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REMARK ABOUT HEAT DIFFUSION ON PERIODIC SPACES
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ABSTRACT. Let M be a complete Riemannian manifold with a free cocompact
ZFk-action. Let k(t,m1, m2) be the heat kernel on M. We compute the asymp-
totics of k(t,m1,ma2) in the limit in which ¢ — oo and d(m1,m2) ~ V. We
show that in this limit, the heat diffusion is governed by an effective Euclidean
metric on RF coming from the Hodge inner product on H!(M/ZF;R).

1. INTRODUCTION

Let M be a complete connected oriented n-dimensional Riemannian manifold.
Let k(t,m1,m2) be the time-t heat kernel on M. The usual ansatz to approximate
k(t, m1,m2) is to say that

_ d(m1,7n2)2
(1.1) k(t,mi,ma) ~ P(t,mi,ma)e ?
(m1.mg)® . . .
where e~ “" 2= is considered to be the leading term and P(t,m1,ms) is a cor-
rection term which can be computed iteratively. There are results which make this
precise. For example [1], if m; and mgy are nonconjugate, then as t — 0,

(1.2)

(det d(expml)vﬂ,)_l/z _ d(mg mg)?
k(t,my,ma) = Z (t) /2 e i (14 0(1)).

~

Here the sum is over minimal geodesics 7 : [0, 1] — M joining m; to ma of the form
v(s) = exp,y,, (svy). For another example, if M has bounded geometry, then lower
and upper heat kernel bounds [4], [5] imply that (1.1) is a good approximation
if d(m1,m2) >> t, in the sense that —In(k(¢, m1,m2)) is well-approximated by
d(mi,mz)?

O41tle can ask if the ansatz (1.1) is relevant for other asymptotic regimes. In this
paper we look at the case when M has a periodic metric, meaning that Z* acts
freely by orientation-preserving isometries on M, with X = M/ZF compact. We
consider the asymptotic regime in which ¢ — oo and d(mi,ma) ~ V/t. As the
typical time-t Brownian path will travel a distance comparable to v/%, this is the
regime which contains the bulk of the diffusing heat. We show that, in this regime,
(1.1) is no longer a valid approximation. Instead, the heat diffusion is governed by
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an effective Euclidean metric on R¥. This metric is constructed using the Hodge
inner product on H!(X;R).

To state the precise result, let F be a fundamental domain in M for the Z*-
action. Given v € ZF, put

(1.3) k(t,v) = /fk(t, m, v - m)dvol(m).

This is independent of the choice of fundamental domain F.

The covering M — X is classified by a map v : X — BZF, defined up to
homotopy, which is m;-surjective. It induces a surjection v, : Hi(X;R) — R and
an injection v* : (R*)* — H'(X;R). Let (-,-) g1 (x;r) be the Hodge inner product
on H(X;R).

Definition 1. The inner product (-, -) gk~ on (R¥)* is given by

()" (, '>H1(X;R)
vol(X)

The inner product (-,-)gx is the dual inner product on R”.

Let vol(R¥/Z*) be the volume of a lattice cell in R¥, measured with (-, -)gs.

Proposition 1. Fiz C' > 0. Then in the region {(t,v) € RY x Z¥ : (v, v)gs < Ct},
as t — oo we have

Vo k k
(1.5) K(t,v) = %<

k+1

V, V)i /(41) 4 O(t— T)

uniformly in v.

Example. 1. If M = R* with a flat metric (-,-)fa¢, then one can check that
(-, )rr = (-, ) fiat, SO one recovers the standard flat-space heat kernel.
2. If n = 2, then (., '>H1(X;]R) is conformally-invariant. Hence in this case, the

heat kernel asymptotics only depend on vol(X) and the induced complex structure
on X.

One can get similar pointwise estimates on k(t,m1,ma) by the same methods.
We omit the details.

The result of Proposition 1 is an example of the phenomenon of “homogeniza-
tion”, which has been much-studied for differential operators on R™. Homoge-
nization means that in an appropriate scaling limit, the solution to a problem is
governed by the solution to a spatially homogeneous problem; see [2] and references
therein. Thus it is not surprising that the answer in Proposition 1 has a homoge-
neous form. The point of the present paper is to show how one can compute the
exact asymptotics in the general geometric setting.

We remark that when ¢ — oo and d(mq, ma) >> ¢, the asymptotic expression
(1.1) also shows homogenization. This follows from the result of D. Burago [3] that
there are a Banach norm || - || on R¥ and a constant ¢ > 0 such that if m € M and
v € ZF, then |d(m,v-m)— || v || < ¢. Thus as t — oo, if d(m1, m2) ~ /£, then
the effective geometry is (R¥, (-, -)gx), while if d(m1,ma) >> t, then the effective
geometry is (R* || - ||).

It would be interesting if one could extend the results of this paper to the setting
in which I is a nonabelian discrete group, such as the fundamental group of a closed
hyperbolic surface. In this case, the relevant scaling regime should be ¢ — co and
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d(mq,ma) ~ t, as the typical time-t Brownian path on the hyperbolic plane travels
a distance comparable to ¢.

I thank the THES for its hospitality while this work was done and Palle Jorgensen
for sending his reprints.

2. PROOF OF PROPOSITION 1

We first recall some basic facts about the eigenvalues of a parametrized family
of operators [7, Chapter XII].

Let M4(C) be the vector space of d x d complex matrices and let M5%(C) be the
subspace of self-adjoint matrices. Let f : R¥ — My(C) be a real-analytic map. The
eigenvalues {\;(z)}L, of f(x) are algebraic functions of z, meaning the roots of a
polynomial whose coefficients are real-analytic functions of x, as they are given by
det(f(z) — A) = 0. If A\1(0) is a nondegenerate eigenvalue of f(0), then it extends
near z = 0 to a real-analytic function A;(x).

If k=1 and f takes values in M;*(C), then the eigenvalues of f form d real-
analytic functions {\;(z)}&, on R. Of course, these functions may cross. If k >
1 and f takes values in M;*(C), then it may not be true that the eigenvalues
form real-analytic functions on R¥. This can be seen in the example f(z1,29) =
(!101 -l(-)ixz 1 _OmQ). Its eigenvalues are :l:\/am , which are not the union of
two smooth functions on R?. However, if v(s) is a real-analytic curve in R?, then
the eigenvalues of f(7(s)) do form real-analytic functions in s.

If f is instead an appropriate real-analytic family of operators on a Hilbert
space, then one has similar results. We refer to [7, Chapter XII.2] for the precise
requirements.

To prove Proposition 1, we use the method of [6, Section VI]. The Pontryagin
dual of ZF is TF = (RF)*/2n(Z*)*. Given 0 € T*, let p(6) : Z¥ — U(1) be the
corresponding representation and let £(6) be the flat line bundle on X associated to

the representation 7 (X) 25 ZF 9 U(1). Let Ag be the Laplacian on L?(X; E(9)).

Then Fourier analysis gives

(2.1) k(t,v) = /Tk eV Tr (e‘m(‘g)) (;i:gk

Now Ker(A(#)) =0 if 6 # 0 and Ker(A(0)) = C consists of the constant functions
on X.

In order to write all of the operators A(6) as acting on the same Hilbert space,
let {77 };’?:1 be a set of harmonic 1-forms on X which gives an integral basis of
(ZF)* < (RF)* C HY(X;R). Let e(7’) denote exterior multiplication by 77 on
C>(X) and let i(77) denote interior multiplication by 77 on Q!(X). Putting

k
(2.2) d0) =d+iY_0;e(r’)
j=1

k
(2.3) d*(0) =d* =iy _0;i(r7),
j=1

A(0) is unitarily equivalent to the self-adjoint operator d*(0)d(6) (which we shall
also denote by A(6)) acting on L?(X). Because A(f) is quadratic in 0, it is easy
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to see that {A(6)}gerr is an analytic family of type (A) in the sense of [7, Chapter
XII.2], so we can apply analytic eigenvalue perturbation theory. In particular, if
{Xi(0)};cz+ are the eigenvalues of A(#), arranged in increasing order and repeated
if there is a multipicity greater than one, then A1 (6) > 0 and A\ (0) = 0 if and
only if 8 = 0, in which case it is a nondegenerate eigenvalue. Thus A; extends to a
real-analytic function in a neighborhood of # = 0. So for sufficiently small € > 0,
there is a neighborhood U C Tk of 0 € T* such that

1. If 0 ¢ U, then A\1(6) > ¢

2. Restricted to U, A; is a real-analytic function which represents a nondegen-
erate eigenvalue and Ay > €.

From (2.1), we have

d 9
2.4 t V / i0-v —t\; (9)
o [ oS

i=1
Then it is easy to show that
(2.5) k(t,v) = / gitv g—ta(e) 40 O(e—/),
U (2m)k

uniformly in v.

Lemma 1. The Taylor’s series of A1(0) near 0 = 0 starts off as

(2.6) M(0) = (0,0) .. +O(0).

(RF)*

Proof. Tt suffices to compute %Lw and & )‘l(sw)‘ oo for all @ € (R¥)*. For
simplicity, denote A(sw) by A(s) and Aj(s@) by A(s). As A(s) is nonnegative
and A\(0) = 0, we must have A'(0) = 0. Let 9(s) denote a nonzero eigenfunction
with eigenvalue A(s); we can assume that it is real-analytic in s with (0) = 1.

Differentiation of A(s)y(s) = A(s)¥(s) gives

(2.7) A'(0)1(0) + A(0)9'(0) = 0
and
(2.8) A"(0)9(0) +247(0)9'(0) + A(0)9"(0) = A" (0)4(0).

Taking the inner product of (2.8) with ¢(0) gives
(2.9) (¥(0), A"(0)1(0)) + 2(x(0), A"(0)1'(0)) = A" (0){(0),(0)).
Let G be the Green’s operator for A(0). From (2.7),
(2.10) ¥'(0) = eyp(0) — GA'(0)(0)
for some constant ¢. Changing ¥(s) to e~ “*1(s), we may assume that ¢ = 0.
Substituting (2.10) into (2.9) gives
(2.11)
(¥(0), A" (0)(0)) — 2(¥(0), A" (0)GA(0)1(0)) = X"(0)(1(0), ¥(0)).

It remains to compute (1(0), A”(0)1(0)) and (¥(0), A(0)GA'(0)(0)). Put
D(s) = dgz and D*(s) = d%;. Then A(s) = D*(s)D(s). From (2.2) and (2.3),
D(s) and D*(s) are linear in s, with

k
(2.12) D'(0)=1i) wje(r!)
j=1
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and
k .
(2.13) (D*)(0) = =i »_wji(r).
j=1
Then
(2.14) (¥(0), A"(0)¥(0)) = 2(¥(0), (D*)'(0)D’(0)¥(0))
=2 D"(0)¥(0) 31y
k
= 2| ij Tj|ill(X;(C)'
Now
(2.15) A'(0)¥(0) = [(D*)'(0)D(0) + D*(0)D'(0)] ¥(0)

k
:d* —1 E ’ijJ =0.
Jj=1

Substituting (2.14) and (2.15) into (2.11) and using the fact that (1(0),4(0))

vol(X), the lemma follows.
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Continuing with the proof of Proposition 1, by Morse theory and Lemma 1, we
can find a change of coordinates near 0 € T* with respect to which A\; becomes
quadratic. That is, if B,.(0) denotes the ball of radius r in (R¥)*, we can find an
r > 0, a neighborhood U of 0 € T* and a diffeomorphism ¢ : B,.(0) — U such that
#(0) =0, dpo = Id and A;(¢(x)) = (v, ¥)(ge)-. Then there is some o > 0 such that

as t — o0,
(2.16)

k(t,v) = / @)V THED @y ot (dpy, ) ——
B(0)

uniformly in v. Multiplying by a cutoff function on (R¥)*, we can write

(2.17)

; dkl' ’
k(t,v :/ @)V o =HET) g+ g(x +O(e= 't
=/ (@) dgme +0)

k
_ ok ip(2)v () gy [ L) AT —a't
=t 2/ e Vi e <R>g<—)—+0(e )
(RK)* Vt/) (2m)k

for some g € C§° ((R¥)*) with g(0) = 1 and some o’ > 0. (Here ¢ has been
extended to become a map ¢ : (R¥)* — (R¥)* which is the identity outside of a

compact set.)
We have now reduced to a stationary-phase-type integral. Let

(2.18) g(x) =14 (Vg)(0) -z + E(x)
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be the beginning of the Taylor’s expansion of g. We can write

(2.19)

k
_k () v —(wa) e [ L) A7
t 2/ e " \Vt' e (B) g(—)
(RF)* \/l_f (27T)k
T dbx

_—— /(Rk)* e ViY@ s [1 +(Vg)(0) - % +E (%)] @n)F

. ) . . k
Y a1 (LA R E
(Rk)~

Vi) @mF
Recall that the measure % on (RF)* derives from the product measure on
TF = (R*/27Z)*. Let (., Yprod be the standard product Euclidean metric on (R*)".

Let @ be the self-adjoint operator on (RF)* such that (z,z)grr) = (2, QT)proa-
Then a standard calculation gives

N
Sk

(2.20)

[ME

—

k —1/2
/ G o () ek d*x_ (det Q) / o (Viv)ar/(at).
(RF)* (27T)k (47Tt)k/2

On the other hand,
(2.21) (det Q)12 = vol(R*/Z*).

By symmetry,

[SIE

(2.22) - / TV o=ty (V) (0) -
(RF)~

Let ¢ > 0 be such that |E(z)| < ¢(z, ) ge)- for all z € (R¥)*. Then

k
PV —(2,@) ko x T > d°z
eVt e ®h) B — )] ———
/aRk)* (\/Z (2m)*

(2.23)
<? / (1, ) gy~ € ) @k e
—t (Rk)* ’ (R ) (27T)k
Finally,
(2.24)
j L z y_ .z ). dkl'
e'viy el(¢(\/?) \/?) v_ 1:| e_<w7w>(Rk)* g (i)
/(Rk)* [ Vt) (2m)k
. 1 T T —(z,z) dFx
< o 2 |sin | = — | = —=| -v || e @k~ .
<Holle [, () -3)) )

We can find a constant ¢’ > 0 such that

(2.25) 2

|V |z

sin (3 660) — ] v) | < ¢ (0.0}
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for all z € (R*)* and v € ZF. Then

(2.26)
ot [ 2 e G o () -2 )

¢ I e o
<= | 9 o / (, ) (gieys € PPy —
\/Z \/1_5 (RK)* (R) (27T)k

By assumption,

I v Il
(2.27) 7 <VC.

The proposition follows from combining equations (2.17)—(2.27).

REFERENCES

[1] R. Azencott et al., Géodesiques et Diffusions en Temps Petit, Astérisque 84-85, Société
Mathématique de France, Paris (1981)

[2] C. Batty, O. Bratteli, P. Jorgensen and D. Robinson, “Asymptotics of Periodic Subelliptic
Operators”, J. of Geom. Anal. 5, p. 427-443 (1995) MR 97f:35028

[3] D. Burago, “Periodic Metrics”, in Advances in Soviet Math. 9, p. 241-248 (1992) MR
93c:53029

[4] J. Cheeger and S.-T. Yau, “A Lower Bound for the Heat Kernel”, Comm. Pure Appl. Math.
34, p. 465-480 (1981) MR 82i:58065

[5] E. Davies and M. Pang, “Sharp Heat Kernel Bounds for some Laplace Operators”, Quart. J.
Math. Oxford 40, p. 281-290 (1989) MR 91i:58142

[6] J. Lott, “Heat Kernels on Covering Spaces and Topological Invariants”, J. Diff. Geom. 35, p.
471-510 (1992) MR 93b:58140

[7] M. Reed and B. Simon, Methods of Mathematical Physics, Academic Press, New York (1978)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48109-
1109
E-mail address: lott@math.lsa.umich.edu



