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ABSTRACT. For T € L(X), we give a condition that suffices for ¢(T) to be
hypercyclic where ¢ is a nonconstant function that is analytic on the spectrum
of T'. In the other direction, it is shown that a property introduced by E. Bishop
restricts supercyclic phenomena: if T € £(X) is finitely supercyclic and has
Bishop’s property (/3), then the spectrum of T is contained in a circle.

INTRODUCTION

An operator T is cyclic provided there is a vector & whose orbit under T" has dense
linear span. If the orbit {T"x},>0 is itself dense, then T is hypercyclic. An example
of such an operator was given by Rolewicz [33] in terms of the backward shift on the
Hardy space H?: If B is given by > a,,2" 5 >0 ant12", then AB is hypercyclic
for each A, |A] > 1. Here the factor A is crucial; B is itself not hypercyclic, and
this leads to an intermediate notion of cyclicity. If the homogeneous orbit {\T"z :
n > 0,\ € C} is dense for some z, the operator T is said to be supercyclic. This
definition is due to Hilden and Wallen, who show that the adjoint of every injective
unilateral weighted shift is supercyclic [20]. In contrast to the case of cyclic vectors,
if an operator has a hypercyclic (supercyclic) vector, then there is a T-invariant,
dense G5 set of hypercyclic (supercyclic) vectors [22].

C. Kitai [22], and independently Gethner and J. Shapiro [15], established a
sufficient condition for hypercyclicity that has been applied in a variety of settings
and is a principal tool in Theorem 1 below.

Theorem (Kitai, Gethner and Shapiro). Suppose that X is a separable Fréchet
space and that T is a continuous linear operator on X. If there exist dense T'-
invariant subsets M and N of X such that T"z — 0 for each x € M and a se-
quence of (not necessarily continuous) functions Sy : N'— N satisfying Sy (z) — 0
and T"S,,(x) = z for each x € N, then the operator T is hypercyclic.

Gethner and Shapiro apply this criterion to backward shifts on weighted se-
quence spaces. Godefroy and Shapiro [16] later use this condition to obtain the
classical results of Birkoff [6] and MacLane [27], and also to obtain hypercyclic and
supercyclic vectors for Banach space operators in the double commutant of gen-
eralized backward shifts and multipliers on very general Hilbert spaces of analytic
functions.
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In the negative direction, it was observed by Hilden and Wallen [20] that neither
the unilateral forward shift on H? nor any normal operator is supercyclic. Ansari
and Bourdon [5] recently showed that Banach space isometries are not supercyclic,
and Bourdon proved that hyponormal operators have no supercyclic vectors [§].
Hyponormal operators and isometries are examples of operators that satisfy a con-
dition introduced by E. Bishop [7] in the late 1950’s. In Theorem 2 below, we show
how this condition restricts these cyclic phenomena.

LOCAL SPECTRAL THEORY

Let X be a complex Banach space. For T a bounded linear operator on X,
that is, for T' € L£(X), we denote as usual the spectrum and the approximate point
spectrum of T by o(T) and 04,(T"). The surjectivity spectrum of T is 04, (1) =
{AeC:(A-T)X # X}. Notice that if T* € L(X*) is the adjoint of T, then
Osu(T) = 0ap(T*) and 04p(T) = 04, (T*). The complement of the surjectivity
spectrum is pg,(7), and so forth. If T € L£(X) and if Y is a closed, T-invariant
subspace of X, let T|y € L(Y) be the restriction of T to Y. Below, we give the
basics of local spectral theory that we will employ.

An operator T on a complex Banach space X is decomposable in the sense
of Foiag [1] provided that whenever {U;,Us} is an open cover of C, there exist
closed, T-invariant subspaces Y such that X =Y, + Y2 and o(Ty,) C Uy, k =
1,2. This class of operators is quite large; for example, all normal operators on a
Hilbert space, compact operators and generalized scalar operators on Banach spaces
are decomposable. Although decomposable operators generally have no functional
calculus beyond the basic analytic functional calculus of Riesz, these operators
possess many of the spectral properties of normal operators. For the basic theory
of decomposable operators, refer to [10] and [38].

Let U be open in C and let O(U, X) be the space of analytic X-valued functions
on U. Endowed with the topology of uniform convergence on compact subsets
of U, the space O(U, X) is a Fréchet space. An operator T' € L(X) induces,
for each open U C C, a continuous linear mapping Ty on O(U, X) defined by
(T YN =A=T)f()) for every f € O(U,X) and A € U.

Corresponding to each closed F' C C there is also an associated analytic subspace,
Xr(F), of X consisting of all vectors x for which there is an analytic function
f:C\F — X with (A —=T)f(\) =z for each A € C\ F. Equivalently, viewing
x € X as a constant function, X7 (F) = X Nran(T¢\ ). For an arbitrary 7' € L(X),
the spaces Xp(F') are T-invariant, generally nonclosed linear manifolds in X. Also,
if F and K are disjoint closed subsets of the plane, then X7 (F)LX}. (K); that is,
(z,z*) = 0 whenever x € Xr(F) and z* € X4. (K) [14].

If x € X, the local spectral radius of x with respect to T is the quantity rr(z) =
limsup,,_, ., [|T™2||*/™. We will use the fact that for any 7 € £(X) and = € X, the
vector z is contained in Xr(B(0,r)) if and only if rr(xz) < r [29]. It follows, in
particular, that (J,,~,ker(A —T)" C X7 ({\}) for every A € C. A consequence of
a deep result of Leiterer is that X7(04,(T)) = X for any T € £(X) [26, Theorem
5.1].

For an arbitrary T € £(X), consider the set of all A\ € C such that A — T has
closed range and ker(A —T') C [,~o(A —T)"X. This set has been referred to by
various names, but let us call it px (_T), the Kato resolvent of T'; the Kato spectrum
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is ox(T) = C\ px(T). Clearly, C\ (05u(T) Noep(T)) C pr(T), and it is well-
known that px (T) is open and preserved by adjoints [21]. Also, if A € pg (T), then
(A=T)"X is closed for each n, and |J,, ker(A =T)" C (,,(A —T)"X [30]. There is
a spectral mapping theorem for the Kato spectrum [35], and if G is a component
of pr(T), then ,5o(A —T)"X = Xp(C\ G) for each A\ € G. Indeed, the closed
spaces [),>o(A — T)"X are invariant for A € G [17]; let Y =, 5o(A — T)"X for
ANeG. Ifz e X andif A € G, then (A\—T)z € Y if and only if z € Y ([30] or [24]),
and therefore G C ps,(T'|y). The assertion now follows from Leiterer’s theorem.

The operator T has Bishop’s property (3) provided that for each open U C C,
the mapping Ty is injective and has closed range in O(U, X). That decomposable
operators have property () is due to Albrecht [1]. It is a theorem of Bishop [7] that
an operator T € L(X) with () has the property that the dual space decomposes
as X* = X5.(U) + X4.(V) whenever U and V are open with C C U UV. This is
the decomposition property (§); specifically, T € £L(X) has property (6) provided
that for any open cover {U, V} of o(T), the space X can be written as the sum of
the analytic subspaces: X = X7(U) + X7(V).

If T has property (8), then o(T) = 04, (T), and, for every closed F C C, the
analytic subspace X (F) is closed [25]. Thus an operator T is decomposable if
and only if T has both properties (3) and (8) [3]. Albrecht and Eschmeier [2] have
shown that the properties () and (d) are completely dual; an operator 7" has one of
these exactly when its adjoint has the other. Moreover, they characterize operators
with Bishop’s property (3) as those similar to the restriction of a decomposable
operator, and operators with the decomposition property (4) as those similar to a
quotient of a decomposable operator.

That hyponormal operators are subscalar and thus subdecomposable is due to
Putinar [32]. Surjective Banach space isometries are generalized scalar [10, 5.1.4],
and it is a result of Douglas that every isometry has a surjective extension [11]. If
decomposability is the appropriate generalization of normal operators to Banach
spaces, the relation between subnormal and subdecomposable operators is even
stronger. For example, Eschmeier and Prunaru applied the Scott Brown technique,
originated to show the existence of invariant subspaces for subnormal operators,
to prove that Banach space operators with property (5) and thick spectra have
invariant subspaces [12].

For a systematic treatment of local spectral theory, we refer the reader to [13]
and [23].

MAIN RESULTS

Hilbert spaces of analytic functions with bounded point evaluations have a rich
supply of dense subspaces spanned by the reproducing kernels. Godefroy and
Shapiro use these with the Kitai-Gethner-Shapiro condition to obtain the opti-
mal result regarding multipliers on such spaces: Let U be a domain in C" and H a
Hilbert space of analytic functions on U with bounded point evaluations at each A
in U. If ¢ is a nonconstant analytic function such that the multiplier M, (f) = ¢f
is bounded, then M} is supercyclic; in fact, M is hypercyclic if and only if ¢(U)
meets the unit circle [16, Theorem 4.5]. Under the conditions of Theorem 1 be-
low, the local spectral theory provides similar dense spaces of eigenvectors, and we
obtain a comparable conclusion.
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Theorem 1. Suppose that X is a Banach space and T € L(X). Let G be a com-
ponent of the Kato resolvent of T. The analytic subspace X1(F) corresponding to
a closed subset F' of G is dense in X if and only if for every A € G, the space
U,so ker(A = T)™ is dense in X. In this case, px(T) = pou(T); if X is separable
and if @ is a nonconstant analytic function defined on a neighborhood of o(T), then
o(T) is supercyclic. If p(G) intersects the unit circle, then o(T') is hypercyclic.

Proof. For any operator T' and for any complex A, we have that (J,,~, ker(A—=T)" C
Xr({A\}). Therefore, if |, - ker(A — T)™ is dense in X for some A € G, there is a
closed F C G such that X7 (F) is dense. Conversely, suppose that F' C G is closed
and that X7 (F) is dense. Since C\ G and F are disjoint, it follows that X;(C\ G)
annihilates X7 (F'), and thus X5.(C\ G) = 0. Since px(T*) = px(T), we have
that 0 = X7..(C\ G) = (),,5o(A = T%)"X* for each X\ € G. Because (A —T*)"X*
is norm-closed for each n, it is weak-* closed, and so 0 = (|J,,~, ker(A — T)™)* as
required. -

Suppose now that [J,~,ker(A — T)" is dense for every A € G. We show
pic(T) C psu(T), the other inclusion being apparent. If w € ¢(T) \ G and if X € G,
then again X7.({w})LXr({A}) implies that 0 = X}.({w}); in particular, 0 =
ker(w —T*). It follows that px (T) \ G is contained in ps, (1) = pap(T*). If X € G,
then (,,(A = T)"X is closed and contains the dense set |J,,~,ker(A —T)". Thus
X =N,50A=T)"X = X7p(C\ G), and G C ps,(T). B

Finally, assume that X is separable, that G is a component of p,(T') as above,
and ¢ is a nonconstant analytic function defined in a neighborhood of ¢(T") with
@ # o(G)N{z : |z| = 1}. Choose a; and a2 in G so that |p(a1)| < 1 and |¢(az)| > 1.
Let 6 > 0 be such that, for j = 1,2, the closed disks B(a;, §) are contained in G, and
lo(z) —w(a;)| <|1—lp(a;)||/2 whenever |z —a;| < 6. Let B; = B(a;,d/2) and, for
each z € X7(B;), let f;. : C\ B; — X be such that x = Tr\ g, fj.» in O(C\ Bj, X).
By Leiterer’s theorem, we may choose g, € O(G, X) such that x = Tgg,. Let
hjz = fjz—gz on G\ B; and define M; = span{h; ,(z) : ¢ € X1 (Bj), |z—a;| = 6}.
Notice that each h; ,(2) is an eigenvector for T" and therefore for ¢(7'). In particular,
if |z —a1| =9, then [[o(T)"h12(2)[| = [¢(2)[" [ 21,2(2)| — 0 as n — oc.

We claim that each M, is dense in X. Indeed, fix j, and let us suppress the
subscript 7 in the definitions above. If x* € X* annihilates M, then for every
x € Xp(B) and A\ € G such that |A —a| > §, we have

0= 2i (he(2),2*)(z — N\) "t dz

m |z—al=46
_i 2). 2Nz — AL Z—i 2N (2 — N dz
=5 |z_a|:5<f””( ), ) (z—=N)"1d 27T/Z_a_6<gm( ), 2"z —A)"td
R AT RSV

Q |z—a|=46
= <.fz(/\)7$*>

It follows that 0 = (f.(\),z*) for every x € Xp(B) and A € C\ B; in particular,
if |A\| > ||T||, then for every x € X7(B),0 = (fz(\),z*) = (A = T) lz,2*) =
(x, (A —T*)"'z*). Since Xr(B) is dense, r* = 0, and the claim is established.
Define S : My — Ms by S(Ezzl Crha, (1)) = ZZ:l %hmk(zk) whenever
n>1, {CGtr., CC, {zk}i_, C Xr(Bs2), and |z —as| =6, k =1,...,n. That
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S is well-defined follows from the fact that for any polynomial p, each hy, (zx) is
an eigenvector for p(¢(T)) with eigenvalue p(¢(zx)). Now, S™z — 0 as n — oo,
and ¢(T)Sz = x for every x € M. Since p(T)"z — 0 on M, the Kitai-Gethner-
Shapiro condition implies that ¢(7T) is hypercyclic.

Of course, in the setting of Hilbert spaces of analytic functions, the Godefroy-
Shapiro result is stronger, but an immediate corollary of Theorem 1 generalizes [16,
Theorem 4.11]. Specifically, we do not require that ker(T") be finite dimensional.
Theorem 1 of [19] is also subsumed by the following.

Corollary 1. Suppose that X is separable, and that T € L(X). If \—T is surjective
and |J,,>o ker(A = T)" is dense for some X, then p(T) is supercyclic whenever ¢ is
a nonconstant analytic function on a neighborhood of o(T). If G is the component
of psu(T) containing A\, and if o(G)N{z: |z| =1} # @, then ©(T) is hypercyclic.

Example. A semi-shift is an isometry S € £(X) such that (,.,5"X = 0. If
T € L£(X) is such that T* is a semi-shift, then T is in some sense a backward
shift. Since the spectrum of T™* is the closed unit disk, and its appropriate point
spectrum the unit circle, an application of the corollary yields in particular that
AT is hypercyclic for every A, || > 1.

It is natural to consider orbits of finite sets. We will call an operator T finitely
supercyclic if there is a finite set of vectors F' whose homogeneous orbit, {\T"x :
n>0,A€C,z € F}, is dense in X [18]. Finitely hypercyclic operators are defined
similarly. If F is a finite subset of X with dense homogeneous orbit under 7', we say
F' is a minimal supercyclic set for T provided that no proper subset of F' has dense
homogeneous orbit. It follows immediately that a supercyclic set F' is minimal if
and only if for each x in F', the homogeneous orbit of z under 7' is not nowhere
dense, and in this case, each x € F'is a cyclic vector for T'. Moreover, the minimality
of F implies that for each x € F, every vector in {\T"z : n > 0, A € C}~ is a limit
of a sequence of the form (AyT™ )k, where (Ax)r C C and (ng)x is a sequence of
natural numbers satisfying ny — oo as k — oo [28]. In particular, it follows that
ran(7) is dense in X.

If T has property (8) and if x is a cyclic vector for T, clearly z € Xp(K)
for some closed K implies that X = X7 (K). Therefore, since T|x,.(x) also has
property (3), we conclude that o(7) = 04 (T|x,(x)) C K. Because operators
with Bishop’s property (3) are power regular [4], that is, lim,, . ||T7z||"/™ exists
for every z € X, it follows that for a cyclic vector x, the sequence (||T"z|'/™),>1
converges to the spectral radius of 7.

Theorem 2. Suppose that T € L(X) has Bishop’s property (8). If T is finitely
supercyclic, then the spectrum of T is contained in a circle.

Proof. Since both property (/) and finite supercyclicity are preserved under simi-
larity, we may assume that there is a decomposable operator S € L(Y) with X a
closed, S-invariant subspace of Y and T' = S|x. We may also assume that T has
spectral radius 1. Let ¢ : Y* — X* be the restriction map: (z,qy*) = (x,y*) for
every y* € Y* and z € X. We claim that Y. (B(0,7)) C ker(g) for every r < 1. In-

deed, suppose that for some r < 1 there exists y* € Y. (B(0,r)) such that gy* # 0.
If F C X is a minimal supercyclic set for T, there is a vector z € F' and a sequence
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(ng)p2, so that ng — oo as k — oo and

0<d:=inf (| T™ ||~ T ™, y*)|.

Let S = S*|Ys** (Bo.)- Since S* is decomposable, o(S¥) € B(0,r); choose p,
r < p < 1, and apply the Riesz functional calculus to S. We obtain for each k,

1

—/ <x,z”"(2—5’f)_1y*>dz
lz|=p

T’I’Lk * — S*nk* —
(T, = [, S5 = | o

< [loll max [|(z — $7) "ty

lz|=p
Thus 0 < § < liminfg, C,p" || T™*x||~!, where C, is independent of k, and therefore

1= lim inf s/ < limkinf(Cpp"kHT"’“J:H_l)l/"k = plimnf || T ]| =L/

Consequently, 1 > p > limsup, ||[T™*z||*/™. But z is a cyclic vector for T, and,
since T' is power regular [4], this contradicts our assumption that T has spectral
radius 1.

Now, if 0 < n < 1, write Y* = YZ.(B(0, 52)) + Y4.(C\ B(0,7)). Because
qS* = T*q, it follows that

X" =qY" = q(Ys-(C\ B(0,7m))) € X7.(C\ B(0,7))

since Y. (B(0, ££1)) is contained in ker(q). Thus
0ap(T) = 00u(T*) € () (C\ B(0,7) =C\ B(0,1).
0<n<1

Since T has dense range, it follows that T is invertible, and since 0o (T') C 04, (T),
we have that B(0,1) C p(T). Thus o(T) is a subset of the unit circle.

Examples. (a) If T' is a unilateral weighted shift with the decomposition property
(8), then T™* has property () and is supercyclic [20]. Because a unilateral weighted
shift has spectrum equal to a disk [36], it follows that o(T) = o(T*) = {0} and
therefore T is decomposable. We do not know, generally, which unilateral weighted
shifts have property (/).

(b) A weaker condition than Bishop’s property (3) is the single-valued extension
property, which an operator T' € L£(X) possesses provided that, for every open
subset U of the plane, Ty is injective on O(U, X). There is a supercyclic operator
with the single-valued extension property whose spectrum is not contained in a
circle. Consider the weighted shift T given by f(z) — zf(z) on H?(3) where the
sequence (3,)n>0 satisfies 0 < r := lim,, supy~o(Bn+x/Bk)*/™ and 0 = liminf,, 6,1/";
see [36]. Then o(T) = {\ : |A| < r}, and the second condition gives that 7 has
point spectrum {0}; in particular, T* has the single-valued extension property.
That T* is supercyclic is again the result of Hilden and Wallen [20].

(¢) An automorphism ¢ of the unit disk is said to be parabolic provided that
© has a unique fixed point a € Cy, necessarily on the unit circle, and ¢'(a) = 1.
A typical example is p(z) = ((1 4 4)z —i)(1 — i +iz)~!. Suppose that ¢ is a
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parabolic automorphism of the disk, and let Cy, be defined on the Hardy space H>
by Cyf = fo¢. Cyclic phenomena of composition operators have been studied
extensively by Bourdon and Shapiro. By [9, Theorem 2.2], the operator C, is
hypercyclic. By [37, Theorem 1.1], the spectrum of C,, is the unit circle, and C,, is
generalized scalar, in particular, decomposable.

The conclusion of the following is known, but we include it because its proof is
quite different from that in [28].

Corollary 2. If T is an isometry on an infinite dimensional Banach space, then
T is not finitely supercyclic.

Proof. We argue by contradiction. Suppose that T is a finitely supercyclic isometry
on X. Then T has property (/) as mentioned above, and so Theorem 2 implies that
T is a surjective isometry. Proposition 5.1.4 of [10] implies that T is a generalized
scalar operator. If T has spectrum a singleton {A}, then T'— AI is nilpotent [10,
4.3.5], contradicting the assumption that T is finitely supercyclic on an infinite
dimensional space. Thus there is an open set U so that UNe(T) # @ and o(T) ¢ U;
in particular, 0 # X7(U) # X. If F is a minimal supercyclic set for T', then there is
an z € F and a sequence of natural numbers (ng)g>1 so that (I"™*x);>o converges to
avector y € X7(U). Our contradiction is at hand; X7 (U) is closed, invariant under
T, and T~™y — x. Since x is a cyclic vector for T, it follows that X7(U) = X.

Corollary 3. If T is hyponormal on an infinite dimensional Hilbert space, then T
is mot finitely supercyclic.

Proof. Again we argue by contradiction. If T is hyponormal on H, then T is
subscalar [32], and therefore has property (3). If T is finitely supercyclic, then,
by Theorem 2, o(T) is contained in a circle. In this case, Putnam’s theorem [31]
implies that T is normal; in fact, T = rU where U is unitary and 0 < r = ||T||.
The assumption that T is finitely supercyclic implies that » > 0, but this leads to
a contradiction of Corollary 2.
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