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Abstract. We provide in this paper a direct and constructive proof of the
following fact: for a Banach space X there are bounded linear operators having
hypercyclic vectors if and only if X is separable and dim X = ∞. This is a
special case of a recent result, which in turn solves a problem proposed by
S. Rolewicz.

1. Introduction

In this paper (X, || · ||) will denote a Banach space on K = R (the real line) or C
(the complex plane). N is the set of positive integers and N0 = N ∪ {0}. Let B(X)
be the set of bounded linear operators from X into itself. If T ∈ B(X), then the
orbit of a vector x ∈ X is the set Orb (T, x) = {T nx : n ∈ N0}. A vector x ∈ X is
called hypercyclic for T if Orb (T, x) is dense in X or, in other words, there is no
proper closed T –invariant subset of X containing x. T is called hypercyclic if it has
a hypercyclic vector. Of course, if X supports such an operator, then X must be
separable. In addition, X must be infinite-dimensional; indeed, if T n is compact
for some n ∈ N, then T is not hypercyclic ([Ki, Theorem 4.2]; see also [Ro]). A
vector x ∈ X is said to be cyclic (supercyclic) for an operator T ∈ B(X) if the
linear span of Orb (T, x) (if the set {λy : y ∈ Orb (T, x), λ ∈ K}) is dense in X . An
operator T ∈ B(X) is cyclic (supercyclic) if it has a cyclic (a supercyclic) vector.
It is evident that hypercyclicity implies supercyclicity and this, in turn, implies
cyclicity. S. Rolewicz [Ro] was the first to isolate the concept of hypercyclicity.
He showed in 1969 that on lp (1 ≤ p ≤ ∞) or c0 there is a hypercyclic operator.
He proved in fact that any multiple of the backward shift on Hilbert space by a
scalar of modulus larger than one has hypercyclic vectors. Rolewicz also considered
hypercyclicity on some Fréchet spaces.

An easy consequence of Baire’s theorem is that a hypercyclic operator possesses
a dense Gδ (so residual) set of hypercyclic vectors (see [Ki, Theorem 2.1] and [GeS]).
In [GeS], R.M. Gethner and J.H. Shapiro studied hypercyclicity on Fréchet spaces
and, as a consequence of a useful criterion ([GeS, Theorem 2.2]; see also [Ki, The-
orem 1.4] and [Gr2]), obtained two classical theorems on entire functions; namely,
Birkhoff’s translation theorem [Bi] and MacLane’s differentiation theorem [Ma]. In
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[GoS], G. Godefroy and J.H. Shapiro obtained several results about cyclicity of
generalized backward shifts, supercyclicity of nonscalar adjoint multiplication op-
erators, hypercyclicity of certain operators in the Fréchet space H(Cn) of entire
functions on Cn, and many more.

C. Read [Re] has constructed a Banach space operator such that every nonzero
vector is hypercyclic. It is not known if such an example can exist on Hilbert space.
B. Beauzamy [Be1], [Be2] and [Be3] constructed examples of linear operators on
Hilbert spaces having dense, invariant linear manifolds all of whose nonzero ele-
ments are hypercyclic. P. S. Bourdon [Bo] has recently proved that any hypercyclic
operator T on a Banach space has a dense T -invariant linear manifold consisting,
except for zero, entirely of hypercyclic vectors. I. Halperin, C. Kitai and P. Rosen-
thal [HaKR] showed that any linearly independent denumerable set of vectors in
a separable infinite-dimensional Hilbert space is contained in the orbit of a hy-
percyclic vector. D.A. Herrero [He] proved that the algebra B(H) of all bounded
linear operators acting on a complex separable infinite-dimensional Hilbert space
H includes a large supply of chaotic (so hypercyclic) operators.

In 1969, S. Rolewicz [Ro, Problem 1] proposed the following problem: Does an
infinite-dimensional separable Banach space support a hypercyclic operator? In
[Hz], G. Herzog has characterized those (necessarily separable) Banach spaces X
which have supercyclic operators: dim X ∈ {0, 1, 2} or dim X = ∞ if K = R,
and dimX ∈ {0, 1} or dim X = ∞ if K = C. To prove this, he used methods
of the theory of universal functions developed by K.G. Große-Erdmann [Gr1]. He
also cleverly used a result due to R.I. Ovsepian and A. Pelczyński (see Theorem 2
below) about biorthogonal systems on Banach spaces. The operator furnished by
G. Herzog in [Hz] is compact, so it cannot be hypercyclic. The answer to Rolewicz’s
problem has been recently given in the affirmative in [An2]. In fact, much more is
proved there. A corollary of the main result in [An2] is that any infinite-dimensional
Fréchet space admits a hypercyclic operator. The main result is demonstrated by
introducing the concepts of l1-complete space, locally l1-convex space and quasi-
extension of l1-operators, and then “translating” the problem to l1(N), for which
H. N. Salas [Sa, Section 3] showed that identity plus a unilateral backward weighted
shift with positive weights is hypercyclic. Nevertheless, we believe that a direct and
constructive proof of the solution of Rolewicz’s problem (at least for Banach spaces)
can be of some interest for Banach analysts. Our technique will be similar to that
used by H. N. Salas [Sa, Section 3]. Our result has been obtained independently of
[An2].

To finish this section, we state the result to be proved:

Theorem 1. Let X be an infinite-dimensional separable Banach space. Then there
is T ∈ B(X) such that T is hypercyclic.

2. Preliminary results

We will need two known facts for the proof of Theorem 1. The first one can be
found in [OP]. The second one deals with Toeplitz matrices and is proved in the
previously mentioned paper of Salas [Sa, Lemma 3.2].

Theorem 2. If X is an infinite-dimensional separable Banach space, then there is
a sequence {ep}∞0 ⊂ X and a sequence {ϕq}∞0 ⊂ X∗ with the following properties:

a) ϕq(ep) = δpq ∀p, q ∈ N0.
b) span {ep : p ∈ N0} = X.
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c) If ϕq(x) = 0 ∀q ∈ N0, then x = 0.
d) ||ep|| = 1 ∀p ∈ N0 and supq∈N0

||ϕq|| = C < ∞.

Lemma 3. Let Cn = (cij(n)) be the 2k × 2k matrix whose entries cij(n) are the
combinatory numbers

(
n

2k+j−i

)
. Let Bn = (bi(n)) be a column vector such that bi(n)

is a polynomial in n of degree at most 2k − i (i = 1, 2, ..., 2k). Then for n large
enough there is a solution Xn = (xi(n)) of the equation Bn = CnXn and the entries
xi(n) satisfy |xi(n)| ≤ P/ni, where P = P (k) is a constant.

3. Proof of the main result

We now prove Theorem 1. Fix a sequence {ap}∞1 of positive real numbers such
that the series

∑∞
1 ap converges. Define the self-mapping S : X → X by

Sx =
∞∑

p=0

ap+1ϕp+1(x)ep ∀x ∈ X

where {ep}∞0 and {ϕp}∞0 are furnished by Theorem 2. From property d) in that
theorem, it follows that S ∈ B(X) (in fact ||S|| ≤ C

∑∞
1 ap). Let I be the identity

operator on X . We will show that the operator T = I + S is hypercyclic.
From property b) in Theorem 2, we can select a dense sequence {zk}∞1 in X of the

form zk =
∑2k−1

i=0 zi,kei (k ∈ N) for suitable scalars zi,k (k ∈ N; i = 0, 1, ..., 2k − 1).
We proceed by induction in order to construct an increasing sequence {nj}∞1 and

vectors yj =
∑2j+1−1

i=2j biei ∈ X (j ∈ N) satisfying

||yj || ≤ 2−j(1 + ||T ||)−nj−1(1)

and

||T nj (
j∑

p=1

yp)− zj|| ≤ 2−j.(2)

Assume just for a moment that the integers nj and the vectors yj (j ∈ N) have
been found. Define y =

∑∞
j=1 yj . We are going to show that y is hypercyclic for

T . Indeed, since {zk} is dense in X , it suffices to prove that lim
k→∞

||T nky − zk|| = 0.

But this follows from (1), (2) and the next chain of inequalities:

||T nky − zk|| ≤ ||T nk(
k∑

j=1

yj)− zk||+ ||
∞∑

j=k+1

T nkyj ||

≤ 2−k +
∞∑

j=k+1

||T nk || · ||yj ||

≤ 2−k +
∞∑

j=k+1

2−j(1 + ||T ||)nk(1 + ||T ||)−nj−1 ≤ 2−k+1.

Thus the theorem would be proved.
Firstly, observe that T n =

∑n
r=0

(
n
r

)
Sr, where S0 = I. Moreover, note that,

by property a) in Theorem 2, Sei = aiei−1 for i ∈ N and Se0 = 0, so Smes =
(
∏s

l=s−m+1 al)es−m if m ≤ s and = 0 otherwise, for each m ∈ N. Let us try to find
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numbers x1, x2 ∈ K and n ∈ N such that ||T n(x1e2 + x2e3) − z1|| ≤ 1/2. We have
that

T n(x1e2 + x2e3)− z1 = (x1 + na3x2)e2 + x2e3

+ [
(

n

2

)
a1a2x1 +

(
n

3

)
a1a2a3x2− z0,1]e0 + [

(
n

1

)
a2x1 +

(
n

2

)
a2a3x2− z1,1]e1 = 0.

We now impose for both square brackets to be zero or, equivalently,

ϕp(T n(x1e2 + x2e3)− z1) = 0 (p = 0, 1).

Then we get the linear system(
n

2

)
x1 +

(
n

3

)
a3x2 =

z0,1

a1a2
,

(
n

1

)
x1 +

(
n

2

)
a3x2 =

z1,1

a2
.

Its matrix with respect to x1, u2 (where u2 = a3x2) is the matrix Cn of Lemma 3
for k = 1. Then there is a constant P such that |x1| ≤ P/n and |u2| ≤ P/n2 for
n large enough. Thus, we can take n = n1 ∈ N satisfying ||x1e2 + x2e3|| ≤ 1/2,
||(x1+n1a3x2)e2+x2e3|| ≤ 1/2 and, consequently, ||T n1(x1e2+x2e3)−z1|| ≤ 1/2, as
required. Set b2 = x1, b3 = x2 and y1 = b2e2+b3e3. Then ||y1|| ≤ (1/2)(1+||T ||)−n0

and ||T n1(y1) − z1|| ≤ 1/2, where n0 = 0. This completes the first step of the
induction.

In order to make the process clearer, we also describe the second step of the
induction. We now try to find numbers x1, x2, x3, x4 ∈ K and n ∈ N such that

||T n(y1) +
4∑

i=1

xie4+i−1 − z2|| ≤ 1/4(3)

and

||
4∑

i=1

xie4+i−1|| ≤ (1/4)(1 + ||T ||)−n1 .(4)

With this we will define y2 =
∑4

i=1 xie4+i−1. Again we want

ϕp(T n(y1 + y2)− z2) = 0(5)

for p = 0, 1, 2, 3. Then

T n(y1 + y2)− z2 = x1e4 + x2[e5 +
(

n

1

)
a5e4] + x3[e6 +

(
n

1

)
a6e5 +

(
n

2

)
a6a5e4]

+x4[e7 +
(

n

1

)
a7e6 +

(
n

2

)
a7a6e5 +

(
n

3

)
a7a6a5e4].

Thus

||T n(y1 + y2)− z2|| ≤
4∑

i=1

|xi||Qi(n)|(6)
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where Qi(n) is a polynomial of degree i− 1 in n. Condition (5) is equivalent to the
system of linear equations(

n

4

)
x1 +

(
n

5

)
a5x2 +

(
n

6

)
a6a5x3 +

(
n

7

)
a7a6a5x4 = d1(n),

(
n

3

)
x1 +

(
n

4

)
a5x2 +

(
n

5

)
a6a5x3 +

(
n

6

)
a7a6a5x4 = d2(n),

(
n

2

)
x1 +

(
n

3

)
a5x2 +

(
n

4

)
a6a5x3 +

(
n

5

)
a7a6a5x4 = d3(n),

(
n

1

)
x1 +

(
n

2

)
a5x2 +

(
n

3

)
a6a5x3 +

(
n

4

)
a7a6a5x4 = d4(n),

where

d1(n) = (1/a1a2a3a4)[−b2

(
n

2

)
a2a1 − b3

(
n

3

)
a3a2a1 − z0,2],

d2(n) = (1/a2a3a4)[−b2

(
n

1

)
a2 − b3

(
n

2

)
a3a2 − z1,2],

d3(n) = (1/a3a4)[−b2 − b3

(
n

1

)
a3 − z2,2],

d4(n) = (1/a4)[−b3 − z3,2].

Set x1 = u1, x2a5 = u2, x3a6a5 = u3, x4a7a6a5 = u4, and observe that di(n) is
a polynomial of degree 4 − i, thus Lemma 3 can be applied for k = 2. Therefore
|ui| ≤ P/ni and consequently |xi| ≤ Q/ni for another constant. By choosing n
large enough, we have that (4) is satisfied. Since we also have (5), it follows that
(3) and (6) are also satisfied. Now set x1 = b4, x2 = b5, x3 = b6, x4 = b7 and we
have y2 =

∑7
i=4 biei.

Define, for the sake of convenience, b0 = b1 = 0. Assume now that n0 = 0 < n1 <
... < nk−1 and y1, ..., yk−1 have been chosen such that (1) and (2) hold. Consider
the linear system

ϕp

T n(
k−1∑
j=1

yj +
2k∑
i=1

xie2k+i−1)− zk

 = 0 (p = 0, 1, ..., 2k − 1).(7)

Observe that, for each p ∈ {0, 1, ..., 2k − 1}, the left-hand side of (3) is

2k∑
j=1

xjϕp(T ne2k+j−1)− ϕp(zk) +
k−1∑
j=1

2j+1−1∑
q=2j

ϕp(T nbqeq) =
2k∑

j=1

xj [ϕp(e2k+j−1)

+
n∑

q=1

(
n

q

)
ϕp(Sqe2k+j−1)]− zp,k +

2k−1∑
q=2

bq[ϕp(eq) +
n∑

r=1

(
n

r

)
ϕp(Sreq)]

(use now that p ≤ 2k − 1 and take n ≥ 2k+1)
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=
2k∑

j=1

xj

2k+j−1∑
q=1

(
n

q

)
(

2k+j−1∏
r=2k+j−q

ar) · ϕp(e2k+j−1−q)− zp,k + bp

+
2k−1∑
q=2

bq

q∑
r=1

(
n

r

)
(

q∏
l=q−r+1

al)δp,q−r

=
2k∑

j=1

xj

(
n

2k + j − 1− p

)
(
2k+j−1∏
r=p+1

ar)− zp,k + bp + αp,

where αp = 0 if p = 2k − 1 and αp =
2k−1∑

q=p+1

bq

(
n

q − p

) q∏
l=p+1

al if p < 2k − 1. By

putting i = p + 1 for i ∈ {1, ..., 2k}, the matrix of (3) with respect to x1, ..., x2k is

the 2k × 2k matrix with entries dij =
(

n

2k + j − i

)
·
2k+j−1∏

r=i

ar. As shown in [Sa],

the finite products of weights ar do not affect the estimation of solutions x1, ..., x2k ,
so Lemma 3 can be applied. This is so because αp (= αi−1) is a polynomial in n
of degree not greater than max{q − i + 1 : q ≤ 2k − 1} = 2k − i.

We conclude that if n is large enough the solutions satisfy |xi| ≤ P/ni, where
P = P (k) is a constant. We have arrived at the following:

T n(
k−1∑
j=1

yj +
2k∑
i=1

xie2k+i−1)− zk =
2k−1∑
q=2

bq(
n∑

j=0

(
n

j

)
Sj)eq

+
2k∑

q=1

(
n∑

j=q

(
n

j

)
Sj)xqe2k+q−1 −

2k−1∑
q=0

zq,keq +
2k∑

q=1

(
q−1∑
j=0

(
n

j

)
Sj)xqe2k+q−1

=
2k∑

q=1

(
q−1∑
j=0

(
n

j

)
Sj)xqe2k+q−1,

because, from (7), all coefficients in the {ep}∞0 –expansion of the left-hand side are
zero for p = 0, 1, ..., 2k− 1. Thus, from property d) in Theorem 2, it is derived that

||T n(
k−1∑
j=1

yj +
2k∑

i=1

xie2k+i−1)− zk|| ≤
2k∑

q=1

(
q−1∑
j=0

(
n

j

)
||S||j)||xq|| ≤ Q/n

for another constant Q = Q(k).
Choose nk ∈ N large enough in such a way that |xi(nk)| ≤ 4−k(1 + ||T ||)−nk−1

(i = 1, ..., 2k − 1) and nk > max{2kQ, nk−1}. Set xi = b2k+i−1 (i = 1, ..., 2k) and

yk =
2k+1−1∑

i=2k

biei. Then ||yk|| ≤ 2−k(1+ ||T ||)−nk−1 and ||T nk(
∑k

j=1 yj)−zk|| ≤ 2−k.

This is (1) and (2) for j = k. The theorem is now completely proved.

Corollary 4. Let X be an infinite-dimensional separable Banach space and {ep}∞0 ,
{ϕq}∞0 sequences as in Theorem 2. Assume that {ap}∞1 ⊂ (0, +∞) is a sequence
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satisfying
∑∞

1 ap < 1
C . Then the operator L ∈ B(X) given by

Lx = x +
∞∑

n=1

∞∑
k=0

(−1)n(
k+n∏

j=k+1

aj)ϕk+n(x)ek

is hypercyclic.

Proof. If T = I+S is the operator defined in the proof of Theorem 1, then ||S|| < 1,
so T is invertible. Then T−1 is also hypercyclic (see [Ki] and [HeK]). But T−1 =
(I − (−S))−1 = I +

∑∞
n=1(−1)nSn = L, and we are done.

4. Final remarks and open problems

Note that the operator T = I + S of Theorem 1 is a compact perturbation of
identity, because S is compact. Indeed, S is a norm limit in B(X) of a sequence
of operators with finite-dimensional range. Property c) of {ϕq} (Theorem 2) has
not been used in our proof. G. Herzog does not use it either in the proof of his
theorem on supercyclicity [Hz]. We also remark that every power T n (n ∈ N) of our
operator T = I +S is also hypercyclic. This is due to a recent result of S. I. Ansari
[An1]. To finish, we propose two up-to-date open problems:

1. What are the Banach spaces that admit hypercyclic operators not of the form
T = I + S with S compact?

2. Is it possible to do in Banach spaces what Halperin, Kitai and Rosenthal did
in Hilbert spaces: Given a denumerable set of vectors, find an operator and a vector
whose orbit contains such a set?
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