
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 127, Number 4, April 1999, Pages 1243–1249
S 0002-9939(99)04685-7

REMARK ABOUT HEAT DIFFUSION ON PERIODIC SPACES

JOHN LOTT

(Communicated by Jozef Dodziuk)

Abstract. Let M be a complete Riemannian manifold with a free cocompact
Zk-action. Let k(t, m1, m2) be the heat kernel on M . We compute the asymp-

totics of k(t, m1, m2) in the limit in which t → ∞ and d(m1, m2) ∼ √t. We
show that in this limit, the heat diffusion is governed by an effective Euclidean
metric on Rk coming from the Hodge inner product on H1(M/Zk ; R).

1. Introduction

Let M be a complete connected oriented n-dimensional Riemannian manifold.
Let k(t,m1,m2) be the time-t heat kernel on M . The usual ansatz to approximate
k(t,m1,m2) is to say that

k(t,m1,m2) ∼ P (t,m1,m2) e−
d(m1,m2)2

4t(1.1)

where e−
d(m1,m2)2

4t is considered to be the leading term and P (t,m1,m2) is a cor-
rection term which can be computed iteratively. There are results which make this
precise. For example [1], if m1 and m2 are nonconjugate, then as t→ 0,

k(t,m1,m2) =
∑

γ

(det d(expm1
)vγ )−1/2

(4πt)n/2
e−

d(m1,m2)2

4t (1 +O(t)).

(1.2)

Here the sum is over minimal geodesics γ : [0, 1] →M joining m1 to m2 of the form
γ(s) = expm1

(svγ). For another example, if M has bounded geometry, then lower
and upper heat kernel bounds [4], [5] imply that (1.1) is a good approximation
if d(m1,m2) >> t, in the sense that − ln(k(t,m1,m2)) is well-approximated by
d(m1,m2)

2

4t .
One can ask if the ansatz (1.1) is relevant for other asymptotic regimes. In this

paper we look at the case when M has a periodic metric, meaning that Zk acts
freely by orientation-preserving isometries on M , with X = M/Zk compact. We
consider the asymptotic regime in which t → ∞ and d(m1,m2) ∼

√
t. As the

typical time-t Brownian path will travel a distance comparable to
√
t, this is the

regime which contains the bulk of the diffusing heat. We show that, in this regime,
(1.1) is no longer a valid approximation. Instead, the heat diffusion is governed by
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an effective Euclidean metric on Rk. This metric is constructed using the Hodge
inner product on H1(X ; R).

To state the precise result, let F be a fundamental domain in M for the Zk-
action. Given v ∈ Zk, put

k(t,v) =
∫
F
k(t,m,v ·m) d vol(m).(1.3)

This is independent of the choice of fundamental domain F .
The covering M → X is classified by a map ν : X → BZk, defined up to

homotopy, which is π1-surjective. It induces a surjection ν∗ : H1(X ; R) → Rk and
an injection ν∗ : (Rk)∗ → H1(X ; R). Let 〈·, ·〉H1(X;R) be the Hodge inner product
on H1(X ; R).

Definition 1. The inner product 〈·, ·〉(Rk)∗ on (Rk)∗ is given by

〈·, ·〉(Rk)∗ =
(ν∗)∗〈·, ·〉H1(X;R)

vol(X)
.(1.4)

The inner product 〈·, ·〉Rk is the dual inner product on Rk.

Let vol(Rk/Zk) be the volume of a lattice cell in Rk, measured with 〈·, ·〉Rk .

Proposition 1. Fix C > 0. Then in the region {(t,v) ∈ R+×Zk : 〈v,v〉Rk ≤ Ct},
as t→∞ we have

k(t,v) =
vol(Rk/Zk)

(4πt)k/2
e−〈v,v〉Rk /(4t) +O(t−

k+1
2 )(1.5)

uniformly in v.

Example. 1. If M = Rk with a flat metric 〈·, ·〉flat, then one can check that
〈·, ·〉Rk = 〈·, ·〉flat, so one recovers the standard flat-space heat kernel.

2. If n = 2, then 〈·, ·〉H1(X;R) is conformally-invariant. Hence in this case, the
heat kernel asymptotics only depend on vol(X) and the induced complex structure
on X .

One can get similar pointwise estimates on k(t,m1,m2) by the same methods.
We omit the details.

The result of Proposition 1 is an example of the phenomenon of “homogeniza-
tion”, which has been much-studied for differential operators on Rn. Homoge-
nization means that in an appropriate scaling limit, the solution to a problem is
governed by the solution to a spatially homogeneous problem; see [2] and references
therein. Thus it is not surprising that the answer in Proposition 1 has a homoge-
neous form. The point of the present paper is to show how one can compute the
exact asymptotics in the general geometric setting.

We remark that when t → ∞ and d(m1,m2) >> t, the asymptotic expression
(1.1) also shows homogenization. This follows from the result of D. Burago [3] that
there are a Banach norm ‖ · ‖ on Rk and a constant c > 0 such that if m ∈M and
v ∈ Zk, then |d(m,v ·m)− ‖ v ‖| ≤ c. Thus as t → ∞, if d(m1,m2) ∼

√
t, then

the effective geometry is (Rk, 〈·, ·〉Rk), while if d(m1,m2) >> t, then the effective
geometry is (Rk, ‖ · ‖).

It would be interesting if one could extend the results of this paper to the setting
in which Γ is a nonabelian discrete group, such as the fundamental group of a closed
hyperbolic surface. In this case, the relevant scaling regime should be t → ∞ and
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d(m1,m2) ∼ t, as the typical time-t Brownian path on the hyperbolic plane travels
a distance comparable to t.

I thank the IHES for its hospitality while this work was done and Palle Jorgensen
for sending his reprints.

2. Proof of Proposition 1

We first recall some basic facts about the eigenvalues of a parametrized family
of operators [7, Chapter XII].

Let Md(C) be the vector space of d× d complex matrices and let Msa
d (C) be the

subspace of self-adjoint matrices. Let f : Rk →Md(C) be a real-analytic map. The
eigenvalues {λi(x)}d

i=1 of f(x) are algebraic functions of x, meaning the roots of a
polynomial whose coefficients are real-analytic functions of x, as they are given by
det(f(x) − λ) = 0. If λ1(0) is a nondegenerate eigenvalue of f(0), then it extends
near x = 0 to a real-analytic function λ1(x).

If k = 1 and f takes values in M sa
d (C), then the eigenvalues of f form d real-

analytic functions {λi(x)}d
i=1 on R. Of course, these functions may cross. If k >

1 and f takes values in M sa
d (C), then it may not be true that the eigenvalues

form real-analytic functions on Rk. This can be seen in the example f(x1, x2) =(
0 x1 − ix2

x1 + ix2 0

)
. Its eigenvalues are ±√

x2
1 + x2

2, which are not the union of

two smooth functions on R2. However, if γ(s) is a real-analytic curve in R2, then
the eigenvalues of f(γ(s)) do form real-analytic functions in s.

If f is instead an appropriate real-analytic family of operators on a Hilbert
space, then one has similar results. We refer to [7, Chapter XII.2] for the precise
requirements.

To prove Proposition 1, we use the method of [6, Section VI]. The Pontryagin
dual of Zk is T k = (Rk)∗/2π(Zk)∗. Given θ ∈ T k, let ρ(θ) : Zk → U(1) be the
corresponding representation and let E(θ) be the flat line bundle on X associated to

the representation π1(X) ν∗→ Zk ρ(θ)→ U(1). Let 4θ be the Laplacian on L2(X ;E(θ)).
Then Fourier analysis gives

k(t,v) =
∫

T k

eiθ·v Tr
(
e−t4(θ)

) dkθ

(2π)k
.(2.1)

Now Ker(4(θ)) = 0 if θ 6= 0 and Ker(4(0)) ∼= C consists of the constant functions
on X .

In order to write all of the operators 4(θ) as acting on the same Hilbert space,
let {τ j}k

j=1 be a set of harmonic 1-forms on X which gives an integral basis of
(Zk)∗ ⊂ (Rk)∗ ⊆ H1(X ; R). Let e(τ j) denote exterior multiplication by τ j on
C∞(X) and let i(τ j) denote interior multiplication by τ j on Ω1(X). Putting

d(θ) = d+ i

k∑
j=1

θje(τ j)(2.2)

and

d∗(θ) = d∗ − i

k∑
j=1

θji(τ j),(2.3)

4(θ) is unitarily equivalent to the self-adjoint operator d∗(θ)d(θ) (which we shall
also denote by 4(θ)) acting on L2(X). Because 4(θ) is quadratic in θ, it is easy
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to see that {4(θ)}θ∈T k is an analytic family of type (A) in the sense of [7, Chapter
XII.2], so we can apply analytic eigenvalue perturbation theory. In particular, if
{λi(θ)}i∈Z+ are the eigenvalues of 4(θ), arranged in increasing order and repeated
if there is a multipicity greater than one, then λ1(θ) ≥ 0 and λ1(θ) = 0 if and
only if θ = 0, in which case it is a nondegenerate eigenvalue. Thus λ1 extends to a
real-analytic function in a neighborhood of θ = 0. So for sufficiently small ε > 0,
there is a neighborhood U ⊆ T k of 0 ∈ T k such that

1. If θ /∈ U , then λ1(θ) > ε.
2. Restricted to U , λ1 is a real-analytic function which represents a nondegen-

erate eigenvalue and λ2 > ε.
From (2.1), we have

k(t,v) =
∫

T k

eiθ·v
∞∑

i=1

e−tλi(θ) dkθ

(2π)k
.(2.4)

Then it is easy to show that

k(t,v) =
∫

U

eiθ·v e−tλ1(θ) dkθ

(2π)k
+O(e−εt/2),(2.5)

uniformly in v.

Lemma 1. The Taylor’s series of λ1(θ) near θ = 0 starts off as

λ1(θ) = 〈θ, θ〉
(Rk)∗ +O(|θ|3).(2.6)

Proof. It suffices to compute dλ1(s~w)
ds

∣∣
s=0

and d2λ1(s~w)
ds2

∣∣
s=0

for all ~w ∈ (Rk)∗. For
simplicity, denote 4(s~w) by 4(s) and λ1(s~w) by λ(s). As λ(s) is nonnegative
and λ(0) = 0, we must have λ′(0) = 0. Let ψ(s) denote a nonzero eigenfunction
with eigenvalue λ(s); we can assume that it is real-analytic in s with ψ(0) = 1.
Differentiation of 4(s)ψ(s) = λ(s)ψ(s) gives

4′(0)ψ(0) +4(0)ψ′(0) = 0(2.7)

and

4′′(0)ψ(0) + 24′(0)ψ′(0) +4(0)ψ′′(0) = λ′′(0)ψ(0).(2.8)

Taking the inner product of (2.8) with ψ(0) gives

〈ψ(0),4′′(0)ψ(0)〉+ 2〈ψ(0),4′(0)ψ′(0)〉 = λ′′(0)〈ψ(0), ψ(0)〉.(2.9)

Let G be the Green’s operator for 4(0). From (2.7),

ψ′(0) = cψ(0)−G4′(0)ψ(0)(2.10)

for some constant c. Changing ψ(s) to e−csψ(s), we may assume that c = 0.
Substituting (2.10) into (2.9) gives

〈ψ(0),4′′(0)ψ(0)〉 − 2〈ψ(0),4′(0)G4′(0)ψ(0)〉 = λ′′(0)〈ψ(0), ψ(0)〉.
(2.11)

It remains to compute 〈ψ(0),4′′(0)ψ(0)〉 and 〈ψ(0),4′(0)G4′(0)ψ(0)〉. Put
D(s) = ds~w and D∗(s) = d∗s~w. Then 4(s) = D∗(s)D(s). From (2.2) and (2.3),
D(s) and D∗(s) are linear in s, with

D′(0) = i

k∑
j=1

wj e(τ j)(2.12)
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and

(D∗)′(0) = −i
k∑

j=1

wj i(τ j).(2.13)

Then

〈ψ(0),4′′(0)ψ(0)〉 = 2〈ψ(0), (D∗)′(0)D′(0)ψ(0)〉(2.14)

= 2
∣∣D′(0)ψ(0)

∣∣2
H1(X;C)

= 2
∣∣ k∑

j=1

wj τ
j
∣∣2
H1(X;C)

.

Now

4′(0)ψ(0) = [(D∗)′(0)D(0) +D∗(0)D′(0)]ψ(0)(2.15)

= d∗

−i k∑
j=1

wj τ
j

 = 0.

Substituting (2.14) and (2.15) into (2.11) and using the fact that 〈ψ(0), ψ(0)〉 =
vol(X), the lemma follows.

Continuing with the proof of Proposition 1, by Morse theory and Lemma 1, we
can find a change of coordinates near 0 ∈ T k with respect to which λ1 becomes
quadratic. That is, if Br(0) denotes the ball of radius r in (Rk)∗, we can find an
r > 0, a neighborhood U of 0 ∈ T k and a diffeomorphism φ : Br(0) → U such that
φ(0) = 0, dφ0 = Id and λ1(φ(x)) = 〈x, x〉(Rk)∗ . Then there is some α > 0 such that
as t→∞,

k(t,v) =
∫

Br(0)

eiφ(x)·v e−t〈x,x〉(Rk)∗ det(dφx)
dkx

(2π)k
+O(e−αt),

(2.16)

uniformly in v. Multiplying by a cutoff function on (Rk)∗, we can write

k(t,v) =
∫

(Rk)∗
eiφ(x)·v e−t〈x,x〉(Rk)∗ g(x)

dkx

(2π)k
+O(e−α′t)

(2.17)

= t−
k
2

∫
(Rk)∗

e
iφ( x√

t
)·v
e−〈x,x〉(Rk)∗ g

(
x√
t

)
dkx

(2π)k
+O(e−α′t)

for some g ∈ C∞
0

(
(Rk)∗

)
with g(0) = 1 and some α′ > 0. (Here φ has been

extended to become a map φ : (Rk)∗ → (Rk)∗ which is the identity outside of a
compact set.)

We have now reduced to a stationary-phase-type integral. Let

g(x) = 1 + (∇g)(0) · x+ E(x)(2.18)
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be the beginning of the Taylor’s expansion of g. We can write

t−
k
2

∫
(Rk)∗

e
iφ( x√

t
)·v
e−〈x,x〉(Rk)∗ g

(
x√
t

)
dkx

(2π)k

(2.19)

= t−
k
2

∫
(Rk)∗

e
i x√

t
·v
e−〈x,x〉(Rk)∗

[
1 + (∇g)(0) · x√

t
+ E

(
x√
t

)]
dkx

(2π)k

+ t−
k
2

∫
(Rk)∗

e
i x√

t
·v

[
e

i
�

φ( x√
t
)− x√

t

�
·v − 1

]
e−〈x,x〉(Rk)∗ g

(
x√
t

)
dkx

(2π)k
.

Recall that the measure dkx
(2π)k on (Rk)∗ derives from the product measure on

T k = (R∗/2πZ∗)k. Let 〈·, ·〉prod be the standard product Euclidean metric on (R∗)k.
Let Q be the self-adjoint operator on (Rk)∗ such that 〈x, x〉(Rk)∗ = 〈x,Qx〉prod.
Then a standard calculation gives

t−
k
2

∫
(Rk)∗

e
i x√

t
·v
e−〈x,x〉(Rk)∗

dkx

(2π)k
=

(det Q)−1/2

(4πt)k/2
e−〈v,v〉Rk/(4t).

(2.20)

On the other hand,

(det Q)−1/2 = vol(Rk/Zk).(2.21)

By symmetry,

t−
k
2

∫
(Rk)∗

e
i x√

t
·v
e−〈x,x〉(Rk)∗ (∇g)(0) · x√

t

dkx

(2π)k
= 0.(2.22)

Let c > 0 be such that |E(x)| ≤ c〈x, x〉(Rk)∗ for all x ∈ (Rk)∗. Then∣∣∣∣∣
∫

(Rk)∗
e

i x√
t
·v
e−〈x,x〉(Rk)∗ E

(
x√
t

)
dkx

(2π)k

∣∣∣∣∣
≤ c

t

∫
(Rk)∗

〈x, x〉(Rk)∗ e
−〈x,x〉(Rk)∗

dkx

(2π)k
.

(2.23)

Finally,

∣∣∣∣∣
∫

(Rk)∗
e

i x√
t
·v

[
e

i
�

φ( x√
t
)− x√

t

�
·v − 1

]
e−〈x,x〉(Rk)∗ g

(
x√
t

)
dkx

(2π)k

∣∣∣∣∣
(2.24)

≤‖ g ‖∞
∫

(Rk)∗
2

∣∣∣∣sin (
1
2

[
φ

(
x√
t

)
− x√

t

]
· v

)∣∣∣∣ e−〈x,x〉(Rk)∗ dkx

(2π)k
.

We can find a constant c′ > 0 such that

2
∣∣∣∣sin (

1
2

[φ(x) − x] · v
)∣∣∣∣ ≤ c′ 〈x, x〉(Rk)∗ ‖ v ‖Rk(2.25)
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for all x ∈ (Rk)∗ and v ∈ Zk. Then

‖ g ‖∞
∫

(Rk)∗
2

∣∣∣∣sin (
1
2

[
φ

(
x√
t

)
− x√

t

]
· v

)∣∣∣∣ e−〈x,x〉(Rk)∗
dkx

(2π)k

(2.26)

≤ c′√
t

‖ v ‖Rk√
t

‖ g ‖∞
∫

(Rk)∗
〈x, x〉(Rk)∗ e

−〈x,x〉(Rk)∗
dkx

(2π)k
.

By assumption,
‖ v ‖Rk√

t
≤
√
C.(2.27)

The proposition follows from combining equations (2.17)–(2.27).
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