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ABSTRACT. We prove that every polynomial P(z,y) of degree d has at most
2(d + 2)'2 zeros on the curve y = e® +sin(xz), = > 0. As a consequence
we deduce that the existence of a uniform bound for the number of zeros of
polynomials of a fixed degree on an analytic curve does not imply that this
curve belongs to an o-minimal structure.

MAIN RESULT

The aim of this note is to estimate the number of real solutions of the system
(1) P(z,y) =0, y=c¢€"+sin(z), x>0,

where P(x,y) is a non—zero polynomial of degree d. As we prove below we have
the following bound.

Theorem 1. The number of solutions of the system (1) is not greater than A(d) =
2(d + 2)*'2.

Clearly the condition z > 0 in (1) cannot be omitted. For instance the z—axis
intersects the graph y = e* + sin(x) infinitely many times for z < 0.

Using Theorem 1 it is easy to construct a global analytic function with a similar
behavior.

Corollary 2. The number of solutions of the system
2) P(z,y) =0, y=c" +sin(z?),
is less than or equal to 2A(2d).

Proof. Take a polynomial P(z,y) of degree d and eliminate the variable x from the
equations P(z,y) = 0, 2% = v. The resultant R(v,y) = Res,(P(z,y),z? —v) is a
polynomial of degree < 2d in variables v, y.

If (z,y) is a solution of the system (2), then (v,y), where v = z
of the system

2. is a solution

R(v,y) =0, y=¢€"+sin(v), v>0.
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Therefore by Theorem 1 the number of solutions of system (2) is not greater than
2A(2d). O

In the end of this note we give an application of Theorem 1 to the theory of
o-minimal structures. This application was our original motivation to study the
above question.

PROOF OF THE THEOREM

First we will show that it is enough to prove Theorem 1 for P(x,y) = 0 being
smooth. We use the following

Lemma 3. Let f : (0,00) — R be an analytic function such that #{z : f(x) =
e} < A for sufficiently small |e| # 0. Then #{z : f(x) =0} < A.

Proof. We adopt here the proof of Lemma 4.2.6 in [BR]. Suppose first that
#{x : f(z) = 0} is finite. We divide the set of zeros of f into: n; zeros of odd
multiplicity, ne local minima and ng local maxima.

Taking € > 0 if no > ng and € < 0 if ny < ng3 it is easily seen that

#{r:f(x)=0}=n1+ne+ng<#{x: f(x)=¢} <A.

Note that the same argument shows that #{z : f(z) = 0} is finite provided A is
also. |

Now fix a polynomial P(z,y) of degree d and assume that 0 is a critical value
of P. Since the polynomials have only finitely many critical values, for sufficiently
small |e] # 0, the curve P(z,y) = e is smooth. Suppose that the estimate of
Theorem 1 holds true for P(z,y) — ¢, that is #{x : f(z) = ¢, x > 0} < A(d) for
f(x) = P(x,e” + sin(z)). By Lemma 3 #{z : f(z) = 0,z > 0} < A(d), and
therefore Theorem 1 holds true for P(z,y) as well.

From now on we assume that P(x,y) = 0 is a smooth curve.

Step 1. A bound on the number of connected components of the set
C={(z,y): P(z,y) =0,e*—1<y<e®+1}.

First we estimate the number of intersections of the curve P(x,y) = 0 with the
graphs y = e* + 1 and y = e* — 1. This is precisely the number of solutions of
equations P(z,e® +1) = 0 and P(z,e* — 1) = 0. By Khovansky’s theorem, see for
instance [BR, 4.1.1],

#{x: P(z,e®* +1) =0} + #{z: P(z,e* —1) =0} <2d(d+1).

Since the curve P(z,y) = 0 is smooth, it is a finite union of topological ovals and
intervals. By Harnack’s theorem [BR, 4.4.4, 5.3.2] their number is not greater than
(d> —d+2)/2. Hence #(connected components of C) < (d?> —d+2)/2+2d(d+1) =
(5d% + 3d + 2)/2.

Step 2. A bound on the “size” of a connected component of C.

Denote
L=d(d+1)2(d+2)>2mn2/4+ (d+ 1)*(d + 2)*/8.
This part of the proof is based on

Lemma 4. Assume that points (0,y1), (x2,y2) belong to the same component of
C. Then z9 < L.
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The proof of Lemma 4 is given in the next section. Lemma 4 has the following
consequence.

Corollary 5. Assume that points (a,c1), (b,c2), where 0 < a < b, belong to the
same component of C. Then b —a < L.

Proof. Assume that points (a,¢1), (b, c2), 0 < a < b, belong to the same component
of the set C. It is easy to see that there exist (possibly different than (a,c1), (b, c2))
points (a,d1), (b,d2) € C and a connected set D C CN{(z,y) : a <z < b}
joining them. We shall write D and C in a new system of coordinates Z, § such
that x =7 + a, y = €%3.

For every point (z,y) € D we have

Pz,y) =0, e*—1<y<e*+1, a<z<h

Therefore in the new coordinates

P(Z+a,ey) =0, T —1<e'g<e™+1, a<z+a<h,

and consequently

where P(z,9) = P(Z + a, e"y). B
Set ' = {(z,9) : P(z,§) = 0,e* =1 < g < e’ + 1} and D = {(z,9) :
(T + a,e’y) € D}. As we have already checked, D is a subset of C. It is also

clear that D is connected and that points (0,e~%dy), (b — a,e”%ds) belong to D.
Consequently, b — a < L follows easily from Lemma 4. O

Step 3. A bound on the number of intersections of a connected component D C C
with the graph y = e* + sin(z), > 0.

Let D be a fixed connected component of C. From Corollary 5 it follows that
there are constants 0 < a < b, b — a < L such that for all (z,y) € D, x > 0, we
have a <z <b.

In particular, the number of intersections of D with the graph y = e* + sin(x),
x > 0, is not greater than the number of solutions of the system

P(z,e” +sin(z)) =0, a<z<b.

By a theorem of Khovansky [K2, 1.4] this number is < 4d(d + 2)?(b — a)/7m <
4d(d + 2)*L /.

Now we are ready to finish the proof. It is clear that all solutions of (1) belong
to C. In Step 3 we have estimated the number of solutions of (1) which belong
to a given connected component of C'. In Step 1 we have bounded a number of
connected components of C. Summing up, the number of solutions of (1) is less
than or equal to

(4d(d + 2)*L/7)((5d* + 3d + 2)/2) =

d(d +1)*(d +2)*(5d® + 3d + 2)(dIn4 + (d + 1)*(d + 2)) /7 < 2(d + 2)'%.
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PROOF OF LEMMA 4

Suppose, contrary to our claim, that there exists a connected component D of
the set C = { (z,y) : P(z,y) =0, ¢e* —1 <y < e* + 1} joining two points (0, y1)
and (xa,ys) such that xo > L where L = d(d+1)?(d+2)? In2/4+ (d+1)*(d+2)3/8.

Put n = (d+1)(d+2)/2,t =ndIn2+n?(d+1). We have L = nt. Let v; be the
vertical segment { (x,y) : x = it,e"—1 <y < e*+1}. Foreachi =1,...,n we have
0 < it < z5. Since D is connected, it must intersect each segment v; (i =1,...,n).
Thus for each i = 1,...,n there exists ¢; such that P(it,e +¢;) =0 and |¢;| < 1.

Writing the polynomial P as a sum of monomials P(z,y) = Y-, <4 amz*y' we
get a square system of n linear equations

(3) Z ap (it)* (e + ) =0, i1=1,...,n,
k+1<d
with respect to coefficients ag;.

To get a contradiction it is enough to check that the determinant of this system
does not vanish. Indeed, in this case the system (3) has only the zero solution
P=0.

To compute this determinant we arrange the set of indices {(k,1) € N3 : k+1 < d}
in a sequence {(a, 8;) }1<i<n ordered as follows: if i < j, then §; < B; or B; = ;
and oy < ;.

This sequence splits in a natural way into d + 1 subsequences. In each of them
the numbers f3; are constant. More precisely, there exists a partition NoU---UNy =
{1,...,n} such that

[%'Zii, 0< (o7 <d-—i ﬂorj eN;, 1=0,...,d.
The determinant D = det((it)* (e’ + ¢;)%7) of the system (3) is by
definition equal to
D= Y sgu(0) (@)t ("M +eo1) M- (o (n)) " (€7 + 6o ()™

oc€Perm{1,...,n}

=t Z sgn(o)o(1)* -+ o(n)* ("W + €o()) -+ (7 + €o(m)".

oc€Perm{l,...,n}

Here s =Y. | a;. Write D = Wt* ie.

1<isn,1<j<n

W= > sgn(a)a (1) -+ a(n)* ("M + ey1))7 - (€7 + € (n)) .
oc€Perm{1,...,n}

Put K = maX,cperm{1,...n} 2oieq 0(2)3; and let Sg C Perm{1,...,n} be the set
of permutations satisfying the condition: o € Sk iff Y.;,0(i)8; = K.
Denote
Wi= Y sen(o)o(1) - oln)er (D (e,
ceSK

For every o € Sk we have (e?(Nt)A1... (e7(Mt)Bn = eK* and consequently W; =
eXtW,, where

Wy = > sgn(o)o(1)™ --a(n)™.

cESK
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Let us introduce a notation. Consider a non—empty subset A of {1,...,n}.
By Perm(A) we denote the set of all ¢ € Perm{1,...,n} such that o(i) = ¢ for
ie{l,...,n}\ A

In further computations the following description of Sk will be useful.

Lemma 5. Every permutation o € Sg admits a decomposition o = og - - - 04 where
o; € Perm(N;) for i =0,...,d. Moreover, such a decomposition is unique.

We omit a purely combinatorial proof of this lemma. By Lemma 5

d d
Wy = H Z Sgn(O’k) H O’k(i)ai = kl_[ det(ij)ieNk,Ogjgd—k-
=0

k=0 o, €Perm(Ny) i€EN}

Each determinant in this product is the classical Vandermonde determinant of
pairwise distinct integers and hence is a non—zero integer. Therefore W5 being their
product is a non—zero integer. As a consequence
(4) |W1| > et

Now we estimate the difference W — W;. From definitions of W and W; follows
that this number is a sum of at most 2°n! terms of the form

+0(1)* - o(n)m et - €)n.

Here s =) ", o and 71, ..., v, are non—negative integers, K’ < K. The absolute
value of each term of the sum is not greater than (n!)%e ~1*. Hence
(5) (W — Wy| < 2°(n!)@HDeE=11,

. . .. 2
We have two obvious inequalities: s = Z?:l a; < nd and n! < e®. Hence
2s(n!)(d+1) < esln2(en2)d+l < endln2+n2(d+l) _ et'

By (4) and (5) we have
|W| > |W1| _ |W _ W1| > eKt _ 2s(n!)(d+l)e(K—1)t
= e(K_l)t(et — 25(n!)(d+1)) > 0.

The last inequality shows that the determinant D of the system (3) is non—zero
and gives us a contradiction, as desired.

MOTIVATIONS

Theorem 1 should be understood in the context of Khovansky’s theory [K1],
[K2]. Our motivation and inspiration for this problem comes from the theory of
o-minimal structures. By an o-minimal structure on (R, +,-) we mean a collection
M = U,,eny Mn, where each M,, is a family of subsets of R" such that:

(1) each M,, is closed under finite set-theoretical operations;
(2) if Ae M,, and B € M,,, then A X B € My tm;
(3) let A € My1pm and 7 : R*™ — R™ be a projection on the first n coordinates;
then 7(A4) € My;
(4) every semialgebraic subset of R belongs to M.,;
(5) M consists of all finite unions of open intervals and points.

O-minimal structures, invented by model theorists, are natural and important
extensions of semialgebraic (or more general subanalytic) geometry. We mention
here only two important examples of o-minimal structures; more details and exam-
ples can be found in [DM]. Wilkie [W] proved (using results of Khovansky [K1])
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that by adding to semialgebraic sets the graph of an exponential function one gets
an o-minimal structure (called Rexp). A similar extension of global subanalytic sets
was done by L. van den Dries, A. Macintyre, D. Marker in [DMM].

Let M be an o-minimal structure on (R, +, -). The following important finiteness
property (see [DM], [vD]) can be obtained from a result of Pillay, Steinhorn, and
Knight [PS], [KPS]:

Theorem KPS. Let M be an o-minimal structure. Suppose that A € My 1., and
denote by m : R*™™ — R™ the projection on the first n coordinates. Then there
exists N € N such that for each z € R™ the fiber 7= (z)NA has at most N connected
components.

Let us consider the following problem:

Let f : R — R (or more generally f : (a,00) — R) be an analytic function.
What conditions on f would guarantee that the graph of f belongs to an o-minimal
structure?

Using the fact that the space of polynomials in 2 variables of degree < d is of
finite dimension, we get easily from theorem KPS the following necessary condition:
(%) For each d € N there is A(d) € N such that if P(z,y) is a non—zero polynomial
of degree d, then the number of isolated solutions of the system

Plz,y) =0, y=f(x), z>a,

is not greater than A(d).

One may conjecture that (x) is also a sufficient condition, but this is not the
case. Actually f(z) = e* +sinz, z > 0, is a counter-example. Indeed, by Theorem
1, f satisfies () with A(d) ~ 2d'2. Suppose, contrary to our claim, that the graph
of f belongs to some o-minimal structure M. This would imply (see [DM]) that the
derivative f’ belongs to M. Hence the graph of sinz —cosz = f(x) — f'(z), > 0,
is in M. But this is impossible since {z € R : sinx — cosz = 0, x > 0} cannot
belong to Mj.

By a similar argument g(z) = e + sin(z?), = € R, does not belong to any
o-minimal structure even though it clearly satisfies condition (x).

Note that, by the Bezout theorem, if f is algebraic, then the function d — A(d)
can be bounded by a linear one. Actually the converse is also true. To show this
suppose that A(d) < const(d + 1). Then, for d sufficiently large, A(d) < B(d) — 1,
where B(d) = 3(d+1)(d+2) is the dimension of the space of polynomials of degree
< d. Take B(d) — 1 points on the graph of f and a nonzero polynomial P(x,y),
deg P < d, which vanishes at these points. Then, by the definition of A(d), P
has to vanish on the graph of f, that is f is algebraic. On the other hand, by
Khovansky [K2], if f is pffafian (e.g. f = %), then A(d) can be bounded by a
quadratic function.

In general, from the fact that f belongs to some o-minimal structure we cannot
deduce anything about A(d). More precisely, if we are given a sequence N > d —
a(d) € N, then there exist an analytic function f : (a,00) — R, subanalytic at the
infinity, and an increasing sequence k — dj, of integers such that

a(dk) < A(dk)

for all £ € N. We sketch only the idea of construction. One can easily construct
by induction: a sequence by € N, two sequences € > 0, g > 0, and a sequence of
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polynomials Py, = ci4p, titbe 4o 4 cb,cﬂtbk*l such that:

(1) 1 Pell < er,

(2) if r: (0,1) — R is continuous, sup |r(t)| < nk, then
te(0,1)

#{t € (0,1) : Pp(t) + r(t) = 0} > a(4by),

(3) Zak < np for all n € N,
k>n

where || - || is the sum of absolute values of coefficients. Now, put

g(t) =D Pu(t).
k=1

We can take Py so small that the radius of convergence of the series is > 1. Finally
put f(x)=g (ﬁ) , ¢ > 0. Let

k—1
a(ty) =y—> Pult), k>2

n=1

Clearly gy, is of degree < by, and it has at least a(4by) zeros on the graph of g(t),
for t € [0,1). It easy to find a polynomial Qx(z,y) of degree < dj, = 4by which

vanishes on the zeros of gy (ﬁ, y) Since @ has at least a(dy) zeros on the
graph of f, it follows that a(dy) < A(dy), as desired.
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