

Definition 1.2. A subset A of a space of X is said to be radially closed if no
sequence in A is convergent to outside of A. A space X is said to be pseudoradial
provided that any radially closed subset of X is closed in X .

In this paper, a topological space is always regular. The set theory notions are
standard. For example, if A and B are two sets, we write A =∗ B when A and B
are equal modulo finite.

2. Under CH

If p is a Pc point on ω , let {Aα : ω ≤ α < c} be a strictly decreasing modulo finite
base for p and let B be the Boolean Algebra generated by {Aα : α ∈ c}∪[ω]<ω; then
it is easy to see that the Stone space of B is just ω ∪ [ω, c + 1] where [ω, c + 1] has
the usual ordinal topology and ω ∪ {c} is homeomorphic to ω ∪ {p}. An immediate
corollary is that , under CH, if p is a P -point, then ω ∪ {p} can be embedded into
a zero-dimensional Hausdorff compact pseudoradial space.

However, we have the following result about non P -points.

Lemma 2.1 (p=c). If p is not a P -point, then ω ∪ {p} can be embedded in a zero-
dimensional pseudo-radial space.

Proof. Let p = {Aα : α < c} such that {Ai : i < ω} witnesses that p is not a
P -point. First of all, we will construct a base {Bα : α < c} of p and an almost
disjoint family {Cα : α < c} such that, for ξ, α ∈ c, the following are true:

(i)α Bα ⊆ Aα,
(ii)ξα ξ ≤ α → Cα ⊆∗ Bξ,

(iii)ξα α < ξ → Cα ∩Bξ =∗ ∅.
Without loss of generality, we can assume that {An : n ∈ ω} is strictly decreasing
with empty intersection. We also assume that A0 = ω. It is easy to construct
{Bξ, Cξ : ξ ≤ ω} with Bn = An for n ∈ ω. Suppose we have constructed {Bξ, Cξ :
ξ < α} with α ≥ ω and such that (i)ξ, (ii)ξη and (iii)ξη are true for each ξ, η < α.
We have to define Bα and Cα. For ξ ∈ α and n ∈ ω, if ξ ≥ ω, then Cξ ⊆∗ An.
By the fact that p = c, there is a D ⊆ ω such that D is a pseudo-intersection of
{An : n ∈ ω} and, for ω ≤ ξ < α, Cξ ⊆∗ D. Indeed, we can take, for ω ≤ ξ < α,
an fξ ∈ ωω such that for each n, Cξ − An ⊆ fξ(n). Since p = c, b = c , hence
we can choose f which is an upper bound of {fξ : ω ≤ ξ < α} in (ωω, <∗). We
assume f is strictly increasing. Let D =

⋃
n∈ω

An ∩ f(n). It is not difficult to see

that D works. By the choice of D, we know that D is not a member of p. Let
Bα = Aα ∩Bω − D. Let Cα be any pseudo-intersection of {Bξ : ξ ≤ α}. It is easy
to check that Bα and Cα satisfies the requirements.

Next we will use the family {Bα, Cα : α ∈ c} to construct a topology τ on X =
ω∪((c+1)×{0}) by assigning a neighbourhood system for each point. First of all, ω
is an open discrete dense subset of 〈X, τ〉. For α < c, {(Cα − n)∪{ 〈α, 0〉} : n ∈ ω} is
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a neighbourhood base for 〈α, 0〉 . Let {(Bα − n)∪{〈ξ, 0〉 : α ≤ ξ ≤ c} : α ∈ c, n ∈ ω}
be a neighbourhood base for 〈c, 0〉 . It is easy to see that 〈X, τ〉 is a zero-dimensional
Hausdorff pseudoradial space and the subspace ω ∪ {〈c, 0〉} is homeomorphic to
ω ∪ {p}. �

Thus we proved

Theorem 2.2 (CH). For every point p in ω∗, ω ∪ {p} can be embedded in a zero-
dimensional pseudoradial space.

By Theorem 3.1 in the next section, the above lemma is not always true in ZFC.

3. In Cohen model

We assume CH is true in this section.

Theorem 3.1 (CH). If P = Fn(ω2, 2), then in V P, for every P -point p , the space
ω ∪ {p} cannot be embedded in any regular pseudoradial space.

Let us just remark that the theorem remains valid if CH is dropped and κ many
Cohen reals are added for any regular κ > c.

Proof. Suppose

q 
 “ṗ is an ultrafilter on ω and ω ∪ {ṗ}
is embedded into a regular pseudoradial space 〈X, τ̇ 〉” .

We have to prove that q 6
 “ ṗ is a P-point ”. We will work in V Fn(λ,2), where λ is
M ∩ ω2 for some elementary submodel of Hθ for a certain regular cardinal θ. We
prove some preliminary facts. We will assume CH is true in the remainder of the
section. Without loss of generality, we assume that X is in the ground model and
we identify ω∪{ṗ} with its copy in X . We furthermore assume that ṗ has the form
{{π}×Aπ : π ∈ dom(ṗ)}, where π is a nice name for a subset of ω. Let İ be a nice
P-name such that

1 
 “ İ = {I ∈ [ω]ω : I converges in 〈X, τ̇ 〉}”.
We also fix a sufficiently large regular cardinal θ and an elementary submodel M
of Hθ such that the following are true:

(i) Mω ⊆ M ,
(ii) {P, X, ṗ, τ̇ , İ} ⊂ M and
(iii) M has cardinality ℵ1.

Let PM = P ∩ M , XM = X ∩ M and λ = M ∩ ω2. For each P-name Ẏ ∈ M , if
1 
P “ Ẏ ⊆ X”, we can define a PM -name ẎM as follows. For each x ∈ XM , let
Ax be a maximal antichain in {q ∈ PM : q 
P “x ∈ Ẏ ”}. PM is actually Fn(λ, 2);
therefore PM is completely embedded in P. Hence Ax is also a maximal antichain
in {q ∈ P : q 
P “x ∈ Ẏ ”}. Since Mω ⊆ M and P is ccc, we can choose Ax from
M . Let ẎM be {{x} × Ax : x ∈ XM}. If, on the other hand, Ẏ is a P-name such
that 1 
P “ Ẏ ⊆ PX”, we define a PM -name ẎM to be

{〈ẎM ,1〉 : Ẏ ∈ M and 1 
P “ Ẏ ∈ Ẏ”}.
Fact 3.2. Suppose G is a P-generic over V, and σ ∈ M such that 1 
P “ σ ⊆ X”,
then the following hold:

(i) if 1 
P “ σ ⊆ ω”, then σM ∈ M ; moreover, if σ is a nice name, we can define
σM to be σ;
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(ii) V [G] |= “val(σM , G) = val(σM , M ∩G) = val(σ, G) ∩M”; and
(iii) if 1 
P “ ṗ is a P-point ”, then, 1 
PM “ ṗM is an P-point ”.

Proof of Fact 3.2. (i) and (ii) are straightforward. For (iii), suppose that 1 
P
“ ṗ is a P-point ”. It is easy to see that 1 
PM “ ṗM is an ultrafilter on ω”. We
prove that 1 
PM “ ṗM is countably complete ”. Suppose ḟ is a PM -name and
q ∈ PM such that q forces ḟ is a function from ω onto ṗM . For each n ∈ ω, we can
choose an antichain Bn = {qn

i : i ∈ ω} which is maximal in {r ∈ PM : r ≤ q} and an
associated set {πn

i : i ∈ ω} ⊆ dom(ṗM ) such that qn
i forces ḟ(n) = πn

i for each i ∈ ω.
By (i), dom(ṗM ) ⊆ M . Therefore the PM -name ρ = {〈op〈ň, πn

i 〉, qn
i 〉 : n, i ∈ ω} is

in M , where op〈ň, πn
i 〉 is a PM -name such that val(op〈ň, πn

i 〉, G) is 〈n, val(πn
i , G)〉

(see [6]). It is obvious that q 
 “ ḟ = ρ”.

Since q 
P “ ṗ is countably complete ”, we can choose a nice P-name Ẏ ∈ M
such that q 
P “ Ẏ is a pseudo-intersection of ran(ρ)” and 1 
P “ Ẏ ∈ ṗ”. By
(i) , we can define ẎM to be Ẏ . It is clear that q 
PM “ ẎM = Ẏ ”; hence q 
PM

“ ran(ḟ) = ran(ρ) > ẎM ∈ ṗM”.
It is obvious that PM is actually Fn(λ, 2). Let P1 be PM and P2 be Fn(ω2−λ, 2),

then P is isomorphic to P1×P2. For a P-generic filter G, we will also refer to G∩M
as GM or as G1 and G2 will be G ∩ P2 while V1 will be V [G1]. To further simplify
the notation, we will use Y to denote val(Ẏ , G) for a P-name Ẏ . If Ẏ and Ẏ are in
M , we will use YM and YM to denote val(ẎM , GM ) and val(ẎM , GM ) respectively.
Thus p, τ, pM , τM , etc. are well-defined when it is clear from context which P-generic
filter G is being used.

Fact 3.3. The following are true:
(i) 1 
P “ ṗM = ṗ ∩ V1, İM = İ ∩ V1”;
(ii) if ρ ∈ M is a P-name such that 1 
P “ ρ ⊆ P(ω)”, then 1 
P “ ρM = ρ∩ V1”;

and
(iii) 1 
PM “ İM = {a ∈ [ω]ω : a converges in 〈XM , τ̇M 〉}”.

Proof of Fact 3.3. (i) is a corollary of (ii). To prove (ii) , let ρ satisfy the conditions
of (ii) and let G be a P-generic filter over V . In V [G], take arbitrary a ∈ val(ρ, G)∩
V1. Let π ∈ dom(ρ) and σ be a nice PM -name such that a = val(π, G) = val(σ, G).
Take a q in G which forces that π = σ ∈ ρ. Since σ, ρ are in M , q ∩ M 
P
“σ ∈ ρ”. Let Ẏ ∈ M such that 1 
P “ Ẏ ∈ ρ and (σ ∈ ρ → Ẏ = σ)”; then
val(ẎM , G) ∈ val(ρM , G). But q 
P “π = σ = Ẏ ”. Hence a = val(σ, G) =
val(Ẏ , G) = val(ẎM , G) ∈ val(ρM , G). Thus we proved 1 
P “ ρM ⊇ ρ ∩ V1”. By
the definition of ρM , it is obvious that

1 
P “ ρM ⊆ ρ ∩ V1”.

Therefore 1 
P “ ρM = ρ ∩ V1”. We are left to prove (iii)
Let H be a PM -generic filter over V ; there exists a P-generic filter G over V

such that H = G ∩ PM . We have to prove that, in V1 = V [GM ], IM = {a ∈ [ω]ω :
a converges in 〈XM , τM 〉}.

“ ⊆ ”: Let a ∈ IM . We have to prove that a converges in 〈XM , τM 〉. There
exists ẎM ∈ dom(İM ), such that a = YM . Since a ⊆ ω, by (ii) of Fact 3.2, YM = Y ;
hence a ∈ M [G]. In V [G], there exists x ∈ X , such that a converges to x in 〈X, τ〉.
By elementarity, we can assume x in XM . Since a ⊆ ω ⊆ XM and 〈XM , τM 〉 is a
weaker topology than 〈XM , τ � XM 〉, a obviously converges to x in 〈XM , τM 〉.
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“ ⊇ ”: Let a ∈ V1 ∩ [ω]ω and for some x ∈ XM , a converges to x in 〈XM , τM 〉.
We have to show that a is in IM . By (i), we only have to prove that a is in I, i.e.

V [G] |= “a converges in 〈X, τ〉”.
By the facts that Mω ⊆ M and that P is ccc , any nice PM -name for a subset of ω
is in M . In particular, a is in M [G]. By the choice of θ and the elementarity, it is
sufficient to prove that

M [G] |= “a → x in 〈X, τ〉” .

Let U be in τ ∩M [G] containing x. We have to show that a is almost contained in
U . There exists Ẏ ∈ M such that U = val(Ẏ , G), we can assume 1 
P “ Ẏ ∈ τ”;
hence ẎM ∈ dom(τ̇M ). Notice that U ∩XM = U ∩M = YM is in τM . Therefore a
is almost contained in U ∩XM therefore in U .

Now we are ready to finish the proof. Assume that q does force ṗ to be a P-point.
We can assume that q is the empty function , i.e. q = 1 ( otherwise we can work
instead with Pq = {r ∈ P : r ≤ q} which is isomorphic to P). Suppose θ, M , and I
are obtained as in the previous discussions and G is a P-generic filter over V . Let
a ∈ V [G] be a Cohen real over V1 such that a is in p. Since 〈X, τ〉 is regular, we
can take two open neighbourhoods of p , say W and U , such that cl(W ) ⊆ U and
a = U ∩ω. Let b = W ∩ω. Given any I in IM , let x be in XM such that I converges
to x. By (i) of the Fact 3.3, I also converges to x in 〈X, τ〉. If b ∩ I is infinite ,
then x is in cl(W ) ⊆ U . Therefore I is almost contained in a. This contradicts the
fact that a is a Cohen real over V1. Thus we proved that for each I in IM , b ∩ I
is finite. Let τ̇ , İ, ȧ, U̇ , Ẇ , ḃ and ṗ denote both the P-names and P2-names for the
corresponding objects in V [G]. Choose an r ∈ G2, such that r forces the above fact
over V1.

Now work in V1, let κ be a sufficiently large regular cardinal, and let N be a
countable submodel of Hκ such that N contains {τ̇ , İ, ȧ, U̇ , Ẇ , ḃ, ṗ, λ}. By (iii) of
Fact 3.2, pM is a P-point. We can take A in pM such that for each B ∈ N ∩ pM ,
A ⊆∗ B. Since in V [G], A is in p and 〈X, τ〉 is pseudoradial, there exists I ∈ I such
that I ⊂ A. Notice that A ∈ M [G], and , according to [8], M [G] is an elementary
submodel of H

V [G]
θ . By elementarity, we can assume I ∈ M [G]. Hence I ∈ V1.

Therefore , by (i) of Fact 3.3, I ∈ IM . By the choice of r, r 
P2 “ ḃ ∩ I is finite ”,
let s ∈ P2 and m ∈ ω, such that r ≥ s 
P2 “ ḃ ∩ I ⊆ m”.

Claim. s ∩ N 
P2 “ ḃ ∩ I ⊆ m”. Otherwise, let k ∈ I − m, such that there is
t ≤ s∩N , t 
P2 “ k ∈ ḃ”. Since k and ḃ are in N, we can assume t ∈ N . But then t
and s are compatible while they force contradicting statements. Therefore we can
assume s ∈ N . Let Z = {n : ∃t ≤ s, t 
P2 “ n ∈ ḃ”} ∈ N . Since Z ⊇ b, Z ∈ pM .
Now I ⊆ A ⊆∗ Z, and take k ∈ I ∩Z −m and t ≤ s such that t 
P2 “ k ∈ ḃ”. This
contradicts the fact that s 
P2 “ ḃ ∩ I ⊆ m”.

Remark. In a similar way, we can prove that in V Fn(ω2,2), for every ultrafilter p on
ω, if p is a P -point limit of a sequence of P -points, then the space ω ∪ {p} cannot
be embedded in any regular pseudoradial space.

4. A stationary set in [ω2]ω and a special ultrafilter

In this section, we show that there is an ultrafilter p such that ω ∪ {p} can be
embedded into a zero-dimensional Hausdorff pseudoradial space provided there is
a reflecting self-indexed stationary set in [ω2]ω and c is ω2.
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{Sα : α < ω2} is a reflecting self-indexed stationary set in [ω2]ω if for any λ < ω2

with cf(λ) = ω1, {Sξ : ξ < λ and sup Sξ = ξ} is stationary in [λ]ω .
The reflecting self-indexed stationary set is very similar to the notion of station-

ary coding set defined in [10].

Lemma 4.1. Let V |= CH and P = {p ⊆ ω2×[ω2]ω : p is a function with countable
domain such that p(α) ⊆ α for α ∈ domα}. Let P have the inverse inclusion as
its partial order. Then, in V P, there is a reflecting self-indexed stationary set in
[ω2]ωand CH is true.

It is easy to see that P is countably closed and ω2-cc. Therefore CH still holds
in V [P ] and cardinals are preserved. We leave the proof to the reader.

Lemma 4.2. A reflecting self-indexed stationary set is preserved by ccc forcing.

Proof. It is well-known that after ccc forcing every cub subset of ω1 contains a
ground model cub. The same proof gives that this also holds for cub subsets of [λ]ω

for each λ < ω2.

Remark. S. Todorcěvić informed us that the existence of a reflecting self-indexed
stationary set follows from the existence of the ρ-function in [3]. Indeed, one can
easily produce such a stationary set directly from a �-sequence (see [4]).

Next we show that for the ultrafilter p stated in the following Theorem, it is
possible to embed ω ∪ {p} into a zero-dimensional pseudoradial space.

Definition 4.3 ([2]). Given a family F of subsets of some set S, a family I is called
a refinement of F if for each F in F , there is an I in I such that I ⊆ F . If I is an
almost disjoint family we say I is an almost disjoint refinement of F .

Theorem 4.4 ([5]). There is an ultrafilter p on ω which has an almost disjoint
refinement I and a base B such that

(i) for each subset I ′ ∈ [I]<c there is a member of p which is almost disjoint with
each member of I ′

,
(ii) for each B ∈ B and I ∈ I either B ∩ I is finite or B almost contains I, and
(iii) each member of I is almost disjoint with all but finitely many members of B.

Theorem 4.5. Suppose p is the ultrafilter stated in Theorem 4.4. If c = ω2 and
there is a reflecting self-indexed stationary set in [ω2]ω, then the space ω ∪ {p} can
be embedded in a zero-dimensional pseudoradial space.

Corollary 4.6. It is consistent that, for every P-point p, ω ∪ {p} cannot be em-
bedded into any regular pseudoradial space while there is an ultrafilter p on ω such
that ω ∪ {p} is a subspace of a zero-dimensional pseudoradial space.

Proof. Let V be the model obtained through Lemma 4.1. Let Q = Fn (ω2, 2). By
Theorem 3.1, in V Q, for every P-point p, ω ∪ {p} cannot be embedded into any
regular pseudoradial space.

On the other hand, by Lemma 4.2, in V Q, there is a reflecting self-indexed
stationary set on [ω2]ω and c is ω2. Therefore, by Theorem 4.5, there is an ultrafilter
p on ω such that ω∪{p} is a subspace of a zero-dimensional pseudoradial space.

We will need the following Lemma in the proof of Theorem 4.5.
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Lemma 4.7. Suppose R is a subset of space X, x ∈ X, and U is a local subbase at
x, i.e, the intersections of finitely many members of U constitute a neighbourhood
base at x. If κ is any cardinal number such that the following are true,

(i) for all U ′ ∈ [U ]<κ, R ∩⋂U ′ is not empty ;
(ii) for all y ∈ R, {U ∈ U : y 6∈ U} has cardinality at most κ,

then there is a sequence {yα : α < κ} in R convergent to x.

Proof. For each y ∈ R, let {Uy
α : α < κ} enumerate, with possible repetition, the

set {U ∈ U : y 6∈ U}. It is straightforward to define, by the induction, a sequence
{yα : α < κ} such that for all α < κ

yα ∈ R ∩
⋂
{Uyξ

η : η < α, ξ < α}.(∗)
We show that {yα}α<κ is convergent to x by showing that each member of U
contains a tail of the sequence. Suppose U ∈ U . We have to show that there is an
α < κ, such that , for all β ∈ κ, β > α implies yβ ∈ U . If {yα : α < κ} is contained
in U , we are done. Otherwise, choose any ξ such that yξ 6∈ U . Take η < κ such
that U = U

yξ
η . Let α = max{η, ξ}; then, for any β > α, by (∗), yβ ∈ U . We are

done.

The rest of the section is to prove Theorem 4.5.

Proof of Theorem 4.5. We first fix a reflecting self-indexed stationary set {Sα : α ∈
ω2} in [ω2]ω . Without loss of generality, we assume that, for α ∈ ω2 with countable
cofinality, α = sup Sα. Let p = {Aα : α < ω2} be the ultrafilter in Theorem 4.4.
Let {IA : A ∈ p} be the almost disjoint refinement of p such that IA ⊆ A and B is
the base with the properties in Theorem 4.4. By induction we can define an almost
disjoint family {aα : α < ω2} and a base {Fα : α < ω2} of p such that:

(i) (∀α)(aα ⊆ Fα ⊆ Aα).
(ii) (∀α , β)(α < β) implies aα ∩ Fβ is finite.
(iii) (∀α) there are only finitely many β such that aα∩Fβ is infinite and if aα∩Fβ

is infinite, then aα ⊆ Fβ .
(iv) (∀λ) if cf(λ) is uncountable, then {Fα : α < λ} is a filter base.

We construct {aα, Fα : α < ω1η} by induction on η. At stage η, the only non
trivial case is when η is a successor ordinal. Suppose η = ξ + 1. We define aω1ξ+α

and Fω1ξ+α for α ∈ ω1 by induction on ω1. Let f : ω1 → [ω1ξ + ω1]<ω be an onto
mapping such that f(α) ⊆ ω1ξ +α for each α ∈ ω1. At stage α, take a B in B such
that B is almost disjoint with aζ for each ζ < ω1ξ + α. Now simply define Fω1ξ+α

to be Aω1ξ+α ∩B ∩⋂{Fζ : ζ ∈ f(α)} and let aω1ξ+α be IFω1ξ+α
.

Let H = {b ⊆ ω : (∀α ∈ ω2)(aα ⊆∗ b)}. Let A be the subalgebra of P (ω)
generated by [ω]<ω ∪ {aα, Fα : α ∈ ω2} ∪ H.

We will define a subspace X of the Stone space St(A) such that X contains a
copy of ω ∪ {p} and X is pseudoradial. X will be of the form ω ∪ {xα : α ∈ Γ} ,
where Γ is a subset of ω2 and each xα is an ultrafilter of A . We specify the set Γ
and xα for α ∈ Γ as follows.

For convenience, we define a subset x+
α of F for each α ∈ ω2. For successor ordinal

α + 1, x+
α+1 is the finite of Fβ ’s which contains aα. For limit α with cf(α) = ω, x+

α

is {Fα : α ∈ Sα} , where Sα is from the reflecting self-indexed stationary set. For
limit λ with cf(λ) = ω1, x+

λ is {Fα : α < λ}.
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First of all, Γ contains all the successor ordinals and the ordinals with uncount-
able cofinality.

For each α, since no member of A splits aα, the cofinite subsets of aα generate
an ultrafilter on A. Let xα+1 be this ultrafilter. The point xω2 will simply be the
ultrafilter p ∩ A. Before we handle other ordinals, we prove the following.

Fact 4.8. If λ < ω2 has cofinality ω1, then x+
λ ∪{ω−Fβ : Fβ /∈ x+

λ }∪H is actually
{Fα, ω \Fβ : α < λ and β ≥ λ}∪H and generates an ultrafilter xλ on A. If α < ω2

has cofinality ω and x+
α ∪{ω−Fβ : Fβ /∈ x+

α}∪H has the finite intersection property,
then it generates an ultrafilter xα on A.

Proof of Fact 4.8. If λ < ω2 has cofinality ω1, then {Fα : α < λ} is a filter base and
it is easy to see that {Fα, ω \ Fβ : α < λ and β ≥ λ} ∪H has the finite intersection
property. To prove that it generates an ultrafilter, it is sufficient to show that for
each β ∈ ω2, ω \ aβ contains some member of the family. Indeed, if β < λ, then
Fβ+1 is almost disjoint with aβ ; hence Fβ+1 ⊆∗ ω \ aβ . If β ≥ λ, then ω \ Fβ is
almost contained in ω \ aβ . The proof for the case when α has countable cofinality
is virtually the same.

We resume the proof of the theorem. For λ with cofinality ω1, let λ be in Γ and
xλ be the ultrafilter defined in Fact 4.8. For an ordinal α with cf(α) = ω, α ∈ Γ if
x+

α ∪ {ω − Fβ : Fβ /∈ x+
α } ∪ H generate a filter; we let xα be the ultrafilter defined

in Fact 4.8
By above discussion Γ is well defined and, for each α ∈ Γ, xα is a point in the

Stone space St(A). The following claim is trivial.

Claim 4.1. ω ∪ {xω2} is homomorphic to ω ∪ {p}.
For simplicity we will abuse the notation of Stone duality. If F ⊂ ω is a member

of A, we also let F denote the set of points of X which as an ultrafilter on A contain
F as a member. Of course, F is clopen; hence, to say xα ∈ F is equivalent to saying
F ∈ xα.

Let X0 be all xα with α a successor and X1 be all xα with cf(α) = ω. Recall that
xα+1 corresponds to aα. Let X2 be all xα such that α has uncountable cofinality.

Fact 4.9. The sets X1 ∪ X2 and X2 are closed in X. X2 is homomorphic to a
subspace of ω2, namely {α ∈ ω2 : cf(α) is uncountable } and so X2 is radial.

Proof of Fact 4.9. For the first statement of the claim, the only case that requires
proof is that a point xα of X1 is not in the closure of X2. If α is countable, then
ω− Fα+1 is disjoint from X2. On the other hand, if α is uncountable, then we can
find γ < β < α, so that Fβ ∈ x+

α and Fγ /∈ x+
α . Note that Fβ \Fγ is not a member of

xλ for any λ with uncountable cofinality. For the second statement, it is sufficient
to see that, for any λ < ω2 with uncountably cofinality, the typical neighhourhood
of xλ in the subspace X2 is (Fα \Fλ)∩X2 = {xξ ∈ X2 : α < ξ ≤ λ} for some α < λ.
Similarly, a typical neighbourhood of xω2 is {xξ ∈ X2 : α < ξ ≤ ω2}.

Claim 4.2 will finish the proof of Theorem 4.5.

Claim 4.2. X is a zero-dimensional pseudoradial space.

Proof of Claim 4.2. Since X is a subspace of a St(A), X is zero-dimensional. Sup-
pose X is not pseudoradial. Let R be a radially closed subset of X which is not
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closed. Let xα ∈ cl R\R and α is the minimal such index. Obviously xα ∈ X1∪X2

because other points have countable neighbourhood bases. We will prove xα ∈ R
to produce a contradiction. We will need the following fact.

Fact 4.10. xα ∈ cl(R \ ω).

Proof of Fact 4.10. Suppose xα 6∈ cl(R \ ω). Then xα ∈ cl(R ∩ ω) \ cl(R \ ω). Let
U be a clopen neighbourhood of xα such that U ∩ (R \ ω) = ∅. Hence b = R ∩U is
a subset of ω. Since R is radially closed and U is closed , b is also radially closed.
For any β ∈ ω2, if aβ ∩ b is infinite, then xβ+1 would be in b contradicting that
b ⊆ ω. Hence, b is almost disjoint with each aβ , i.e, ω \ b is in H. Thus ω \ b are in
the ultrafilter xα, which contradict that xα is in the closure of b.

Since R \ ω is also radially closed in X , we can now assume R ∩ ω = ∅. By Fact
4.9, X2 is radial and closed so we can assume that R ∩X2 = ∅ by again restricting
to a neighbourhood of xα. For the rest of the proof we assume that R ⊆ X0 ∪X1.
Recall that xα ∈ X1 ∪X2.

We claim that α 6= ω2 . Indeed fix any M ≺ H(ω3) such that |M | = ω1

and M contains all relevant sets such as R and X , and so that the cofinality of
δ = M ∩ ω2 is uncountable. We show that xδ is in the closure of R which will
contradict that R is assumed to be disjoint from X2 and that α is the minimal
index of a limit point which is not in R. A typical neighbourhood of xδ has the
form H ∩⋂{Fξ : ξ ∈ f}\⋃{Fγ : γ ∈ g} where f ∈ [δ]<ω, g ∈ [ω2 \δ]<ω and H ∈ H.
However,

⋂{Fξ : ξ ∈ f} is a neighbourhood of xω2 and is a member of M . Choose
any β ∈ M such that xβ ∈ R∩⋂{Fξ : ξ ∈ f}. Clearly xβ /∈ Fγ for all γ > δ; hence
xβ is in the above neighbourhood of xδ.

Next we apply Lemma 4.7 to prove that there exists a sequence in R convergent
to xα and thus finish the proof.

Case 1. cf(α) = ω.

To apply Lemma 4.7, let κ be ω, U be x+
α ∪{ω \Fβ : xβ /∈ x+

α }∪H, and x be xα.
U is a local subbase of x. We show x, R and U satisfy the conditions in Lemma
4.7. Since x ∈ cl(R), the condition (i) is trivial. To verify the condition (ii), let
xξ ∈ R. Then cf(ξ) ≤ ω. It is easy to see that

{U ∈ U : xξ /∈ U} ⊆ x+
α ∪ {ω \ F : F ∈ x+

ξ }.
But both x+

α and x+
ξ are countable. Therefore {U ∈ U : xξ /∈ U} is countable.

Case 2. cf(α) = ω1.

We let κ be ω1, and U be x+
α ∪ {ω \ Fβ : xβ /∈ x+

α } ∪H, and x be xα. Again U is
a local subbase at x. The second condition of Lemma 4.7 is verified as in the Case
1. We are left to show that for any U ′ ∈ [U ]ω, R∩⋂U ′ 6= ∅. Since for each H in H,
R ⊆ X \ ω ⊆ H , we can assume U ′ = {Fαi , ω \ Fβi : i ∈ ω} . We take a countable
elementary submodel M of H(ω3), such that {X, R,U ′, α} ⊆ M and M ∩ α = Sγ

and γ = sup(M ∩ α), where Sγ is from the reflecting self-indexed stationary set.
Since Sγ = M ∩α and x+

γ is a filter base, x+
γ ∪{ω \Fξ : Fξ /∈ x+

γ }∪H has the finite
intersection property. Therefore it generates an ultrafilter on A. Therefore γ ∈ Γ,
i.e., xγ is a point of our X . Next we show that xγ ∈ R ∩⋂U ′.

For i ∈ ω, since, U ′ ∈ M , αi ∈ M ∩ α = Sγ . Thus, Fαi ∈ x+
γ while Fβi /∈ x+

γ

because βi ≥ α > γ. This proves that xγ ∈
⋂U ′.
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To prove xγ ∈ R, it is sufficient to prove that xγ ∈ cl(R) because α is the
minimal index such that xα ∈ cl(R) \ R. Take a neighbourhood W of xγ ; we have
to show R ∩ W 6= ∅. We can assume W =

⋂F \ ⋃G, where F and G are finite
subsets of x+

γ and B \ x+
γ respectively. Obviously F and G ∩ M are members of

M . If Fξ ∈ G ∩M , then by the definition of x+
γ and the fact Sγ = M ∩ α, ξ ≥ α.

Therefore, (R ∩⋂F) \⋃
(G ∩M) is a neighbourhood of xα and it is in M . Take a

xξ ∈ M∩R∩⋂F\⋃(G∩M). Since x+
ξ is a countable member of M , x+

ξ ⊆ M ; hence
G\M is disjoint with x+

ξ . Therefore xξ /∈ ⋃
(G\M) and xξ ∈ R∩⋂F\⋃G = R∩W .

We are done.

We finish with the following question.

Question 4.11. Does MA or p = c imply that, for each ultrafilter p on ω, ω ∪ {p}
is a subspace of a regular pseudo-radial space?

By Lemma 2.1, the answer is yes for the non P-point p.
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