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UNIQUENESS OF NON-ARCHIMEDEAN ENTIRE FUNCTIONS
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(Communicated by David E. Rohrlich)

ABSTRACT. A set is called a unique range set for a certain class of functions if
each inverse image of that set uniquely determines a function from the given
class. We show that a finite set is a unique range set, counting multiplicity, for
non-Archimedean entire functions if and only if there is no non-trivial affine
transformation preserving the set. Our proof uses a theorem of Berkovich to
extend, to non-Archimedean entire functions, an argument used by Boutabaa,
Escassut, and Haddad to prove this result for polynomials

A well-known theorem of R. Nevanlinna (¢f. [Nev]) says that if f and g are
two meromorphic functions such that f~(a;) = g~'(a;) for five distinct points
ai,...,as on the Riemann sphere, then either both f and g are constant, or f = g¢.
A similar result, but with only two values a;, and with meromorphic functions
replaced by polynomials, can be found in [A-S], where Adams and Straus also
show that the statement remains true if f and g are even allowed to be non-Archi-
medean entire functions. Throughout this work, the expression non-Archimedean
entire function will mean a formal power series in one variable with coefficients in
an algebraically closed field K of characteristic zero, complete with respect to a
(possibly trivial) non-Archimedean absolute value, and such that the power series
has infinite radius of convergence. This theorem of Adams and Straus fits into a
principle of the first author of the present work, which states that most theorems
that are true for polynomials will also be true for non-Archimedean entire functions,
if stated appropriately. See [Ch] for a geometric conjecture based, in part, on this
principle.

The theorem of Nevanlinna quoted above says that if f~1(a;) = g~ *(a;) for some
values a;, then f and g must be equal. Rather than consider the values one at a
time, we can weaken the hypothesis by considering the values together as a set.
Namely, given a set of values S, we say that two functions f and g share S,
ignoring multiplicity, if f~1(S) = ¢g~1(S). One can also take multiplicity into
account. Namely, if given a function f, we let

E(f,S)={(z,m) e K xZ: f(z) =a € S and f(z) = a with multiplicity m},
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where K is the field of definition of f, and Z denotes the set of integers, then f
and g share S, counting multiplicity, if E(f,S) = F(g,5). A set S is called a
unique range set, counting or ignoring multiplicity, for a certain function class,
if whenever two non-constant functions in that class share the set .S, counting or
ignoring multiplity, then the two functions must be identically equal. For short,
we will use URS, URSCM, and URSIM as abbreviations for “unique range set,”
“unique range set, counting multiplicity,” and “unique range set, ignoring multi-
plicity,” respectively.

Gross [Gr] introduced the concept and terminology of a unique range set, and
asked whether unique range sets of finite cardinality exist. Gross and Yang [G-Y]
were the first to construct a non-trival URSCM for complex entire functions; their
set was infinite, but discrete. Since then, people have constructed URS’s with finite
cardinality, and recent progress in determining the minimal cardinality of URS’s for
complex entire and meromorphic functions has been fast-paced. See, for example,
the work of Li-Yang [L-Y], and of Frank-Reinders [F-R]. Also, see the book (written
in Chinese) by Yi and Yang [Y-Y].

A central question is what are necessary and sufficient conditions for a set S
to be a URSCM or URSIM as various classes of functions are considered? In the
case of complex meromorphic or entire functions, one is still a long way away from
characterizing unique range sets in terms of necessary and sufficient conditions. In
fact, up till now, only in the case of polynomials did one have a nice characterization
of unique range sets. Following Boutabaa, Escassut, and Haddad [B-E-H], we
call a subset S of a field K affinely rigid if no non-trivial affine transformation
of K preserves S. Actually, Boutabaa, Escassut, and Haddad now use the word
“stiff” in place of “affinely rigid,” but we prefer to keep the terminology “affinely
rigid.” By an elementary and elegant argument, Boutabaa, Escassut, and Haddad
[B-E-H] showed that if K is an algebraically closed field of characteristic zero, then
a finite set S is a URSCM for polynomials if and only if S is affinely rigid. In
fact, Ostrovskii, Pakovitch, and Zaidenberg [O-P-Z] have shown that precisely the
same sets turn out to be unique range sets for polynomials ignoring multiplicity,
provided one considers only polynomials of a fixed degree.

The various constructions of unique range sets for functions of a complex variable
found in the literature tend to make use of Nevanlinna’s theory of value distribution.
Since an analogue of this theory exists for non-Archimedean meromorphic functions,
these constructions also give examples of URS’s for non-Archimedean functions,
as in the work of Hu-Yang [H-Y]. In the work [B-E-H] cited above, Boutabaa,
Escassut, and Haddad constructed URSCM’s of arbitrary finite cardinality > 3
for non-Archimedean entire functions. They also succeeded in characterizing the
URSCM'’s of cardinality three by showing that a three element set is a URSCM
for non-Archimedean entire functions if and only if it is affinely rigid, as in the
case of polynomials. This fits the aforementioned principle that theorems true
for polynomials should remain true for non-Archimedean entire functions. It was
then natural to suspect that a finite set would be a URSCM for non-Archimedean
entire functions if and only if it were a URSCM for polynomials, which is what we
show here. In fact, except for our application of a theorem of Berkovich, our proof
involves little more than pointing out that the elementary proof used by Boutabaa,
Escassut, and Haddad [B-E-H] in their treatment of polynomials extends to the
non-Archimedean entire case, and thus the more complicated portions of [B-E-H]
can be avoided.



UNIQUENESS OF NON-ARCHIMEDEAN ENTIRE FUNCTIONS 969

Theorem 1. Let K be an algebraically closed field of characteristic zero, complete
with respect to a non-Archimedean absolute value. A finite set S in K is a unique
range set, counting multiplicity, for non-Archimedean entire functions over K if
and only if S is affinely rigid.

We remark that the characteristic zero hypothesis is necessary since, for example
in characteristic three, the polynomials 22 and z? 4+ z + 1 share, counting multi-
plicities, the set S = {—1,(,—(} where ¢ = —1, and S is not preserved by any
non-trivial affine transformation. We leave this fact as an exercise for the reader.
In fact, J. F. Voloch has pointed out to the first author that no set with three
elements can be a URS for polynomials in characteristic three. The interesting
problem of giving a nice characterization of unique range sets for polynomials in
positive characteristic remains open.

The proof of Theorem 1 breaks up into three parts. The first part is essentially
Berkovich’s Theorem. The remaining two parts are nearly as in [B-E-H], but we
recall the proofs here for the convenience of the reader.

Theorem 2. Let f and g be non-constant non-Archimedean entire functions. Let
F(z,y) be a polynomial in two variables with coefficients in K. Suppose F(f,g) = 0.
Then there exist a non-Archimedean entire function h and two polynomials p(z) and
q(z) such that f = p(h) and g = q(h).

Proof. Let Fy(x,y) be an irreducible factor of F' such that Fy(f,g) = 0. Since f
and g are not constant, by Berkovich’s non-Archimedean Picard Theorem ([Ber],
Theorem 4.5.1, see also [Ch]), Fy(x,y) = 0 is a rational curve (i.e. an algebraic
curve of genus 0), and since K is algebraically closed, can therefore be rationally
parametrized. In other words, there exist rational functions r(¢), s(t), and R(z,y)
such that ¢t = R(z,y), and Fy(r(t),s(t)) = 0. Let h = R(f,g), so that f = r(h),
and g = s(h). Now, since f and g are entire, the non-Archimedean meromorphic
function h must omit 771 (c0) and s~!(00). However, non-Archimedean meromor-
phic functions can omit at most one point in K U {co}. Thus, 7~ (co) must equal
571(c0), and consists of exactly one point. Therefore, after making a projective
linear change in coordinates, we can assume r~!(co) = s71(c0) = oo, and that
h omits oco. In other words, we may assume r and s are polynomials, and h is
entire. (]

Lemma 3. Let h be a non-constant, non-Archimedean entire function, and let
D, q, and P be polynomials with coefficients in K. Assume that n = deg P > 1, that
d = degp > degq, and that d > 1. Suppose that C' is a non-zero constant such that
P(p(h)) = CP(q(h)). Then, p(h) = bq(h) + &, where 6 and & are in K, and more-
over, 0™ = C.

Proof. Let K be the field generated by the coefficients of p, ¢, and P. By extending
K if necessary, we can assume that K contains elements which are transcendental
over Kj. Since h is not constant, we can choose zp in K so that { = h(z) is
transcendental over K. Write

d d
p(h(z0)) = a;¢! and  q(h(z)) =D b;¢7.
j=0

j=0
Expand out P(p(h(z0))) and CP(q(h(z0))), and collect terms according to the
power of ( that appears. Note that only the degree n term in P will produce
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powers of ¢ greater than d(n — 1). By comparing coefficients of the term involving
¢ we see that degq also equals d, and that ay = 6b,, for some constant § with
0" = C. Now, since we are in characteristic zero, comparing the coefficients of the
remaining terms where the power of ¢ is larger than d(n — 1) shows that a; = 6b;
for all 7 > 1. Setting £ = ag — 0by completes the proof of the theorem. O

Lemma 4. Let S be an affinely rigid subset of K. Let g be a non-constant non-Ar-
chimedean entire function, and let f = Ag+ B, where A and B are elements of K,
and A#0. If f~1(S) = g7 1(9), then f = g.

Proof. Because g is non-Archimedean entire, and non-constant, every point in K,
and hence in S, is in the image of g. Thus, g(¢g=1(9)) = S. If f=1(S) =g~ (S),
then f(g~1(S)) C S. Thus,

S 2 flg7'(5)) = Ag(g™'(S)) + B=AS + B.

Therefore, the affine transformation z — Az + B is a non-trivial affine transforma-
tion preserving .S, contradicting our assumption that S is affinely rigid. O

Proof of Theorem 1. Write S = {s1,...,8,}, and let f and g be two non-constant,
non-Archimedean entire functions which share S, counting multiplicity. Let P(X)
be the polynomial

P(X) = (X —s1)- (X — sp).

Because f and g share S, counting multiplicity, P(f) and P(g) are non-Archimede-
an entire functions which have precisely the same zeros, counting multiplicity. Thus
P(f)/P(g) is a non-Archimedean entire function which is never zero, and so must be
anon-zero constant C. Letting F(z,y) = P(z) — CP(y), we have F(f,g) = 0. Thus,
by Theorem 2, we have a non-Archimedean entire function h, and two polynomials
p and ¢ so that f = p(h) and g = q(h). By Lemma 3, we then have that f = Ag+ B,
where A and B are constants, and A™ = C. Lemma 4 then tells us that either f = g,
or there is a non-trivial affine transformation of K which preserves S. Thus, if S is
affinely rigid, then S is a URSCM for non-Archimedean entire functions. For the
other implication, it is easy to see that if S is not affinely rigid, then S cannot be

a unique range set. O
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