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NONUNIQUENESS OF PHASE TRANSITIONS
NEAR THE MAXWELL LINE
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(Communicated by Jeffrey Rauch)

Abstract. We consider the description of propagating phase boundaries in
a van der Waals fluid by means of viscocapillary profiles, which are viewed
as heteroclinic orbits connecting nonhyperbolic fixed points of a five dimen-
sional dynamical system. A bifurcation analysis enables us to show that, for
small viscosities, some distinct propagating phase boundaries share the same

metastable state on one side of the front.

Introduction

We are concerned with propagating phase boundaries in an isothermal van der
Waals fluid. The underlying discontinuities have fewer degrees of freedom than
the classical ones for compressible fluids – shocks or contact discontinuities. As
a matter of fact, phase transitions are required to have viscocapillary profiles [6],
which implies, as for undercompressive shocks [3], an additional condition to the
Rankine-Hugoniot conditions. While shock waves or contact discontinuities need
the fluid’s state on one side of the front and the front speed to be determined, we
expect that only one of these data determines phase transitions. Therefore, phase
transitions are commonly parametrized by one of the fluid’s states. This state
may be any of them in the case of an inviscid fluid, in which phase transitions are
reversible [1]. However, the purpose of this paper is to show that dissipative phase
transitions are characterized by the state that receives the mass transfer – which is
in accordance with the uniqueness theorems stated in [2] or [7]. This state is in
a physically speaking stable phase, i.e., it lies outside the Maxwell points, which
correspond to the only phase transition with no mass transfer. On the other hand,
the metastable states – lying between the Maxwell points – that are close enough
to one of these points define at least two phase transitions. This nonuniqueness
result, unlike Grinfeld’s one for instance [4], concerns profiles that remain close to
the Maxwell profile.

1. The zero viscosity bifurcation

1.1. Viscocapillary profiles. Let us consider a van der Waals type smooth pres-
sure law p : v ∈ ] b , +∞ [ 7→ p(v) > 0 that is decreasing except on some interval
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] v? , v? [, where it is increasing, and such that limv→b p(v) = +∞, limv→+∞ p(v) =
0. Then there exists a unique ( vm , vM , p̄ ) ∈ ] b , v? [× ] v? , +∞ [×R+∗, called the
Maxwell equilibrium, such that the equal area rule:∫ vM

vm

( p̄ − p(v) ) dv = 0 , p̄ = p(vm) = p(vM ) ,(1.1)

holds. We shall base our analysis on these points.
We assume the motion of the fluid is governed by the Euler equations supple-

mented with a viscosity coefficient µ ≥ 0 and a capillarity coefficient ε > 0:

ρt + ( ρ u )x = 0 , ( ρ u )t + ( ρ u2 + p )x = µ uxx − ε vxxx ,(1.2)

where ρ := 1/v denotes the density, p = p(v) the pressure and u the velocity.
According to the Slemrod criterion [6], a phase transition of speed s between the
specific volumes vl ∈ ] b , v? ] and vr ∈ [ v? , +∞ [ is admissible if it admits a vis-
cocapillary profile, that is to say a travelling wave of the form (x, t) ∈ R × R+ 7→
(v((x − st)/

√
ε), u((x− st)/

√
ε)) solution to (1.2) such that v(−∞) = vl and

v(+∞) = vr. If such a profile exists, then the function ξ 7→ u(ξ) has some
limits ul and ur at −∞ and +∞ respectively and we have

ρl (ul − s ) = ρr (ur − s ) ,
ρl ul (ul − s ) + p(vl) = ρr ur (ur − s ) + p(vr) .

(1.3)

Equations (1.3) are nothing but the Rankine-Hugoniot conditions of the Euler equa-
tions. They can also be written by means of the mass transfer j := ρ (u − s ) as:

ul − j vl = ur − j vr , p(vl) + j2 vl = p(vr) + j2 vr .(1.4)

Owing to (1.4) and an elementary integration, we can eliminate the velocity u from
the question of existence of viscocapillary profiles. Eventually, a phase transition
of mass transfer j between vl and vr is admissible if there exists a smooth solution
of the ordinary differential equation

v′′ = ν j v′ + p(vl) + j2 vl − p(v) − j2 v ,(1.5)

where ν := µ/
√

ε, such that

v(−∞) = vl and v(+∞) = vr .(1.6)

We have preferred here an Eulerian formulation of the motion since it allows us
to consider (planar) multidimensional phase transitions. However, a Lagrangian
formulation would lead to the same differential equation as (1.5) except that −j
would be replaced by the (relative) speed of the boundary. So this choice does not
play any role in the analysis.

In the particular case j = 0, the profile equation (1.5) gets much simpler.
Hence, whatever the viscosity of the fluid, the only admissible phase transition
( vl , vr) ∈ ] b , v? [× ] v? , +∞ [ with no mass transfer corresponds to the Maxwell
points vl = vm and vr = vM defined by (1.1). On the other hand, the existence
of strictly capillary profiles – i.e. when µ = 0 – is linked to a generalized equal area
rule (see Figure 1), that is to say:∫ vr

vl

(
pl − p(v) + j2 ( vl − v )

)
dv = 0 ,

p(vr) − p(vl)
vr − vl

= − j2 .
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This shows that for an inviscid fluid, admissible phase transitions ( vl , vr ) ∈
] b , v? [× ] v? , +∞ [ are such that

vl ≤ vm and vr ≥ vM .(1.7)

If µ > 0, then phase transitions behave differently. We know (see [5], [7]) that
for j near 0, the admissible phase transitions read ( vl = vl(j) , vr = vr(j) ) with
vl(0) = vm, vr(0) = vM and djvl,r(0) 6= 0. If we differentiate the second equation
of (1.4), we see from dvp(vm) < 0 and dvp(vM ) < 0 that djvl(0) and djvr(0) are
strictly of the same sign. This is not compatible with (1.7) and one of the states lies
in the so-called metastable region ] vm , v? [∪ ] v? , vM [. (This was already pointed
out in [8].) So, there is a bifurcation at µ = 0 that we have to analyze.

Figure 1. The generalized equal area rule

1.2. The augmented dynamical system. Equation (1.5) may be rewritten as a
first order system in the phase plane. When j = 0, this system has a heteroclinic
orbit connecting the saddle points (vm, 0) and (vM , 0) that is parametrized by
ξ 7→ (V (ξ), V ′(ξ)), where V is called the Maxwell profile and is the unique solution
up to a translation to

V ′′ = p̄ − p(V ) , V (−∞) = vm and V (+∞) = vM .(1.8)

We shall concentrate on the profiles that are close to the Maxwell profile, when
(j, ν) is close to (0, 0). Therefore, we add three trivial equations to the original
system and we consider the system of five equations:

v′ = w , w′ = ν j w + π − p(v) − j2 v , π′ = 0 , j′ = 0 , ν′ = 0 ,(1.9)

one obvious solution of which is Ū : ξ 7→ (V (ξ), V ′(ξ), p̄, 0, 0).
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Lemma 1.1. There exist two surfaces Σm,M ⊂ R5 containing

Um,M := (vm,M , 0, p̄, 0, 0)

respectively, locally parametrized by (j, ν) and such that, for all Ul ∈ Σm, there is a
global solution ξ 7→ U(ξ) to system (1.9) satisfying U(−∞) = Ul and U(+∞) =
Ur ∈ ΣM .

Proof. It follows the ideas of the similar result for a fixed viscosity [5], [7]. We shall
denote by Γ the heteroclinic orbit connecting Um to UM in R5 that is described
by the global solution Ū . The matrices of the linearized system of (1.9) at points
Um,M read

Am,M =


0 1 0 0 0

C2
m,M 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

where C2
m,M := − dvp(vm,M ). They have 0 as an eigenvalue of multiplicity 3.

Consequently, system (1.9) has dimension 3 center manifolds Wc
m,M around the

fixed points Um,M that are locally equal to the dimension 3 manifolds of the fixed
points

(
v, 0, p(v) + j2 v, j, ν

)
close to Um,M . Their tangent spaces TUm,MWc

m,M are
generated by (

1, 0,−C2
m,M , 0, 0

)
, (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1) .

Moreover, system (1.9) has an unstable curve Wu
m at point Um that is tangent to

the eigenvector (1, Cm, 0, 0, 0) of Am, as well as a stable curve Ws
M at point UM

that is tangent to the eigenvector (1,−CM , 0, 0, 0) of AM . Hence, system (1.9) has
a center-unstable manifold Wcu

m at point Um of dimension 4 that contains Wu
m, and

a center-stable manifold Wcs
M at point UM of dimension 4 that containsWs

M . Their
intersection M := Wcu

m ∩ Wcs
M thus contains the orbit Γ. We have to show that

M is a submanifold of dimension 3 of R5, which is equivalent to showing that the
hypersurfaces Wcu

m and Wcs
M are transverse to each other along Γ. Therefore, we

have to calculate their tangent spaces at each point of Γ. The hypersurface Wcu
m

consists of the unstable curves emanating from the fixed points close to Um, that
is to say the points of Wc

m. Hence, for all ξ0 ∈ R, the tangent space TŪ(ξ0)Wcu
m

consists of the sum of TŪ(ξ0)Γ and the displaced space of TUmWc
m along Γ at point

Ū(ξ0). The vectors of the latter are the values at ξ0 of solutions to the linearized
system around Γ:

α′ = β , β′ = γ − dvp (V (ξ)) α , γ′ = 0 , δ′ = 0 , η′ = 0 ,(1.10)

that have a limit at −∞ belonging to TUmWc
m. In view of (1.8), we get for any

solution to (1.10) having a limit at −∞:

α′ V ′ − V ′′ α = γ (V − vm ).

Conversely, if Qm(ξ) :=
∫ ξ

ξ0
(V − vm )/(V ′)2 , then

lim
ξ→−∞

V ′(ξ)Qm(ξ) = −1/C2
m.

So, for all (γ, δ, η) ∈ R3 the function

ξ 7→ (α(ξ) = γ V ′(ξ)Qm(ξ) , β(ξ) = α′(ξ) , γ(ξ) = γ , δ(ξ) = δ , η(ξ) = η)
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is a solution to (1.10) that has the limit at −∞:(− γ/C2
m , 0 , γ , δ , η

) ∈ TUmWc
m .

Consequently, TŪ(ξ0)Wcu
m is generated by

(V ′(ξ0), V ′′(ξ0), 0, 0, 0) , (0, (V (ξ0) − vm )/V ′(ξ0), 1, 0, 0) ,
(0, 0, 0, 1, 0) and (0, 0, 0, 0, 1) .

A similar computation shows that TŪ(ξ0)Wcs
M is generated by

(V ′(ξ0), V ′′(ξ0), 0, 0, 0) , (0, (V (ξ0) − vM )/V ′(ξ0), 1, 0, 0) ,
(0, 0, 0, 1, 0) and (0, 0, 0, 0, 1) .

Since vm 6= vM , the hyperplanes TŪ(ξ0)Wcu
m and TŪ(ξ0)Wcs

M are different and thus
transverse to each other. So the manifolds Wcu

m and Wcs
M are also transverse at

point Ū(ξ0). Their intersection M is a submanifold of dimension 3, the tangent
space of which is TŪ(ξ0)M, generated by

(V ′(ξ0), V ′′(ξ0), 0, 0, 0) , (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1) .

Furthermore, we see in the limit case that TUmWcs
M is generated by

(1, Cm, 0, 0, 0) , (0, 1, 0, 0, 0) , (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1) .

This proves that Wcs
M and Wc

m are transverse to each other at point Um. Their
intersection Σm is also equal to M∩Wc

m and is a submanifold of dimension 2 of R5

at point Um, the tangent plane of which is TUmΣm, generated by (0, 0, 0, 1, 0) and
(0, 0, 0, 0, 1). Similarly, the intersection ΣM of Wcu

m and Wc
M is equal to M∩Wc

m

and is a submanifold of dimension 2 of R5 at point UM , the tangent plane of which
is TUM ΣM = TUmΣm.

Finally, each point Ul of Σm close to Um belongs to the stable manifold of a
point Ur of ΣM , which belongs itself to the unstable manifold of Ul. This proves
the existence of a heteroclinic orbit connecting these two fixed points. The surfaces
Σm and ΣM can be both parametrized by (j, ν) in such a way that these points
read:

Ul =
(
vl(j, ν) , 0 , π(j, ν) = p(vl(j, ν)) + j2 vl(j, ν) , j , ν

)
,

Ur =
(
vr(j, ν) , 0 , π(j, ν) = p(vr(j, ν)) + j2 vr(j, ν) , j , ν

)
,

with dvl,r(0, 0) = (0, 0).

We shall now compute the quadratic approximation of the surfaces Σm,M .

Remark 1.2. We know (see §1.1) that for all ν ≥ 0 we have

vl(0, ν) = vm and vr(0, ν) = vM .(1.11)

In particular, we shall have ∂2
ννvl,r (0, 0) = 0.

Proposition 1.3. In the neighborhood of (0, 0) we have

vl(j, ν) − vm = 1
C2

m
(vM − vm)

(− 1
2 j2 + j ν R

)
+ h.o.t ,

vr(j, ν) − vM = 1
C2

M
(vM − vm)

(
+ 1

2 j2 + j ν R
)

+ h.o.t ,
(1.12)

where R :=
∫ +∞
−∞ (V ′)2/( vM − vm )2.
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Proof. For (j, ν) close to (0, 0), we write the solution of (1.9) that takes the values
Ul(j, ν) at −∞ and Ur(j, ν) at +∞ as

U = Ū + U1 + U2 + o(U2) ,

where U1 is a solution to the first order approximate system (1.10). We recall from
Lemma 1 that U1 = (α1, β1, γ1, δ1, η1) has to satisfy

α′1 V ′ − V ′′ α1 = γ1 (V − vm ) = γ1 (V − vM ).

This implies γ1 = 0 and the existence of a1 ∈ R such that α1 = a1 V ′. Further-
more, the system satisfied by U2 = (α2 , β2 , γ2 , δ2 , η2) is

α′2 = β2 , γ′2 = 0 , δ′2 = 0 , η′2 = 0 ,

β′2 = γ2 − dvp(V (ξ)) α2 − d2
vvp(V (ξ)) α2

1/2 + δ1 η1 V ′ − δ2
1 V .

(1.13)

Some elementary computations then show that:

(
β2 V ′ − ( p̄ − p(V ) )α2 − γ2 V +

1
2

δ2
1 V 2

)′
=

(
δ1 η1 +

1
2

a2
1 E(V )′

)
(V ′)2 ,

(1.14)

where dvE = −p. Now we note from (1.8) that∫ +∞

−∞
E(V )′ (V ′)2 = 0 .

The integration of (1.14) thus implies

− γ2 ( vM − vm ) +
1
2

δ2
1 ( v2

M − v2
m ) = δ1 η1

∫ +∞

−∞
(V ′)2 .(1.15)

Since the third component of U is π(j, ν) = p̄ + γ2 + o(U2) while j = δ1 + δ2 +
o(U2) and ν = η1 +η2 + o(U2), we deduce from (1.15) that for (j, ν) close to (0, 0):

π(j, ν) − p̄ ∼ 1
2

j2 ( vM + vm ) − j ν

∫ +∞

−∞
(V ′)2 /( vM − vm ) .

The aimed result (1.12) is then obtained by expanding up to second order the
relations

π(j, ν) = p(vl(j, ν)) + j2 vl(j, ν) = p(vr(j, ν)) + j2 vr(j, ν) .

Remark 1.4. The expansions (1.12) are in accordance with the behavior pointed
out in paragraph 1.1. In particular, for ν = 0 we have

dvr

dvl
(vm) = − C2

m

C2
M

< 0,

whereas for ν = cte > 0 we have

dvr

dvl
(vm) =

C2
m

C2
M

> 0.



NONUNIQUENESS OF PHASE TRANSITIONS NEAR THE MAXWELL LINE 1189

2. Nonuniqueness of phase transitions

In view of (1.11) the functions (vl,r − vm,M )/j are smooth, as well as ∂jvl,r. By
applying the Implicit Function Theorem to these functions, we easily deduce from
Proposition 1.2:

Proposition 2.1. There exist four smooth functions of ν in the neighborhood of 0
such that

jM (ν) < jMin(ν) < 0 < jmax(ν) < jm(ν) ,

jM (ν) ∼ − 2 Rν , jMin(ν) ∼ −R ν , jmax(ν) ∼ R ν , jm(ν) ∼ 2 R ν ,(2.1)

and

vl (jm(ν) , ν) = vm ,

∂jvl > 0 if jM (ν) ≤ j < jmax(ν) and ∂jvl < 0 if jmax(ν) < j ≤ jm(ν) ,

vr (jM (ν) , ν) = vM ,

∂jvr < 0 if jM (ν) ≤ j < jMin(ν) and ∂jvr > 0 if jMin(ν) < j ≤ jm(ν) .

(The reader may refer to Figure 2.) We are now in a position to state the

Figure 2. Admissible phase transitions close to (vm, vM )

Theorem 2.2. Let p : v ∈ ] b , +∞ [ 7→ p(v) > 0 be of class C2 such that

dvp < 0 if v ∈] b , v? [∪ ] v? , +∞ [ , dvp > 0 if v ∈] v? , v? [ ,

lim
v→b

p(v) = +∞ , lim
v→+∞ p(v) = 0 .

Let vm and vM be defined by (1.1). Then there exists ν0 > 0 such that for all
ν ∈ ]0 , ν0[ there are four values vmin, vmax, vMin and vMax – depending on ν –
satisfying

vmin < vm < vmax < v? , v? < vMin < vM < vMax ,
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such that
• for all vl ∈ [ vm , vmax [ there are two different pairs ( vr , j ) ∈ [ vM , vMax ]×

R+ such that the problem (1.5)–(1.6) has a solution,
• for all vr ∈ ] vMin , vM ] there are two different pairs ( vl , j ) ∈ [ vmin , vm ] ×

R− such that the problem (1.5)–(1.6) has a solution.

Proof. This is a direct consequence of Lemma 1.1 and Propositions 1.2 – 2.1, with

vmax(ν) := vl(jmax(ν) , ν) , vMax(ν) := vr(jm(ν) , ν) ,
vMin(ν) := vr(jMin(ν) , ν) , vmin(ν) := vl(jM (ν) , ν) .

Remark 2.3. From (2.1) and (1.12), we have the estimates:

vmax(ν) − vm ∼ + 1
2 C2

m
(vM − vm) R2 ν2 ,

vMax(ν) − vM ∼ + 4
C2

M
(vM − vm) R2 ν2 ,

vMin(ν) − vM ∼ − 1
2 C2

M
(vM − vm) R2 ν2 ,

vmin(ν) − vm ∼ − 4
C2

m
(vM − vm) R2 ν2 .
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