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ON THE SCHWARZ SYMMETRY PRINCIPLE
IN A MODEL CASE
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(Communicated by Steven R. Bell)

Abstract. In this article, we prove that smooth CR diffeomorphisms between
two real analytic holomorphically nondegenerate hypersurfaces, one of which
is rigid and polynomial, extend to be locally biholomorphic. It turns out that
the result can be generalized to not totally degenerate mappings, in the sense
of Baouendi and Rothschild.

Introduction

Since the fundamental work of Baouendi, Jacobowitz and Treves [BJT], no par-
ticular attention was given to the analog of the Schwarz symmetry principle in
the complex euclidean space in the case of non essentially finite real analytic hy-
persurfaces, not to mention [MEY], [MM]. However, in view of the recent deep
work of Baouendi, Huang and Rothschild [BHR], it can be easily conjectured that
the local Schwarz symmetry principle holds for a C∞-smooth CR diffeomorphism
f : M → M ′, between holomorphically nondegenerate real analytic hypersurfaces
M and M ′, which is holomorphic in one side of M , and that this is the optimal
sufficient condition to get analyticity of a smooth CR mapping. In this paper, we
give a short and elegant geometric proof of a precise and general statement in the
case M ′ is polynomial and rigid. We do not assume that M is algebraic, so our
result does not follow from [BHR].

1. Smooth CR diffeomorphisms

Let M ′ be a real analytic hypersurface in Cn and assume that its equation in
coordinates t = (w, z), t ∈ Cn, w = (w1, ..., wn−1) ∈ Cn−1, z ∈ C, is in the special
form

M ′ : z̄ = z + iρ′(w, w̄) = z + i
∑

α∈Nn−1,|α|≤N0

ρ′α(w)w̄α,(1.1)

where the function ρ′(w, w̄) is a polynomial in the variables w, w̄, and N0 ∈ N.
Choose coordinates t in Cn near M . Such an equation is usually called polynomial
rigid. Then one has the following remarkable statement.
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Theorem 1.1. Let M be a real analytic hypersurface in Cn, let p ∈ M , let f
be a holomorphic mapping defined into a side D of M at p, C∞ up to M , such
that f sends (M, p) CR diffeomorphically into another real analytic hypersurface
(M ′, f(p)). Assume that there exist coordinates (w, z) at f(p) = 0 such that M ′

has a polynomial like equation as (1.1) and let G(f, λ) denote fn + iρ′(f∗, λ), f∗ =
(f1, ..., fn−1). Then

(a) (t, λ) 7→ G(f(t), λ) extends as a holomorphic function to Ot(0)×Oλ(0);
(b) In case the coordinates (w, z) are normal, i.e. ρ′(w, 0) ≡ 0, the normal

component fn of f extends as a holomorphic function to Ot(0);
(c) f extends as a holomorphic function to Ot(0) if M (hence M ′ too) is holo-

morphically nondegenerate.

Proof. Define the reflection function

G(f(t), λ) = fn(t) + iρ′(f∗(t), λ).

Now let S ⊂ M be a real analytic totally real submanifold of dimension n containing
0. Since there exists H , a well-defined biholomorphism taking S into a piece of Rn

through 0, we can introduce an antiholomorphic reflection mapping σS , σS |S = id|S ,
by taking σS(t) := H−1(H(t)). Choose W− a wedge of edge S near 0 such that
W− ⊂ D and σS(W−) =: W+ ⊂ U\D, U a neighborhood of 0.

First, we notice that G(f(t), λ) is holomorphic over D × Oλ(0) and C∞ over
(D ∪M)×Oλ(0). By the assumption that f(M) ⊂ M ′, we have

fn(t) = G(f(t), f∗(t)), for t ∈ M.

Choose a basis {L1, ..., Ln−1} of the complex tangent bundle T 1,0M with analytic
coefficients in (t, t̄). Applying Lj to the previous equation, one gets:

Ljfn(t) =
n−1∑
k=1

∂G

∂λk
Ljfk.(1.2)

Let J denote the matrix (Ljfk)1≤j,k≤n−1 and set J = det J . Since f is a CR
diffeomorphism, J(t) 6= 0 for t ∈ M . We now have(

∂G

∂λ1
, ...,

∂G

∂λn−1

)τ

= J −1(Lf∗)(L1fn, ..., Ln−1fn)τ(1.3)

(τ denotes transposition). Writing (1.3) as (n − 1) scalar equations, applying Lj

to each of them and proceeding in this manner, we see, by induction, that for each
multiindex β = (β1, ..., βn−1), there are two holomorphic functions P

(1)
β and P

(2)
β in

the arguments (t, t̄, {Lγ
f}|γ|≤|β|) and (t, t̄, {Lγ

f}|γ|≤1) such that, for each t ∈ M ,
one has P

(2)
β (t, t̄, {Lγ

f}|γ|≤1) 6= 0 and

∂β
λG(f(t), f∗(t)) =

P
(1)
β (t, t̄, {Lγ

f}|γ|≤|β|)
P

(2)
β (t, t̄, {Lγ

f}|γ|≤1)
.(1.4)

Here, Lγ denotes Lγ1
1 · · ·Lγn−1

n−1 . Since P
(2)
β does not vanish on M , we see that

the function P
(1)
β /P

(2)
β has a continuous extension to M , which we will denote by

hβ(t, t̄, {Lγ
f}|γ|≤|β|). Recall that since ρ′ is a polynomial, ∂β

λG becomes zero for
|β| sufficiently large, say |β| ≥ N0 + 1. Set, for t ∈ W+, |β| ≤ N0, h̃β(t) :=
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hβ(t, σS(t), {Lγ
f(σS(t))}|γ|≤|β|). Since t 7→ σS(t) is antiholomorphic in t, h̃β ex-

tends as a holomorphic function into W+ and continuous in W+ ∪ S. Now let

φ+
β :=

1
β!

(∂β
λ

∑
|γ|≤N0

h̃γ(t)(λ − f∗(σS(t)))γ)λ=0, for t ∈ W+, |β| ≤ N0,

φ−β (t) :=
1
β!

(∂β
λG(f(t), λ))λ=0 , for t ∈ W−, |β| ≤ N0.

Notice that φ+
β matches up with φ−β over S, by (1.4). Then the edge of the wedge

theorem implies that there exists a neighborhood V of 0 such that each function
equal to φ−β in W−, φ+

β in W+, extends as a holomorphic function φβ defined in
V , which can be filled in by analytic discs with boundaries in W+ ∪W−. Now,∑

|β|≤N0

φβ(t)λβ

clearly gives the desired holomorphic extension for G(f(t), λ) to Ot(0) × Oλ(0).
The proof of (a) is complete.

If coordinates (w, z) are normal, the relation G(f(t), 0) = fn(t) = φ0(t) shows
that the normal component of f extends holomorphically at 0. This gives (b).

Since M ′ is holomorphically nondegenerate, the complex analytic set at 0

∆′ = {(w, z) ∈ Cn; det

(
∂ρ′αj

∂wj

)
1≤i,j≤n−1

(w) = 0, ∀ (α1, ..., αn−1) ∈ N(n−1)2}

has complex codimension greater than one [S]. Hence Cn\∆′ is connected, and
M ′\(M ′ ∩∆′) too, since T0M

′ = {z̄ = z} and the equations of ∆′ depend only on
the w-coordinate. Set

C = {(t, λ, µ) ∈ Cn × Cn; t ∈ M, µ = φ0(t), ρ′α(λ) = ρ′α(f∗(t)), ∀ |α| ≥ 1}.
According to (b), C is a real analytic subset of Cn. Furthermore, C contains the
germ at 0 of a C∞ smooth (2n− 1)-dimensional manifold, namely the graph of f ,

Γ = {(t, f(t)) ∈ Cn × Cn; t ∈ M}.
Lemma 1.2. For p ∈ M , if f(p) ∈ M ′\(M ′ ∩ ∆′), then C ≡ Γ in a neighborhood
of (p, f(p)).

Proof. Apply the implicit function theorem.

Since M\(f−1(M ′∩∆′)) is connected too (recall f is a diffeomorphism), Lemma
1.2 implies that a single irreducible component C1 of the real analytic set C contains
Γ, dimRC1 = 2n−1. To conclude that f is analytic (hence holomorphically extend-
able, by complexification), apply the following theorem of Malgrange: A C∞-smooth
q-dimensional (q ≥ 1) manifold contained in a real analytic set of dimension q is a
real analytic manifold [BHR].

Remark 1.3. Under the hypothesis of (c), M ′ being rigid and nondegenerate cannot
contain a complex hypersurface through f(p), so M is minimal too and we do not
have to assume that f is holomorphic in one side of M at p, because of Trépreau’s
extension theorem.
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Remark 1.4. The authors conjecture that statements (a), (b) are true for any map-
ping f between real analytic hypersurfaces without assuming that M ′ is polynomial
rigid nor that det Jf (p) 6= 0.

2. Not totally degenerate CR mappings

Theorem 1.1 is easily seen to be true if one assumes only that the mapping f
is not totally degenerate in the sense that det( ∂Fi

∂wj
)(w, 0) 6≡ 0, where F1, ..., Fn−1

denote the formal power series of f1, ..., fn−1 at 0. We shall get the following
refinement of Theorem 1.1 (cf. [MIR]).

Theorem 2.1. (a), (b) and (c) are valid for C∞ f not totally degenerate.

Proof. Let J̃ denote the adjoint matrix of J = (L̄j f̄k)1≤j,k≤n−1, so that J̃ J =
det J Id = J Id. Applying L̄j to the fundamental equation f̄n = G(f, f̄∗), we get

J(∂λk
G(f, f̄∗))1≤k≤n−1 = J̃ (L̄1f̄n, ..., L̄n−1f̄n)τ .

Assume, by induction, that for each β ∈ Nn−1 with |β| ≤ k0, there exists a holo-
morphic polynomial gβ such that, on M ,

J2|β|−1∂β
λG(f, f̄∗) = gβ(t, t̄, {L̄γ f̄}|γ|≤|β|).(2.1)

Prove it for |β| = k0 + 1. Indeed, applying L̄j , j = 1, ..., n− 1, to (2.1), we get

(2|β| − 1)J2|β|−2L̄j(J)∂β
λG(f, f̄∗) + J2|β|−1

n−1∑
k=1

∂λk
∂β

λG(f, f̄∗)L̄j f̄k

= gjβ(t, t̄, {L̄γ f̄}|γ|≤|β|+1),

where the gjβ are holomorphic polynomials. Multiplying the equation by J , and
replacing J2|β|−1∂β

λG(f, f̄∗) by its value given by (2.1), we get

J2|β|
n−1∑
k=1

∂λk
∂β

λG(f, f̄∗)L̄j f̄k = g′jβ(t, t̄, {L̄γ f̄}|γ|≤|β|+1), j = 1, ..., n− 1,(2.2)

for some polynomial g′jβ . Then (2.1) follows at order k0 + 1 by multiplying (2.2)
by J̃ . Recall that since G is a polynomial, the equations (2.1) are 0 = 0, i.e.
∂β

λG ≡ 0, for |β| ≥ N0 + 1. Now, according to [BR], there exists γ ∈ Nn−1 such
that L̄γJ(0) 6= 0, and thus also, for each β, there exists γ = γ(|β|) such that
(L̄γJ2|β|−1)(0) 6= 0. This implies that for each β with |β| = N0, we have

∂β
λG(f, f̄∗) = ∂β

λG(f, 0) =
L̄γ(gβ(t, t̄, {L̄γ f̄}|γ|≤|β|))

L̄γ(J2|β|−1)
= hβ(t, t̄, {L̄γ f̄}|γ|≤Γ(β)),

(2.3)

for some holomorphic function hβ near 0 and Γ(β) ≥ sup{γ(|β|); |β| = N0} + N0.
Assume by downards induction that, for each k0 + 1 ≤ |β| ≤ N0, there exists a
holomorphic function hβ on a neighborhood of 0 in CΓ(β)+2n such that (2.3) is true
on M . Prove it for |β| = k0. In fact, there exists a holomorphic polynomial dβ such
that

(∂β
λG)(f, f̄∗) = (∂β

λG)(f, 0) + dβ({(∂β
λG)(f, 0)}k0+1≤|β|≤N0, f̄

∗),
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so that, by (2.1) and (2.3), we can write

J2|β|−1(∂β
λG)(f, 0) = gβ(t, t̄, {L̄γ f̄}|γ|≤|β|)−(2.4)

J2|β|−1dβ({hβ(t, t̄, {L̄γ f̄}|γ|≤Γ(β)}k0+1≤|β|≤N0, f̄
∗),

and (2.3) follows by applying some power of L̄ to (2.4). Since we obtained the rep-
resentation (2.3), (a) and (b) follow along the lines of 1.1. (The above calculations
are extracted from [BR].)

To prove (c), it is sufficient to show that the set

∆ = {(w, z) ∈ M ; det (Ljfk)1≤j,k≤n−1(w, z) = 0}
is of Hausdorff codimension at least two, so that M\∆ is connected. Indeed, let
U ⊂ M\∆ be a small open set such that f : U → f(U) = V is CR isomorphic.
Then U\f−1(V ∩ ∆′) is connected too, so M1 = (M\∆)/(f−1(∆′ ∩ f(M\∆))) is
connected too and Lemma 1.2 shows that M1 ≡ C there.

Lemma 2.2. The set ∆ ⊂ M is of Hausdorff dimension ≤ 2n−3 in a neighborhood
of the origin.

Proof. Let δ denote the C∞-smooth function on M , δ = det (Ljfk)1≤j,k≤n−1. Since
f is not totally degenerate at 0, we can write (recall δ is flat in w̄ at 0)

δ(w, w̄, x) = P (w) +
∑

|β|=N+1

wβRβ(w, w̄, x) + xQ(w, w̄, x),

for some nonzero polynomial P and C∞ functions Rβ, Q. We study the zero
locus of δ. We can assume that δ(w1, 0, w̄1, 0, 0) = wN

1 (1 + S(w1, w̄1)), with S
C∞, flat in w̄1 at 0, S(0) = 0. Malgrange’s preparation theorem yields that there
exist C∞ functions q and r on M with q(0) 6= 0 and r(0) 6= 0 such that (writing
w∗ = (w2, ..., wn−1))

(qδ)(w, w̄, x) = uN
1 +

∑
1≤j≤N

λj(v1, w
∗, w̄∗, x)uN−j

1

and

(rδ)(w, w̄, x) = vN
1 +

∑
1≤j≤N

µj(u1, w
∗, w̄∗, x)vN−j

1 ,

for C∞ functions λj , µj , 1 ≤ j ≤ N , vanishing at 0. Fixing small (w∗, w̄∗, x), one
sees that there can be at most N2 solutions to the system of the two equations
above.
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