ON THE NUMBER OF SOLUTIONS OF AN ALGEBRAIC EQUATION ON THE CURVE $y=e^{x}+\sin x, x>0$, AND A CONSEQUENCE FOR O-MINIMAL STRUCTURES

JANUSZ GWOŹDZIEWICZ, KRZYSZTOF KURDYKA, AND ADAM PARUSIŃSKI

(Communicated by Steven R. Bell)

Abstract

We prove that every polynomial $P(x, y)$ of degree d has at most $2(d+2)^{12}$ zeros on the curve $y=e^{x}+\sin (x), \quad x>0$. As a consequence we deduce that the existence of a uniform bound for the number of zeros of polynomials of a fixed degree on an analytic curve does not imply that this curve belongs to an o-minimal structure.

Main result

The aim of this note is to estimate the number of real solutions of the system

$$
\begin{equation*}
P(x, y)=0, \quad y=e^{x}+\sin (x), \quad x>0, \tag{1}
\end{equation*}
$$

where $P(x, y)$ is a non-zero polynomial of degree d. As we prove below we have the following bound.

Theorem 1. The number of solutions of the system (1) is not greater than $A(d)=$ $2(d+2)^{12}$.

Clearly the condition $x>0$ in (1) cannot be omitted. For instance the x-axis intersects the graph $y=e^{x}+\sin (x)$ infinitely many times for $x<0$.

Using Theorem 1 it is easy to construct a global analytic function with a similar behavior.

Corollary 2. The number of solutions of the system

$$
\begin{equation*}
P(x, y)=0, \quad y=e^{x^{2}}+\sin \left(x^{2}\right), \tag{2}
\end{equation*}
$$

is less than or equal to $2 A(2 d)$.
Proof. Take a polynomial $P(x, y)$ of degree d and eliminate the variable x from the equations $P(x, y)=0, x^{2}=v$. The resultant $R(v, y)=\operatorname{Res}_{x}\left(P(x, y), x^{2}-v\right)$ is a polynomial of degree $\leq 2 d$ in variables v, y.

If (x, y) is a solution of the system (2), then (v, y), where $v=x^{2}$, is a solution of the system

$$
R(v, y)=0, \quad y=e^{v}+\sin (v), \quad v \geq 0
$$

[^0]Therefore by Theorem 1 the number of solutions of system (2) is not greater than $2 A(2 d)$.

In the end of this note we give an application of Theorem 1 to the theory of o-minimal structures. This application was our original motivation to study the above question.

Proof of the Theorem

First we will show that it is enough to prove Theorem 1 for $P(x, y)=0$ being smooth. We use the following
Lemma 3. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be an analytic function such that $\#\{x: f(x)=$ $\epsilon\} \leq A$ for sufficiently small $|\epsilon| \neq 0$. Then $\#\{x: f(x)=0\} \leq A$.
Proof. We adopt here the proof of Lemma 4.2.6 in $[\mathrm{BR}]$. Suppose first that $\#\{x: f(x)=0\}$ is finite. We divide the set of zeros of f into: n_{1} zeros of odd multiplicity, n_{2} local minima and n_{3} local maxima.

Taking $\epsilon>0$ if $n_{2} \geq n_{3}$ and $\epsilon<0$ if $n_{2}<n_{3}$ it is easily seen that

$$
\#\{x: f(x)=0\}=n_{1}+n_{2}+n_{3} \leq \#\{x: f(x)=\epsilon\} \leq A
$$

Note that the same argument shows that $\#\{x: f(x)=0\}$ is finite provided A is also.

Now fix a polynomial $P(x, y)$ of degree d and assume that 0 is a critical value of P. Since the polynomials have only finitely many critical values, for sufficiently small $|\epsilon| \neq 0$, the curve $P(x, y)=\epsilon$ is smooth. Suppose that the estimate of Theorem 1 holds true for $P(x, y)-\epsilon$, that is $\#\{x: f(x)=\epsilon, x>0\} \leq A(d)$ for $f(x)=P\left(x, e^{x}+\sin (x)\right)$. By Lemma $3 \#\{x: f(x)=0, x>0\} \leq A(d)$, and therefore Theorem 1 holds true for $P(x, y)$ as well.

From now on we assume that $P(x, y)=0$ is a smooth curve.
Step 1. A bound on the number of connected components of the set

$$
C=\left\{(x, y): P(x, y)=0, e^{x}-1 \leq y \leq e^{x}+1\right\}
$$

First we estimate the number of intersections of the curve $P(x, y)=0$ with the graphs $y=e^{x}+1$ and $y=e^{x}-1$. This is precisely the number of solutions of equations $P\left(x, e^{x}+1\right)=0$ and $P\left(x, e^{x}-1\right)=0$. By Khovansky's theorem, see for instance [BR, 4.1.1],

$$
\#\left\{x: P\left(x, e^{x}+1\right)=0\right\}+\#\left\{x: P\left(x, e^{x}-1\right)=0\right\} \leq 2 d(d+1)
$$

Since the curve $P(x, y)=0$ is smooth, it is a finite union of topological ovals and intervals. By Harnack's theorem [BR, 4.4.4, 5.3.2] their number is not greater than $\left(d^{2}-d+2\right) / 2$. Hence $\#($ connected components of $C) \leq\left(d^{2}-d+2\right) / 2+2 d(d+1)=$ $\left(5 d^{2}+3 d+2\right) / 2$.
Step 2. A bound on the "size" of a connected component of C.
Denote

$$
L=d(d+1)^{2}(d+2)^{2} \ln 2 / 4+(d+1)^{4}(d+2)^{3} / 8
$$

This part of the proof is based on
Lemma 4. Assume that points $\left(0, y_{1}\right),\left(x_{2}, y_{2}\right)$ belong to the same component of C. Then $x_{2} \leq L$.

The proof of Lemma 4 is given in the next section. Lemma 4 has the following consequence.

Corollary 5. Assume that points $\left(a, c_{1}\right),\left(b, c_{2}\right)$, where $0 \leq a \leq b$, belong to the same component of C. Then $b-a \leq L$.

Proof. Assume that points $\left(a, c_{1}\right),\left(b, c_{2}\right), 0 \leq a \leq b$, belong to the same component of the set C. It is easy to see that there exist (possibly different than $\left.\left(a, c_{1}\right),\left(b, c_{2}\right)\right)$ points $\left(a, d_{1}\right),\left(b, d_{2}\right) \in C$ and a connected set $D \subset C \cap\{(x, y): a \leq x \leq b\}$ joining them. We shall write D and C in a new system of coordinates \bar{x}, \bar{y} such that $x=\bar{x}+a, y=e^{a} \bar{y}$.

For every point $(x, y) \in D$ we have

$$
P(x, y)=0, \quad e^{x}-1 \leq y \leq e^{x}+1, \quad a \leq x \leq b
$$

Therefore in the new coordinates

$$
P\left(\bar{x}+a, e^{a} \bar{y}\right)=0, \quad e^{\bar{x}+a}-1 \leq e^{a} \bar{y} \leq e^{\bar{x}+a}+1, \quad a \leq \bar{x}+a \leq b
$$

and consequently

$$
\bar{P}(\bar{x}, \bar{y})=0, \quad e^{\bar{x}}-1 \leq \bar{y} \leq e^{\bar{x}}+1, \quad 0 \leq \bar{x} \leq b-a,
$$

where $\bar{P}(\bar{x}, \bar{y})=P\left(\bar{x}+a, e^{a} \bar{y}\right)$.
Set $\bar{C}=\left\{(\bar{x}, \bar{y}): \bar{P}(\bar{x}, \bar{y})=0, e^{\bar{x}}-1 \leq \bar{y} \leq e^{\bar{x}}+1\right\}$ and $\bar{D}=\{(\bar{x}, \bar{y}):$ $\left.\left(\bar{x}+a, e^{a} \bar{y}\right) \in D\right\}$. As we have already checked, \bar{D} is a subset of \bar{C}. It is also clear that \bar{D} is connected and that points $\left(0, e^{-a} d_{1}\right),\left(b-a, e^{-a} d_{2}\right)$ belong to \bar{D}. Consequently, $b-a \leq L$ follows easily from Lemma 4.

Step 3. A bound on the number of intersections of a connected component $D \subset C$ with the graph $y=e^{x}+\sin (x), x>0$.

Let D be a fixed connected component of C. From Corollary 5 it follows that there are constants $0 \leq a \leq b, b-a \leq L$ such that for all $(x, y) \in D, x>0$, we have $a \leq x \leq b$.

In particular, the number of intersections of D with the graph $y=e^{x}+\sin (x)$, $x>0$, is not greater than the number of solutions of the system

$$
P\left(x, e^{x}+\sin (x)\right)=0, \quad a \leq x \leq b
$$

By a theorem of Khovansky [K2, 1.4] this number is $\leq 4 d(d+2)^{2}(b-a) / \pi \leq$ $4 d(d+2)^{2} L / \pi$.

Now we are ready to finish the proof. It is clear that all solutions of (1) belong to C. In Step 3 we have estimated the number of solutions of (1) which belong to a given connected component of C. In Step 1 we have bounded a number of connected components of C. Summing up, the number of solutions of (1) is less than or equal to

$$
\begin{gathered}
\left(4 d(d+2)^{2} L / \pi\right)\left(\left(5 d^{2}+3 d+2\right) / 2\right)= \\
d(d+1)^{2}(d+2)^{4}\left(5 d^{2}+3 d+2\right)\left(d \ln 4+(d+1)^{2}(d+2)\right) / \pi \leq 2(d+2)^{12}
\end{gathered}
$$

Proof of Lemma 4

Suppose, contrary to our claim, that there exists a connected component D of the set $C=\left\{(x, y): P(x, y)=0, e^{x}-1 \leq y \leq e^{x}+1\right\}$ joining two points $\left(0, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ such that $x_{2}>L$ where $L=d(d+1)^{2}(d+2)^{2} \ln 2 / 4+(d+1)^{4}(d+2)^{3} / 8$.

Put $n=(d+1)(d+2) / 2, t=n d \ln 2+n^{2}(d+1)$. We have $L=n t$. Let v_{i} be the vertical segment $\left\{(x, y): x=i t, e^{x}-1 \leq y \leq e^{x}+1\right\}$. For each $i=1, \ldots, n$ we have $0<i t<x_{2}$. Since D is connected, it must intersect each segment $v_{i}(i=1, \ldots, n)$. Thus for each $i=1, \ldots, n$ there exists ϵ_{i} such that $P\left(i t, e^{i t}+\epsilon_{i}\right)=0$ and $\left|\epsilon_{i}\right| \leq 1$.

Writing the polynomial P as a sum of monomials $P(x, y)=\sum_{k+l \leq d} a_{k l} x^{k} y^{l}$ we get a square system of n linear equations

$$
\begin{equation*}
\sum_{k+l \leq d} a_{k l}(i t)^{k}\left(e^{i t}+\epsilon_{i}\right)^{l}=0, \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

with respect to coefficients $a_{k l}$.
To get a contradiction it is enough to check that the determinant of this system does not vanish. Indeed, in this case the system (3) has only the zero solution $P \equiv 0$.

To compute this determinant we arrange the set of indices $\left\{(k, l) \in \mathbb{N}_{0}^{2}: k+l \leq d\right\}$ in a sequence $\left\{\left(\alpha_{i}, \beta_{i}\right)\right\}_{1 \leq i \leq n}$ ordered as follows: if $i<j$, then $\beta_{i}<\beta_{j}$ or $\beta_{i}=\beta_{j}$ and $\alpha_{i}<\alpha_{j}$.

This sequence splits in a natural way into $d+1$ subsequences. In each of them the numbers β_{i} are constant. More precisely, there exists a partition $N_{0} \cup \cdots \cup N_{d}=$ $\{1, \ldots, n\}$ such that

$$
\beta_{j}=i, \quad 0 \leq \alpha_{j} \leq d-i \quad \text { for } j \in N_{i}, \quad i=0, \ldots, d
$$

The determinant $D=\operatorname{det}\left((i t)^{\alpha_{j}}\left(e^{i t}+\epsilon_{i}\right)^{\beta_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}$ of the system (3) is by definition equal to

$$
\begin{aligned}
D & =\sum_{\sigma \in \operatorname{Perm}\{1, \ldots, n\}} \operatorname{sgn}(\sigma)(\sigma(1) t)^{\alpha_{1}}\left(e^{\sigma(1) t}+\epsilon_{\sigma(1)}\right)^{\beta_{1}} \cdots(\sigma(n) t)^{\alpha_{n}}\left(e^{\sigma(n) t}+\epsilon_{\sigma(n)}\right)^{\beta_{n}} \\
& =t^{s} \sum_{\sigma \in \operatorname{Perm}\{1, \ldots, n\}} \operatorname{sgn}(\sigma) \sigma(1)^{\alpha_{1}} \cdots \sigma(n)^{\alpha_{n}}\left(e^{\sigma(1) t}+\epsilon_{\sigma(1)}\right)^{\beta_{1}} \cdots\left(e^{\sigma(n) t}+\epsilon_{\sigma(n)}\right)^{\beta_{n}} .
\end{aligned}
$$

Here $s=\sum_{i=1}^{n} \alpha_{i}$. Write $D=W t^{s}$ i.e.

$$
W=\sum_{\sigma \in \operatorname{Perm}\{1, \ldots, n\}} \operatorname{sgn}(\sigma) \sigma(1)^{\alpha_{1}} \cdots \sigma(n)^{\alpha_{n}}\left(e^{\sigma(1) t}+\epsilon_{\sigma(1)}\right)^{\beta_{1}} \cdots\left(e^{\sigma(n) t}+\epsilon_{\sigma(n)}\right)^{\beta_{n}} .
$$

Put $K=\max _{\sigma \in \operatorname{Perm}\{1, \ldots, n\}} \sum_{i=1}^{n} \sigma(i) \beta_{i}$ and let $S_{K} \subset \operatorname{Perm}\{1, \ldots, n\}$ be the set of permutations satisfying the condition: $\sigma \in S_{K}$ iff $\sum_{i=1}^{n} \sigma(i) \beta_{i}=K$.

Denote

$$
W_{1}=\sum_{\sigma \in S_{K}} \operatorname{sgn}(\sigma) \sigma(1)^{\alpha_{1}} \cdots \sigma(n)^{\alpha_{n}}\left(e^{\sigma(1) t}\right)^{\beta_{1}} \cdots\left(e^{\sigma(n) t}\right)^{\beta_{n}} .
$$

For every $\sigma \in S_{K}$ we have $\left(e^{\sigma(1) t}\right)^{\beta_{1}} \cdots\left(e^{\sigma(n) t}\right)^{\beta_{n}}=e^{K t}$ and consequently $W_{1}=$ $e^{K t} W_{2}$, where

$$
W_{2}=\sum_{\sigma \in S_{K}} \operatorname{sgn}(\sigma) \sigma(1)^{\alpha_{1}} \cdots \sigma(n)^{\alpha_{n}}
$$

Let us introduce a notation. Consider a non-empty subset A of $\{1, \ldots, n\}$. $\operatorname{By} \operatorname{Perm}(A)$ we denote the set of all $\sigma \in \operatorname{Perm}\{1, \ldots, n\}$ such that $\sigma(i)=i$ for $i \in\{1, \ldots, n\} \backslash A$.

In further computations the following description of S_{K} will be useful.
Lemma 5. Every permutation $\sigma \in S_{K}$ admits a decomposition $\sigma=\sigma_{0} \cdots \sigma_{d}$ where $\sigma_{i} \in \operatorname{Perm}\left(N_{i}\right)$ for $i=0, \ldots, d$. Moreover, such a decomposition is unique.

We omit a purely combinatorial proof of this lemma. By Lemma 5

$$
W_{2}=\prod_{k=0}^{d} \sum_{\sigma_{k} \in \operatorname{Perm}\left(N_{k}\right)} \operatorname{sgn}\left(\sigma_{k}\right) \prod_{i \in N_{k}} \sigma_{k}(i)^{\alpha_{i}}=\prod_{k=0}^{d} \operatorname{det}\left(i^{j}\right)_{i \in N_{k}, 0 \leq j \leq d-k} .
$$

Each determinant in this product is the classical Vandermonde determinant of pairwise distinct integers and hence is a non-zero integer. Therefore W_{2} being their product is a non-zero integer. As a consequence

$$
\begin{equation*}
\left|W_{1}\right| \geq e^{K t} \tag{4}
\end{equation*}
$$

Now we estimate the difference $W-W_{1}$. From definitions of W and W_{1} follows that this number is a sum of at most $2^{s} n$! terms of the form

$$
\pm \sigma(1)^{\alpha_{1}} \cdots \sigma(n)^{\alpha_{n}} e^{K^{\prime} t} \epsilon_{1}^{\gamma_{1}} \cdots \epsilon_{n}^{\gamma_{n}}
$$

Here $s=\sum_{i=1}^{n} \alpha_{i}$ and $\gamma_{1}, \ldots, \gamma_{n}$ are non-negative integers, $K^{\prime}<K$. The absolute value of each term of the sum is not greater than $(n!)^{d} e^{(K-1) t}$. Hence

$$
\begin{equation*}
\left|W-W_{1}\right| \leq 2^{s}(n!)^{(d+1)} e^{(K-1) t} \tag{5}
\end{equation*}
$$

We have two obvious inequalities: $s=\sum_{i=1}^{n} \alpha_{i} \leq n d$ and $n!<e^{n^{2}}$. Hence $2^{s}(n!)^{(d+1)}<e^{s \ln 2}\left(e^{n^{2}}\right)^{d+1} \leq e^{n d \ln 2+n^{2}(d+1)}=e^{t}$.

By (4) and (5) we have

$$
\begin{aligned}
|W| & \geq\left|W_{1}\right|-\left|W-W_{1}\right| \geq e^{K t}-2^{s}(n!)^{(d+1)} e^{(K-1) t} \\
& =e^{(K-1) t}\left(e^{t}-2^{s}(n!)^{(d+1)}\right)>0
\end{aligned}
$$

The last inequality shows that the determinant D of the system (3) is non-zero and gives us a contradiction, as desired.

Motivations

Theorem 1 should be understood in the context of Khovansky's theory [K1], [K2]. Our motivation and inspiration for this problem comes from the theory of o-minimal structures. By an o-minimal structure on $(\mathbb{R},+, \cdot)$ we mean a collection $\mathcal{M}=\bigcup_{n \in \mathbb{N}} \mathcal{M}_{n}$, where each \mathcal{M}_{n} is a family of subsets of \mathbb{R}^{n} such that:
(1) each \mathcal{M}_{n} is closed under finite set-theoretical operations;
(2) if $A \in \mathcal{M}_{n}$ and $B \in \mathcal{M}_{m}$, then $A \times B \in \mathcal{M}_{n+m}$;
(3) let $A \in \mathcal{M}_{n+m}$ and $\pi: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ be a projection on the first n coordinates; then $\pi(A) \in \mathcal{M}_{n}$;
(4) every semialgebraic subset of \mathbb{R}^{n} belongs to \mathcal{M}_{n};
(5) \mathcal{M}_{1} consists of all finite unions of open intervals and points.

O-minimal structures, invented by model theorists, are natural and important extensions of semialgebraic (or more general subanalytic) geometry. We mention here only two important examples of o-minimal structures; more details and examples can be found in $[\mathrm{DM}]$. Wilkie [W] proved (using results of Khovansky [K1])
that by adding to semialgebraic sets the graph of an exponential function one gets an o-minimal structure (called $\mathbb{R}_{\text {exp }}$). A similar extension of global subanalytic sets was done by L. van den Dries, A. Macintyre, D. Marker in [DMM].

Let \mathcal{M} be an o-minimal structure on $(\mathbb{R},+, \cdot)$. The following important finiteness property (see [DM], [vD]) can be obtained from a result of Pillay, Steinhorn, and Knight [PS], [KPS]:

Theorem KPS. Let \mathcal{M} be an o-minimal structure. Suppose that $A \in \mathcal{M}_{n+m}$ and denote by $\pi: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ the projection on the first n coordinates. Then there exists $N \in \mathbb{N}$ such that for each $x \in \mathbb{R}^{n}$ the fiber $\pi^{-1}(x) \cap A$ has at most N connected components.

Let us consider the following problem:
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ (or more generally $f:(a, \infty) \rightarrow \mathbb{R})$ be an analytic function. What conditions on f would guarantee that the graph of f belongs to an o-minimal structure?

Using the fact that the space of polynomials in 2 variables of degree $\leq d$ is of finite dimension, we get easily from theorem KPS the following necessary condition: $(*)$ For each $d \in \mathbb{N}$ there is $A(d) \in \mathbb{N}$ such that if $P(x, y)$ is a non-zero polynomial of degree d, then the number of isolated solutions of the system

$$
P(x, y)=0, \quad y=f(x), \quad x>a
$$

is not greater than $A(d)$.
One may conjecture that $(*)$ is also a sufficient condition, but this is not the case. Actually $f(x)=e^{x}+\sin x, x>0$, is a counter-example. Indeed, by Theorem $1, f$ satisfies $(*)$ with $A(d) \sim 2 d^{12}$. Suppose, contrary to our claim, that the graph of f belongs to some o-minimal structure \mathcal{M}. This would imply (see $[\mathrm{DM}]$) that the derivative f^{\prime} belongs to \mathcal{M}. Hence the graph of $\sin x-\cos x=f(x)-f^{\prime}(x), x>0$, is in \mathcal{M}. But this is impossible since $\{x \in \mathbb{R}: \sin x-\cos x=0, x>0\}$ cannot belong to \mathcal{M}_{1}.

By a similar argument $g(x)=e^{x^{2}}+\sin \left(x^{2}\right), x \in \mathbb{R}$, does not belong to any o-minimal structure even though it clearly satisfies condition $(*)$.

Note that, by the Bezout theorem, if f is algebraic, then the function $d \rightarrow A(d)$ can be bounded by a linear one. Actually the converse is also true. To show this suppose that $A(d) \leq \operatorname{const}(d+1)$. Then, for d sufficiently large, $A(d)<B(d)-1$, where $B(d)=\frac{1}{2}(d+1)(d+2)$ is the dimension of the space of polynomials of degree $\leq d$. Take $B(d)-1$ points on the graph of f and a nonzero polynomial $P(x, y)$, $\operatorname{deg} P \leq d$, which vanishes at these points. Then, by the definition of $A(d), P$ has to vanish on the graph of f, that is f is algebraic. On the other hand, by Khovansky [K2], if f is pffafian (e.g. $f=e^{x}$), then $A(d)$ can be bounded by a quadratic function.

In general, from the fact that f belongs to some o-minimal structure we cannot deduce anything about $A(d)$. More precisely, if we are given a sequence $\mathbb{N} \ni d \rightarrow$ $a(d) \in \mathbb{N}$, then there exist an analytic function $f:(a, \infty) \rightarrow \mathbb{R}$, subanalytic at the infinity, and an increasing sequence $k \rightarrow d_{k}$ of integers such that

$$
a\left(d_{k}\right) \leq A\left(d_{k}\right)
$$

for all $k \in \mathbb{N}$. We sketch only the idea of construction. One can easily construct by induction: a sequence $b_{k} \in \mathbb{N}$, two sequences $\varepsilon_{k}>0, \eta_{k}>0$, and a sequence of
polynomials $P_{k}=c_{1+b_{k}} t^{1+b_{k}}+\cdots+c_{b_{k+1}} t^{b_{k+1}}$ such that:
(1) $\left\|P_{k}\right\| \leq \varepsilon_{k}$,
(2) if $r:(0,1) \rightarrow \mathbb{R}$ is continuous, $\sup _{t \in(0,1)}|r(t)| \leq \eta_{k}$, then

$$
\#\left\{t \in(0,1): P_{k}(t)+r(t)=0\right\} \geq a\left(4 b_{k}\right)
$$

(3) $\sum_{k>n} \varepsilon_{k}<\eta_{n}$ for all $n \in \mathbb{N}$,
where $\|\cdot\|$ is the sum of absolute values of coefficients. Now, put

$$
g(t)=\sum_{k=1}^{\infty} P_{k}(t)
$$

We can take P_{k} so small that the radius of convergence of the series is >1. Finally put $f(x)=g\left(\frac{x}{\sqrt{x^{2}+1}}\right), x>0$. Let

$$
q_{k}(t, y)=y-\sum_{n=1}^{k-1} P_{n}(t), \quad k>2
$$

Clearly q_{k} is of degree $\leq b_{k}$ and it has at least $a\left(4 b_{k}\right)$ zeros on the graph of $g(t)$, for $t \in[0,1)$. It easy to find a polynomial $Q_{k}(x, y)$ of degree $\leq d_{k}=4 b_{k}$ which vanishes on the zeros of $q_{k}\left(\frac{x}{\sqrt{x^{2}+1}}, y\right)$. Since Q_{k} has at least $a\left(d_{k}\right)$ zeros on the graph of f, it follows that $a\left(d_{k}\right) \leq A\left(d_{k}\right)$, as desired.

Acknowledgments

This paper was written during the authors' stay at the Fields Institute in Toronto. They would like to express their gratitude to the institute for creating a friendly atmosphere and for a warm hospitality. Our special thanks go also to C. Miller, P.D. Milman, P. Speissegger, and Y. Yomdin for inspiring discussions.

References

[BR] B. Benedetti, J. J. Risler, Real algebraic and semi-algebraic sets, Hermann, Paris, 1990.
[vD] L. van den Dries, O-minimal structures, in Logic: from foundation to Applications, eds; Hodges et al., Oxford University Press. CMP 97:06
[DMM] L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. 140 (1994), 183-205. MR 95k:12015
[DM] L. van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84, No 2 (1996), 497-540. MR 97i:32008
[K1] A. Khovansky, On the class of systems of transcendental equations, Soviet Mathematics Doklady 22 (1980), 762-765.
[K2] A. Khovansky, Fewnomials, vol. 88, Translations of Math. Monographs AMS, 1991.
[KPS] J. Knight, A. Pillay, C. Steinhorn, Definable sets in ordered structures II, Trans. Amer. Math. Soc. 295 (1986), 593-605. MR 88b:03050b
[PS] A. Pillay, C. Steinhorn, Definable sets in ordered structures I, Trans. Amer. Math. Soc. 295 (1986), 565-592. MR 88b:03050a
[W] A. Wilkie, Model completness results for expansions of the ordered field of reals by restricted Pffafian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), 1051-1094.

Department of Mathematics, Technical University, Al. 1000 LPP 7, 25-314 Kielce, Poland

E-mail address: matjg@eden.tu.kielce.pl
Laboratoire de Mathématiques, Université de Savoie, Campus Scientifique 73376 Le Bourget-du-Lac Cedex, France and Instytut Matematyki, Uniwersytet Jagielloński, ul. Reymonta 4 30-059 Kraków, Poland

E-mail address: Krzysztof.Kurdyka@univ-savoie.fr
Département de Mathématiques, Université d'Angers, 2, bd Lavoisier, 49045 Angers cedex 01, France

E-mail address: parus@tonton.univ-angers.fr

[^0]: Received by the editors July 15, 1997.
 1991 Mathematics Subject Classification. Primary 32B20, 32C05, 14P15; Secondary 26E05, 03 C 99.

 Key words and phrases. Fewnomial, Khovansky theory, o-minimal structure.

