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Abstract. We prove that every polynomial P (x, y) of degree d has at most
2(d + 2)12 zeros on the curve y = ex + sin(x), x > 0. As a consequence
we deduce that the existence of a uniform bound for the number of zeros of
polynomials of a fixed degree on an analytic curve does not imply that this
curve belongs to an o-minimal structure.

Main result

The aim of this note is to estimate the number of real solutions of the system

P (x, y) = 0, y = ex + sin(x), x > 0,(1)

where P (x, y) is a non–zero polynomial of degree d. As we prove below we have
the following bound.

Theorem 1. The number of solutions of the system (1) is not greater than A(d) =
2(d + 2)12.

Clearly the condition x > 0 in (1) cannot be omitted. For instance the x–axis
intersects the graph y = ex + sin(x) infinitely many times for x < 0.

Using Theorem 1 it is easy to construct a global analytic function with a similar
behavior.

Corollary 2. The number of solutions of the system

P (x, y) = 0, y = ex2
+ sin(x2),(2)

is less than or equal to 2A(2d).

Proof. Take a polynomial P (x, y) of degree d and eliminate the variable x from the
equations P (x, y) = 0, x2 = v. The resultant R(v, y) = Resx(P (x, y), x2 − v) is a
polynomial of degree ≤ 2d in variables v, y.

If (x, y) is a solution of the system (2), then (v, y), where v = x2, is a solution
of the system

R(v, y) = 0, y = ev + sin(v), v ≥ 0.
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Therefore by Theorem 1 the number of solutions of system (2) is not greater than
2A(2d).

In the end of this note we give an application of Theorem 1 to the theory of
o-minimal structures. This application was our original motivation to study the
above question.

Proof of the Theorem

First we will show that it is enough to prove Theorem 1 for P (x, y) = 0 being
smooth. We use the following

Lemma 3. Let f : (0,∞) → R be an analytic function such that #{x : f(x) =
ε} ≤ A for sufficiently small |ε| 6= 0. Then #{x : f(x) = 0} ≤ A.

Proof. We adopt here the proof of Lemma 4.2.6 in [BR]. Suppose first that
#{x : f(x) = 0} is finite. We divide the set of zeros of f into: n1 zeros of odd
multiplicity, n2 local minima and n3 local maxima.

Taking ε > 0 if n2 ≥ n3 and ε < 0 if n2 < n3 it is easily seen that

#{x : f(x) = 0} = n1 + n2 + n3 ≤ #{x : f(x) = ε} ≤ A .

Note that the same argument shows that #{x : f(x) = 0} is finite provided A is
also.

Now fix a polynomial P (x, y) of degree d and assume that 0 is a critical value
of P . Since the polynomials have only finitely many critical values, for sufficiently
small |ε| 6= 0, the curve P (x, y) = ε is smooth. Suppose that the estimate of
Theorem 1 holds true for P (x, y) − ε, that is #{x : f(x) = ε, x > 0} ≤ A(d) for
f(x) = P (x, ex + sin(x)). By Lemma 3 #{x : f(x) = 0, x > 0} ≤ A(d), and
therefore Theorem 1 holds true for P (x, y) as well.

From now on we assume that P (x, y) = 0 is a smooth curve.

Step 1. A bound on the number of connected components of the set

C = { (x, y) : P (x, y) = 0, ex − 1 ≤ y ≤ ex + 1 }.
First we estimate the number of intersections of the curve P (x, y) = 0 with the

graphs y = ex + 1 and y = ex − 1. This is precisely the number of solutions of
equations P (x, ex + 1) = 0 and P (x, ex − 1) = 0. By Khovansky’s theorem, see for
instance [BR, 4.1.1],

#{x : P (x, ex + 1) = 0}+ #{x : P (x, ex − 1) = 0} ≤ 2d(d + 1).

Since the curve P (x, y) = 0 is smooth, it is a finite union of topological ovals and
intervals. By Harnack’s theorem [BR, 4.4.4, 5.3.2] their number is not greater than
(d2−d+2)/2. Hence #(connected components of C) ≤ (d2−d+2)/2+2d(d+1) =
(5d2 + 3d + 2)/2.

Step 2. A bound on the “size” of a connected component of C.

Denote

L = d(d + 1)2(d + 2)2 ln 2/4 + (d + 1)4(d + 2)3/8.

This part of the proof is based on

Lemma 4. Assume that points (0, y1), (x2, y2) belong to the same component of
C. Then x2 ≤ L.
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The proof of Lemma 4 is given in the next section. Lemma 4 has the following
consequence.

Corollary 5. Assume that points (a, c1), (b, c2), where 0 ≤ a ≤ b, belong to the
same component of C. Then b− a ≤ L.

Proof. Assume that points (a, c1), (b, c2), 0 ≤ a ≤ b, belong to the same component
of the set C. It is easy to see that there exist (possibly different than (a, c1), (b, c2))
points (a, d1), (b, d2) ∈ C and a connected set D ⊂ C ∩ { (x, y) : a ≤ x ≤ b }
joining them. We shall write D and C in a new system of coordinates x̄, ȳ such
that x = x̄ + a, y = eaȳ.

For every point (x, y) ∈ D we have

P (x, y) = 0, ex − 1 ≤ y ≤ ex + 1, a ≤ x ≤ b.

Therefore in the new coordinates

P (x̄ + a, eaȳ) = 0, ex̄+a − 1 ≤ eaȳ ≤ ex̄+a + 1, a ≤ x̄ + a ≤ b,

and consequently

P̄ (x̄, ȳ) = 0, ex̄ − 1 ≤ ȳ ≤ ex̄ + 1, 0 ≤ x̄ ≤ b− a,

where P̄ (x̄, ȳ) = P (x̄ + a, eaȳ).
Set C̄ = { (x̄, ȳ) : P̄ (x̄, ȳ) = 0, ex̄ − 1 ≤ ȳ ≤ ex̄ + 1 } and D̄ = { (x̄, ȳ) :

(x̄ + a, eaȳ) ∈ D }. As we have already checked, D̄ is a subset of C̄. It is also
clear that D̄ is connected and that points (0, e−ad1), (b − a, e−ad2) belong to D̄.
Consequently, b− a ≤ L follows easily from Lemma 4.

Step 3. A bound on the number of intersections of a connected component D ⊂ C
with the graph y = ex + sin(x), x > 0.

Let D be a fixed connected component of C. From Corollary 5 it follows that
there are constants 0 ≤ a ≤ b, b − a ≤ L such that for all (x, y) ∈ D, x > 0, we
have a ≤ x ≤ b.

In particular, the number of intersections of D with the graph y = ex + sin(x),
x > 0, is not greater than the number of solutions of the system

P (x, ex + sin(x)) = 0, a ≤ x ≤ b.

By a theorem of Khovansky [K2, 1.4] this number is ≤ 4d(d + 2)2(b − a)/π ≤
4d(d + 2)2L/π.

Now we are ready to finish the proof. It is clear that all solutions of (1) belong
to C. In Step 3 we have estimated the number of solutions of (1) which belong
to a given connected component of C. In Step 1 we have bounded a number of
connected components of C. Summing up, the number of solutions of (1) is less
than or equal to

(4d(d + 2)2L/π)((5d2 + 3d + 2)/2) =

d(d + 1)2(d + 2)4(5d2 + 3d + 2)(d ln 4 + (d + 1)2(d + 2))/π ≤ 2(d + 2)12.
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Proof of Lemma 4

Suppose, contrary to our claim, that there exists a connected component D of
the set C = { (x, y) : P (x, y) = 0, ex − 1 ≤ y ≤ ex + 1 } joining two points (0, y1)
and (x2, y2) such that x2 > L where L = d(d+1)2(d+2)2 ln 2/4+(d+1)4(d+2)3/8.

Put n = (d + 1)(d + 2)/2, t = nd ln 2 + n2(d + 1). We have L = nt. Let vi be the
vertical segment { (x, y) : x = it, ex−1 ≤ y ≤ ex+1 }. For each i = 1, . . . , n we have
0 < it < x2. Since D is connected, it must intersect each segment vi (i = 1, . . . , n).
Thus for each i = 1, . . . , n there exists εi such that P (it, eit + εi) = 0 and |εi| ≤ 1.

Writing the polynomial P as a sum of monomials P (x, y) =
∑

k+l≤d aklx
kyl we

get a square system of n linear equations∑
k+l≤d

akl(it)k(eit + εi)l = 0, i = 1, . . . , n,(3)

with respect to coefficients akl.
To get a contradiction it is enough to check that the determinant of this system

does not vanish. Indeed, in this case the system (3) has only the zero solution
P ≡ 0.

To compute this determinant we arrange the set of indices {(k, l) ∈ N2
0 : k+l ≤ d}

in a sequence {(αi, βi)}1≤i≤n ordered as follows: if i < j, then βi < βj or βi = βj

and αi < αj.
This sequence splits in a natural way into d + 1 subsequences. In each of them

the numbers βi are constant. More precisely, there exists a partition N0∪· · ·∪Nd =
{1, . . . , n} such that

βj = i, 0 ≤ αj ≤ d− i for j ∈ Ni, i = 0, . . . , d.

The determinant D = det
(
(it)αj (eit + εi)βj

)
1≤i≤n,1≤j≤n

of the system (3) is by
definition equal to

D =
∑

σ∈Perm{1,...,n}
sgn(σ)(σ(1)t)α1 (eσ(1)t + εσ(1))β1 · · · (σ(n)t)αn(eσ(n)t + εσ(n))βn

= ts
∑

σ∈Perm{1,...,n}
sgn(σ)σ(1)α1 · · ·σ(n)αn(eσ(1)t + εσ(1))β1 · · · (eσ(n)t + εσ(n))βn .

Here s =
∑n

i=1 αi. Write D = Wts i.e.

W =
∑

σ∈Perm{1,...,n}
sgn(σ)σ(1)α1 · · ·σ(n)αn(eσ(1)t + εσ(1))β1 · · · (eσ(n)t + εσ(n))βn .

Put K = maxσ∈Perm{1,...,n}
∑n

i=1 σ(i)βi and let SK ⊂ Perm{1, . . . , n} be the set
of permutations satisfying the condition: σ ∈ SK iff

∑n
i=1 σ(i)βi = K.

Denote

W1 =
∑

σ∈SK

sgn(σ)σ(1)α1 · · ·σ(n)αn(eσ(1)t)β1 · · · (eσ(n)t)βn .

For every σ ∈ SK we have (eσ(1)t)β1 · · · (eσ(n)t)βn = eKt and consequently W1 =
eKtW2, where

W2 =
∑

σ∈SK

sgn(σ)σ(1)α1 · · ·σ(n)αn .
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Let us introduce a notation. Consider a non–empty subset A of {1, . . . , n}.
By Perm(A) we denote the set of all σ ∈ Perm{1, . . . , n} such that σ(i) = i for
i ∈ {1, . . . , n} \A.

In further computations the following description of SK will be useful.

Lemma 5. Every permutation σ ∈ SK admits a decomposition σ = σ0 · · ·σd where
σi ∈ Perm(Ni) for i = 0, . . . , d. Moreover, such a decomposition is unique.

We omit a purely combinatorial proof of this lemma. By Lemma 5

W2 =
d∏

k=0

∑
σk∈Perm(Nk)

sgn(σk)
∏

i∈Nk

σk(i)αi =
d∏

k=0

det(ij)i∈Nk,0≤j≤d−k.

Each determinant in this product is the classical Vandermonde determinant of
pairwise distinct integers and hence is a non–zero integer. Therefore W2 being their
product is a non–zero integer. As a consequence

|W1| ≥ eKt.(4)

Now we estimate the difference W −W1. From definitions of W and W1 follows
that this number is a sum of at most 2sn! terms of the form

±σ(1)α1 · · ·σ(n)αneK′tεγ1
1 · · · εγn

n .

Here s =
∑n

i=1 αi and γ1, . . . , γn are non–negative integers, K ′ < K. The absolute
value of each term of the sum is not greater than (n!)de(K−1)t. Hence

|W −W1| ≤ 2s(n!)(d+1)e(K−1)t.(5)

We have two obvious inequalities: s =
∑n

i=1 αi ≤ nd and n! < en2
. Hence

2s(n!)(d+1) < es ln 2(en2
)d+1 ≤ end ln 2+n2(d+1) = et.

By (4) and (5) we have

|W | ≥ |W1| − |W −W1| ≥ eKt − 2s(n!)(d+1)e(K−1)t

= e(K−1)t(et − 2s(n!)(d+1)) > 0.

The last inequality shows that the determinant D of the system (3) is non–zero
and gives us a contradiction, as desired.

Motivations

Theorem 1 should be understood in the context of Khovansky’s theory [K1],
[K2]. Our motivation and inspiration for this problem comes from the theory of
o-minimal structures. By an o-minimal structure on (R, +, ·) we mean a collection
M =

⋃
n∈NMn, where each Mn is a family of subsets of Rn such that:

(1) each Mn is closed under finite set-theoretical operations;
(2) if A ∈Mn and B ∈ Mm, then A×B ∈ Mn+m;
(3) let A ∈Mn+m and π : Rn+m → Rn be a projection on the first n coordinates;

then π(A) ∈Mn;
(4) every semialgebraic subset of Rn belongs to Mn;
(5) M1 consists of all finite unions of open intervals and points.
O-minimal structures, invented by model theorists, are natural and important

extensions of semialgebraic (or more general subanalytic) geometry. We mention
here only two important examples of o-minimal structures; more details and exam-
ples can be found in [DM]. Wilkie [W] proved (using results of Khovansky [K1])
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that by adding to semialgebraic sets the graph of an exponential function one gets
an o-minimal structure (called Rexp). A similar extension of global subanalytic sets
was done by L. van den Dries, A. Macintyre, D. Marker in [DMM].

LetM be an o-minimal structure on (R, +, ·). The following important finiteness
property (see [DM], [vD]) can be obtained from a result of Pillay, Steinhorn, and
Knight [PS], [KPS]:

Theorem KPS. Let M be an o-minimal structure. Suppose that A ∈ Mn+m and
denote by π : Rn+m → Rn the projection on the first n coordinates. Then there
exists N ∈ N such that for each x ∈ Rn the fiber π−1(x)∩A has at most N connected
components.

Let us consider the following problem:
Let f : R → R (or more generally f : (a,∞) → R) be an analytic function.

What conditions on f would guarantee that the graph of f belongs to an o-minimal
structure?

Using the fact that the space of polynomials in 2 variables of degree ≤ d is of
finite dimension, we get easily from theorem KPS the following necessary condition:
(∗) For each d ∈ N there is A(d) ∈ N such that if P (x, y) is a non–zero polynomial
of degree d, then the number of isolated solutions of the system

P (x, y) = 0, y = f(x), x > a,

is not greater than A(d).
One may conjecture that (∗) is also a sufficient condition, but this is not the

case. Actually f(x) = ex + sinx, x > 0, is a counter-example. Indeed, by Theorem
1, f satisfies (∗) with A(d) ∼ 2d12. Suppose, contrary to our claim, that the graph
of f belongs to some o-minimal structure M. This would imply (see [DM]) that the
derivative f ′ belongs to M. Hence the graph of sinx− cos x = f(x)− f ′(x), x > 0,
is in M. But this is impossible since {x ∈ R : sin x − cosx = 0, x > 0} cannot
belong to M1.

By a similar argument g(x) = ex2
+ sin(x2), x ∈ R, does not belong to any

o-minimal structure even though it clearly satisfies condition (∗).
Note that, by the Bezout theorem, if f is algebraic, then the function d → A(d)

can be bounded by a linear one. Actually the converse is also true. To show this
suppose that A(d) ≤ const(d + 1). Then, for d sufficiently large, A(d) < B(d) − 1,
where B(d) = 1

2 (d+1)(d+2) is the dimension of the space of polynomials of degree
≤ d. Take B(d) − 1 points on the graph of f and a nonzero polynomial P (x, y),
deg P ≤ d, which vanishes at these points. Then, by the definition of A(d), P
has to vanish on the graph of f , that is f is algebraic. On the other hand, by
Khovansky [K2], if f is pffafian (e.g. f = ex), then A(d) can be bounded by a
quadratic function.

In general, from the fact that f belongs to some o-minimal structure we cannot
deduce anything about A(d). More precisely, if we are given a sequence N 3 d →
a(d) ∈ N, then there exist an analytic function f : (a,∞) → R, subanalytic at the
infinity, and an increasing sequence k → dk of integers such that

a(dk) ≤ A(dk)

for all k ∈ N. We sketch only the idea of construction. One can easily construct
by induction: a sequence bk ∈ N, two sequences εk > 0, ηk > 0, and a sequence of
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polynomials Pk = c1+bk
t1+bk + · · ·+ cbk+1t

bk+1 such that:

(1) ‖Pk‖ ≤ εk,
(2) if r : (0, 1) → R is continuous, sup

t∈(0,1)

|r(t)| ≤ ηk, then

#{t ∈ (0, 1) : Pk(t) + r(t) = 0} ≥ a(4bk),

(3)
∑
k>n

εk < ηn for all n ∈ N,

where ‖ · ‖ is the sum of absolute values of coefficients. Now, put

g(t) =
∞∑

k=1

Pk(t).

We can take Pk so small that the radius of convergence of the series is > 1. Finally
put f(x) = g

(
x√

x2+1

)
, x > 0. Let

qk(t, y) = y −
k−1∑
n=1

Pn(t), k > 2.

Clearly qk is of degree ≤ bk and it has at least a(4bk) zeros on the graph of g(t),
for t ∈ [0, 1). It easy to find a polynomial Qk(x, y) of degree ≤ dk = 4bk which
vanishes on the zeros of qk

(
x√

x2+1
, y

)
. Since Qk has at least a(dk) zeros on the

graph of f , it follows that a(dk) ≤ A(dk), as desired.
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