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Abstract. We prove that, given a integer n ≥ 3 and a group π, the class of
closed Riemannian n-manifolds of uniformly bounded negative sectional cur-
vatures and with fundamental groups isomorphic to π is precompact in the
Lipschitz topology. In particular, the class breaks into finitely many diffeo-
morphism types.

§1. Introduction

According to the Mostow rigidity theorem, the isometry type of a closed locally
symmetric negatively curved Riemannian manifold is uniquely determined by its
fundamental group. This is no longer true for manifolds of variable sectional curva-
ture. The purpose of this note is to observe that there are essentially finitely many
possibilities for the geometry and topology of such manifolds provided the sectional
curvature is pinched between two negative fixed constants.

1.1. Theorem. For any number b ∈ [−1, 0) and a group π, the class Mn,b,π of
closed Riemannian manifolds of dimension n ≥ 3 with sectional curvatures in [−1, b]
and fundamental groups isomorphic to π is precompact in the Lipschitz topology.

Recall that the class of all compact Riemannian manifolds of a given dimension
has the so-called Lipschitz topology, namely, two manifolds M and N are said to be
ε-close if there exists a diffeomorphism f : M → N such that both f and f−1 are
eε-Lipschitz. A class of manifolds is called precompact if for any positive ε, every
sequence of manifolds in the class has a subsequence whose members are mutually
ε-close. A landmark theorem of Gromov asserts the Lipschitz precompactness of the
class of closed Riemannian manifolds of uniformly bounded diameters and sectional
curvatures and with a uniform lower bound on the injectivity radii. Here is an
immediate corollary of Lipschitz precompactness.

1.2. Corollary. For any number b ∈ [−1, 0), a positive integer n, and a group
π, there exist positive numbers D > d depending only on b and π such that any
manifold from Mn,b,π has diameter in [d, D]. The same conclusion is true for
volume and injectivity radius.
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Note that the corollary fails if b = 0. Indeed, given a closed negatively curved
manifold M , the rescaled manifold k ·M has sectional curvature within [1, 0) for
large k, while the diameters are unbounded. Combining 1.2 with the Gromov-
Fukaya pinching theorem [F] we get

1.3. Corollary. Given a group π and a positive integer n, there exists ε ∈ (0, 1)
such that any manifold from Mn,−1+ε,π is diffeomorphic to a manifold of constant
negative sectional curvature.

Topology of closed negatively curved manifolds seems to be encoded in the fun-
damental group. It is a very particular case of the Borel conjecture that any two
closed homotopy equivalent negatively curved manifolds must be homeomorphic.
However, in higher dimensions there are homeomorphic negatively curved manifolds
that are not diffeomorphic [FJ1, 2]. In fact, Farrell and Jones proved that given a
closed real hyperbolic manifold N of dimension n ≥ 5 and ε > 0, there is a finite
cover Nε → N such that for any smooth homotopy n-sphere Σ the connected sum
Nε#Σ has a Riemannian metric of sectional curvature within [−1,−1 + ε]. More-
over, given a pair of nondiffeomorphic homotopy spheres Σ1 and Σ2, the manifolds
Nε#Σ1 and Nε#Σ2 are not diffeomorphic. The following result is another standard
application of Lipschitz precompactness.

1.4. Corollary. For any number b ∈ [−1, 0) and a group π there exist at most
finitely many nondiffeomorphic closed Riemannian manifolds with sectional curva-
tures in [−1, b] and fundamental groups isomorphic to π.

In dimensions ≥ 5 a much stronger statement is true. Namely, a deep theorem of
Farrell and Jones implies that any manifold homotopy equivalent to a closed non-
positively curved manifold M must be homeomorphic to M [FJ3] Since a manifold
of dimension ≥ 5 can have only finitely many smooth structures [KS], every ho-
motopy type contains finitely many nondiffeomorphic closed nonpositively curved
manifolds of dimension ≥ 5.

No results similar to this theorem of Farrell and Jones are available in dimension
four because it is unknown in this dimension if the topological surgery works for
the word-hyperbolic fundamental groups. In general, one expects most closed 4–
manifolds to have more than one smooth structure.

According to the (as yet unproved) Geometrization Conjecture of Thurston, any
closed negatively curved 3–manifold should admit a metric of constant negative
curvature. In particular, if the conjecture is true, any two homotopy equivalent
closed negatively curved 3–manifolds must be diffeomorphic, due to the Mostow
rigidity theorem. Notice that for closed Haken 3–manifolds with no curvature
assumptions, homotopy equivalence implies diffeomorphism [W]. The same is true
for any closed irreducible 3–manifold that is homotopy equivalent to a 3–manifold
of constant negative curvature [G], [GMT].

We finally sketch the proof of Theorem 1.1. In the case of pinched negative sec-
tional curvature, arguments based on the Margulis lemma provide a universal lower
bound on the injectivity radius, so there is no collapse. This guarantees precom-
pactness in the pointed Lipschitz topology where limit points may be noncompact
manifolds. It turns out to be technically convenient to think of closed manifolds
from Mn,b,π as Hadamard manifolds equipped with the isometric, free, cocompact
actions of π. Using a method due to Bestvina and Paulin and a famous result of
Rips, Bestvina and Feighn on small actions on real trees, one can show that these
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actions do not “diverge”. This implies that whenever a sequence Mk ∈ Mn,b,π

converges in the pointed Lipschitz topology to a manifold M , the group π1(M)
contains a subgroup isomorphic to π. Counting cohomological dimension, one can
deduce that M is compact, and hence Mk converges to M in the (nonpointed)
Lipschitz topology.

The author is grateful to Mladen Bestvina and Bernhard Leeb for helpful dis-
cussions on the subject of this paper and to Bill Goldman for friendly support.

§2. Two types of convergence

2.1. Equivariant pointed Lipschitz topology. Let Γk be a discrete subgroup of
the isometry group of a complete Riemannian manifold Xk and pk be a point of Xk.
The class of all such triples {(Xk, pk, Γk)} can be given the so-called equivariant
pointed Lipschitz topology [F]; when Γk is trivial this reduces to the usual pointed
Lipschitz topology. For convenience of the reader we give here some definitions
borrowed from [F].

For a group Γ acting on a pointed metric space (X, p, d) the set {γ ∈ Γ :
d(p, γ(p)) < r} is denoted by Γ(r). An open ball in X of radius r with center
at p is denoted by Br(p, X).

For i = 1, 2, let (Xi, pi) be a pointed complete metric space with the distance
function di and let Γi be a discrete group of isometries of Xi. In addition, assume
that Xi is a C∞–manifold. Take any ε > 0.

Then a quadruple (f1, f2, φ1, φ2) of maps fi : B1/ε(pi, Xi) → B1/ε(p3−i, X3−i)
and φi : Γi(1/3ε)→ Γ3−i is called an ε–Lipschitz approximation between the triples
(X1, p1, Γ1) and (X2, p2, Γ2) if the following seven conditions hold:
• fi is a diffeomorphism onto its image;
• for each xi ∈ B1/3ε(pi, Xi) and every γi ∈ Γi(1/3ε), fi(γi(xi)) = φi(γi)(fi(xi));
• for every xi, x

′
i ∈ B1/ε(pi, Xi), e−ε < d3−i(fi(xi), fi(x′i))/di(xi, x

′
i) < eε;

• fi(B1/ε(pi, Xi)) ⊃ B(1/ε)−ε(p3−i, X3−i) and φi(Γi(1/3ε)) ⊃ Γ3−i(1/3ε− ε);
• fi(B(1/ε)−ε(pi, Xi)) ⊃ B1/ε(p3−i, X3−i) and φi(Γi(1/3ε− ε)) ⊃ Γ3−i(1/3ε);
• f3−i ◦ fi|B(1/ε)−ε(pi,Xi) = id and φ3−i ◦ φi|Γi(1/3ε−ε) = id;
• d3−i(fi(pi), p3−i) < ε.
We say a sequence of triples (Xk, pk, Γk) converges to (X, p, Γ) in the equivariant

pointed Lipschitz topology if, for any ε > 0, there is k(ε) such that for all k > k(ε),
there exists an ε–Lipschitz approximation between (Xk, pk, Γk) and (X, p, Γ).

Notice that if all the groups Γk are trivial, then Γ is trivial; in this case we say
that that (Xk, pk) converges to (X, p) in the pointed Lipschitz topology. Note that
if Xk is a complete Riemannian manifold for all k, then the space X is necessarily
a C∞–manifold with a complete C1,α–Riemannian metric [GW].

If Xk and X are compact, then (Xk, pk) converges to (X, p) in the pointed
Lipschitz topology if and only if, for any ε > 0 there is k(ε) such that for all
k > k(ε), there exists a diffeomorphism f : Xk → X such that both f and f−1 are
eε–Lipschitz. In this case we just say that the sequence Xk converges to X in the
Lipschitz topology.

2.2. Pointwise convergence topology. Suppose that, for some pk ∈ Xk, the
sequence (Xk, pk) converges to (X, p) in the pointed Lipschitz topology.

We say that a sequence xk ∈ Xk converges to x ∈ X if, for some ε, the sequence of
ε–Lipschitz approximations (fk, gk) between (Xk, pk) and (X, p) has the property
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that d(fk(xk), x) = dk(xk, gk(x)) → 0 as k → ∞. Trivial example: if (Xk, pk)
converges to (X, p) in the pointed Lipschitz topology, then pk converges to p.

Given a sequence of isometries γk ∈ Isom(Xk) we say that γk converges, if for
any xk ∈ Xk, γk(xk) converges. The limiting transformation γ of X is necessarily
an isometry.

We say that a sequence of actions (Xk, pk, ρk) converges to an action (X, p, ρ) in
the pointwise convergence topology if ρk(γ) converges to ρ(γ) for every γ ∈ π.

Clearly, if π is generated by a finite set S, then in order to prove ρk → ρ, it
suffices to check that ρk(γ) converges to ρ(γ) for every γ ∈ S.

Let dk : Xk × Xk → R be the distance function. It is easy to check that a
sequence of actions (Xk, pk, ρk) is precompact in the pointwise convergence topology
(i.e. every subsequence of (Xk, pk, ρk) has a converging subsequence) if for any
γ ∈ π and any (or, equivalently, some) xk ∈ Xk, the sequence dk(xk, ρk(γ)(xk)) is
bounded (the proof is in the spirit of [KN, 4.7]). Again, if π is generated by a finite
subset S it is enough to verify the above for elements of S only.

2.3. Motivating example. Let X be a complete Riemannian manifold. Consider
the isometry group Isom(X) of X and let π be a group.

The space Hom(π, Isom(X)) has a natural topology (which is usually called
“algebraic topology” or “pointwise convergence topology”), namely ρk is said to
converge to ρ if, for each γ ∈ π, ρk(γ) converges to ρ(γ) in the Lie group Isom(X).
Note that if π is finitely generated, this topology on Hom(π, Isom(X)) coincides
with the compact-open topology.

Certainly, for any p ∈ X , the constant sequence (X, p) converges to itself in
pointed Lipschitz topology. Then, obviously, the sequence (X, p, ρk) converges
in the pointwise convergence topology (as defined in 2.2) if and only if ρk ∈
Hom(π, Isom(X)) converges in the algebraic topology.

2.4. Lemma. Let ρk : π → Isom(Xk) be a sequence of free, isometric actions of a
discrete group π on complete Riemannian n-manifolds Xk.

If the sequence (Xk, pk, ρk(π)) converges in the equivariant pointed Lipschitz
topology to (X, p, Γ) and (Xk, pk, ρk) converges to (X, p, ρ) in the pointwise con-
vergence topology, then

(1) Γ acts freely, and
(2) ρ is injective, and
(3) ρ(π) ⊂ Γ.

Proof. (1) Assume γ ∈ Γ and γ(x) = x. Choose ε ∈ (0, 1/10) so that there is an
ε–approximation (fk, gk, φk, τk) of (Xk, pk, ρk) and (X, p, Γ) and x ∈ B(p, ε/10).
Then gk(x) = gk(γ(x)) = τk(γ)(gk(x)). Since ρk(π) acts freely, τk(γ) = id. By the
same argument τk(id) = id. Hence id = φk(τk(id)) = φk(id) = φk(τk(γ)) = γ as
desired.

(2) Assume ρ(γ) = id. Fix any ε ∈ (0, 1/10). Take x ∈ B(p, ε/10) and consider
an ε–approximation (fk, gk, φk, τk) of (Xk, pk, ρk) and (X, p, Γ). We have gk(x) → x
and ρk(γ)(gk(x)) → ρ(γ)(x) = x. Note that d(x, φk(ρk(γ))(x)) is equal to

d(fk(gk(x)), fk(ρk(γ)(gk(x)))) < eεdk(gk(x), ρk(γ)(gk(x))) −→
k→∞

> 0.

Therefore, φk(ρk(γ)) = id, because Γ is a discrete subgroup that acts freely. Hence
ρk(γ) = τk(φk(ρk(γ))) = τk(id) = id. Since ρk is injective, γ = id as claimed.
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(3) We need to show that ρ(γ) ∈ Γ, for any γ ∈ π. We can assume ρ(γ) 6= id.
Choose ε ∈ (0, 1/10) so that the ball B(p, 1/11ε) contains ρ(γ)(p) and consider an
ε–approximation (fk, gk, φk, τk) of (Xk, pk, ρk) and (X, p, Γ).

Then for all large enough k, ρk(γ) ∈ B(pk, 1/10ε). Look at τk(ρk(γ)) ∈ Γ(1/9ε).
Since the set Γ(1/9ε) is finite, we can pass to a subsequence to assume that τk(ρk(γ))
is equal to γε ∈ Γ(1/9ε); thus ρk(γ) = φk(γε).

Take an arbitrary x ∈ B(p, 1/9ε). Then gk(x) → x and, hence, ρk(γ)(gk(x))
converges to ρ(γ)(x). Notice that ρk(γ)(gk(x)) = φk(γε)(gk(x)) → γε(x). So
ρ(γ)(x) = γε(x) for any x ∈ B(p, 1/9ε).

Thus, for any small enough ε, we have found γε ∈ Γ that is equal to ρ(γ) on the
ball B(p, 1/9ε). Since Γ acts freely, γε = γε′ for all ε′ ≤ ε, that is the element γε ∈ Γ
is independent of ε. Thus ρ(γ) = γε everywhere and hence ρ(γ) ∈ Γ.

§3. Main lemma

3.1. Proposition. Assume that π is a finitely presented discrete group, that is not
virtually nilpotent and does not have a nontrivial decomposition into an amalga-
mated product or an HNN-extension over a virtually nilpotent group.

Let ρk : π → Isom(Xk) be an arbitrary sequence of free and isometric actions of
π on Hadamard n-manifolds Xk. Assume that the sectional curvatures of Xk lie in
[−1, b] for b < 0.

Then, for some pk ∈ Xk, (Xk, pk, ρk(π)) is precompact in the equivariant pointed
Lipschitz topology and (Xk, pk, ρk) is precompact in the pointwise convergence topol-
ogy.

Proof. Let S ⊂ π be a finite subset that generates π. For x ∈ Xk, we denote by
Dk(x) the diameter of the set ρk(S)(x). Set Dk = infx∈Xk

Dk(x).
Suppose Dk is unbounded. Then it follows from a work of Bestvina and Paulin

[Bes], [P1], [P2] (cf. [KL]) that there exists an action of π on a real tree with
no global fixed point and virtually nilpotent arc stabilizers. For completeness we
briefly review this construction. The rescaled pointed Hadamard manifold 1

Dk
·Xk

has sectional curvature ≤ b · Dk → −∞ as k → ∞. Find qk ∈ Xk such that
Dk(qk) ≤ Dk + 1/k. Consider the sequence of triples ( 1

Dk
·Xk, qk, ρk). Repeating

an argument of Paulin [P2, §4], we can pass to a subsequence that converges to a
triple (X∞, q∞, ρ∞). (For the definition of the convergence see [P1], [P2]. Paulin
calls it “convergence in the Gromov topology”.)

The limit space X∞ is a length space of curvature −∞, that is a real tree.
Because of rescaling, the limit space has a natural isometric action ρ∞ of π. By the
Margulis lemma the stabilizer of any non-degenerate segment is virtually nilpotent
(cf. [P1]). One can check that the action ρ∞ has no global fixed point [P1], [P2].
Then it is a standard fact that there exists a unique π–invariant subtree T of X∞
that has no proper π–invariant subtree. In fact T is the union of all the axes of all
hyperbolic elements in π.

Note that any increasing sequence of virtually nilpotent subgroups of π is sta-
tionary. Indeed, since a virtually nilpotent group is amenable, the union U of an
increasing sequence U1 ⊂ U2 ⊂ U3 ⊂ . . . of virtually nilpotent subgroups is also an
amenable group. If the fundamental group of a complete manifold of pinched nega-
tive curvature is amenable, it must be finitely generated [BS], [Bow]. In particular,
U is finitely generated; hence Un = U for some n. Thus, the π–action on the tree
T is stable [BF, Proposition 3.2(2)].
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We summarize that the π–action on T is stable, has virtually nilpotent arc sta-
bilizers and no proper π–invariant subtree. Therefore, the Rips machine [BF, The-
orem 9.5] produces a splitting of π over a virtually solvable group. Any amenable
subgroup of π is virtually nilpotent [BS], [Bow]; hence π splits over a virtually nilpo-
tent group. This is a contradiction with the assumption that Dk is unbounded.

Thus the sequence Dk(qk) is bounded. As we observed in 1.2, the sequence
(Xk, qk, ρk) is precompact in the pointwise convergence topology since the sequence
Dk(qk) is bounded. Note that for any pk ∈ Xk such that dk(pk, qk) is bounded, the
sequence (Xk, pk, ρk) is also precompact in the pointwise convergence topology.

We now find pk ∈ Xk such that dk(pk, qk) is bounded and (Xk, pk, ρk) is pre-
compact in the equivariant pointed Lipschitz topology.

Let µn > 0 be the Margulis constant for dimension n. Set rk = Dk(qk) + 1.
Note that rk is a bounded sequence of positive numbers such that, for any γ ∈ S,
ρk(γ)(B(qk, rk)) ∩B(qk, rk) 6= ∅.

Assume that for some k and for every point x of the rk–ball centered at qk,
there exists γ ∈ π such that dk(x, ρk(γ)(x)) < µn/2. Then the whole ball B(qk, rk)
projects into the thin part {InjRad < µn/2} under the projection πk : Xk →
Xk/ρk(π). Thus the ball B(p, rk) lies in a connected component W of the πk–
preimage of the thin part of Xk/ρk(π). According to [BGS, p. 111] the stabilizer
of W in ρk(π) is virtually nilpotent and, moreover, the stabilizer contains every
element γ ∈ ρk(π) with γ(W )∩W 6= ∅. Therefore, the whole group ρk(π) stabilizes
W . Hence ρk(π) must be virtually nilpotent. As ρk is injective, π is virtually
nilpotent. A contradiction.

Thus, for every k, there exists pk ∈ B(qk, rk) such that the injectivity radius of
Xk/ρk(π) at the point πk(pk) is at least µn/2. Thus, by a theorem of Fukaya [F],
(X, pk, ρk(π)) is precompact in the equivariant pointed Lipschitz topology.

3.2. Remark. It is well-known that the fundamental group of a closed negatively
curved manifold of dimension ≥ 3 is not virtually nilpotent [Y] and does not split
over a virtually nilpotent group (the latter is an easy group cohomology exercise,
see for example [Bel]).

§4. Main theorem

4.1. Theorem. Let ρk : π → Isom(Xk) be a sequence of free, isometric and co-
compact actions of a discrete group π on complete Riemannian n-manifolds Xk.

Assume that for some pk ∈ Xk, (Xk, pk, ρk(π)) converges in the equivariant
pointed Lipschitz topology to (X, p, Γ) and that (Xk, pk, ρk) converges in the point-
wise convergence topology to (X, p, ρ). Suppose that the manifolds Xk and X are
contractible.

Then the sequence of manifolds {Xk/ρk(π)} converges to X/Γ in the Lipschitz
topology.

Proof. Since ρ(π) ⊂ Γ, the quotient map X → X/Γ factors through X/ρ(π). The
fundamental group of X/ρ(π) is isomorphic to π because X is contractible and ρ is
an isomorphism onto its image.

The manifolds Xk/ρk(π) and X/ρ(π) are aspherical and with fundamental groups
isomorphic to π. Hence, Xk/ρk(π) and X/ρ(π) are homotopy equivalent. Since
Xk/ρk(π) is compact, so is X/ρ(π) (look at Z2–top–dimensional homology). There-
fore, X/Γ is compact. Hence there exists a ball B(p, r) ⊂ X that projects onto X/Γ.
Take any ε so that r < 1/3ε.
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Take k so large that there is an ε–Lipschitz approximation (f̃k, g̃k, φk, τk) of
(Xk, pk, ρk(π)) and (X, p, Γ). The equivariant diffeomorphism g̃k : B(p, 1/3ε) →
Xk descends to a smooth embedding gk of a closed manifold X/Γ into the closed
manifold Xk/Γk. Similarly, f̃k descends to a smooth embedding fk : Xk/Γk → X/Γ
which is the inverse of gk. By construction gk and fk are ε–Lipschitz. Therefore,
Xk/Γk converges to X/Γ in the Lipschitz topology.

4.2. Corollary. Let ρk : π → Isom(Xk) be a sequence of free, isometric and co-
compact actions of a discrete group π on Hadamard n-manifolds Xk.

Assume that for some pk ∈ Xk, (Xk, pk, ρk(π)) converges in the equivariant
pointed Lipschitz topology to (X, p, Γ) and that (Xk, pk, ρk) converges in the point-
wise convergence topology to (X, p, ρ).

Then the sequence of manifolds {Xk/ρk(π)} converges to X/Γ in the Lipschitz
topology.

Proof. According to 4.1, it suffices to show that X is contractible. Indeed, any
spheroid in X lies in the diffeomorphic image of a metric ball in Xj . Any metric
ball in a Hadamard manifold is contractible. Thus π∗(X) = 1 as desired.

4.3. Corollary. For any number b ∈ [−1, 0) and a group π, the class Mn,b,π of
closed Riemannian manifolds of dimension n ≥ 3 with sectional curvatures in [−1, b]
and fundamental groups isomorphic to π is precompact in the Lipschitz topology.

Proof. Combine 3.1, 3.2 and 4.2.
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