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ABSTRACT. We present several results connecting the number of conjugacy
classes of a finite group on which an irreducible character vanishes, and the
size of some centralizer of an element. For example, we show that if G is a finite
group such that G # G’ # G”, then G has an element z, such that |Cg(z)| <
2m, where m is the maximal number of zeros in a row of the character table of
G. Dual results connecting the number of irreducible characters which are zero
on a fixed conjugacy class, and the degree of some irreducible character, are
included too. For example, the dual of the above result is the following: Let
G be a finite group such that 1 # Z(G) # Z2(G); then G has an irreducible
character x such that ‘2G‘1)
in a column of the character table of G.

< 2m, where m is the maximal number of zeros

1. INTRODUCTION

Let x be an irreducible ordinary non-linear character of a finite group G. A
well-known theorem of Burnside ([7], p. 40) states that y has a zero on G, that is,
an z € G with x(z) = 0. As far as we know, the best lower bound on the number of
zeros of such a y were obtained by Zhmud in [11]. Zhmud also studied the subgroup
generated by the zeros of a character (e.g. [12]). Groups that have an irreducible
character that vanishes on exactly one class were studied by Zhmud in [13], and
those having an irreducible character vanishing on all but two classes were studied
by Gagola in [4].

Our purpose here is to show that if an irreducible character of a finite group
vanishes on exactly m conjugacy classes, then either the group has an element
whose centralizer size is at most 2m, or the group and the character are restricted
in some sense. Later on we will discuss dual results on the number of irreducible
characters vanishing on a fixed conjugacy class. In fact, we present two simple
observations (Theorems 1.1 and 1.3) and the rest of the results are consequences of
these. Our first observation is:

Theorem 1.1. Let G be a finite non-abelian group such that G # G', and let x be
a non-linear irreducible character of G. Let m be the number of conjugacy classes
of G on which x vanishes. Then one of the following holds:
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1. G has an element x such that |Cq(x)| < 2m. In fact, one can choose such
an x from any conjugacy class of mazximal size among the classes on which x
vanishes.

2. ¢ = xor € Irr(G') and ¢¢ = xS {\ | A € Irr(G), A(1) = 1}. Furthermore,
the set {x\ | A € Irr(G), A1) = 1} consists of exactly |G : G'| extensions of
@, which are all the extensions of ¢. In particular, ¢ is not linear and G" # 1.

The next result is:

Theorem 1.2. Let G be a finite non-abelian group such that G # G'. For every
x € Irr(G), let n(x) be the number of conjugacy classes of G on which x vanishes.
Set m = max{n(x) | x € Irr(G)}. Assume that |Cq(x)| > 2m for all x € G. Then
all the following hold:

1. For all x € Irr(G) we have xg € Irr(G'), and the set {xA | A € Irr(G), \(1) =
1} consists of exactly |G : G'| extensions of xgs, which are all the extensions
of xar-

Each ¢ € Irr(G') is of the form xg for some x € Irr(G).

G'=G@G".

Every G’ -conjugacy class is a G-conjugacy class.

Every non-linear irreducible character of G vanishes on at least one conjugacy
class outside G' and on at least one conjugacy class inside G'.

G

The proofs of the above theorems, as well as consequences for metabelian groups,
solvable groups and groups with irreducible characters vanishing on exactly one
class, can be found in Section 2.

The main dual observation is the following (here clg(u) is the G-conjugacy class
of the element u of G):

Theorem 1.3. Let G be a finite non-abelian group such that Z(G) # 1, and let C
be a non-central conjugacy class of G. Let m be the number of irreducible characters
of G vanishing on C. Then one of the following holds:

1. G has an irreducible character x such that 20 < 2m. In fact, x may be
chosen to be an irreducible character of maximal degree among the irreducible

characters vanishing on C.
2. Ifce C, then |clg z(q)(cZ(G))| = |C|. In particular, G/Z(G) is not abelian.

The proof and consequences which are “dual” to the ones in Section 2 can be
found in Section 3

Our notation is standard and taken mainly from [7]. The value of the class
function f on the conjugacy class C will be denoted by f(C). Also, we will denote
the set of all linear characters of the group G by Lin(G).

2. THE NUMBER OF CONJUGACY CLASSES
ON WHICH AN IRREDUCIBLE CHARACTER VANISHES

Proof of Theorem 1.1. Let D1, D5, ..., D,, be all the conjugacy classes of G on
which y vanishes. Then Lin(G) acts on Irr(G) by multiplication. Let O = {xA |
A € Lin(G)} be the orbit of x in this action and set r = |G : G| = |Lin(G)|. We
now deal with two cases.

Case 1: |O| < r. Then, x is fixed by some A € Lin(G) — {15}, that is, Ay = x.
Set U = Ui~ D;; then ker(A\) D G —U. Soif g € G — U, then A\(g9) = 1. Since
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[\, 1¢] = 0 we get that:

Gl =13 AMg)=>_ (1-A@®) =D |IDil(1 = A(Dy)).
geG@  ge@ zeU i=1

So,if D € {D1,Ds, ..., Dy,} is of maximal size, then |G| < [D| Y1 [(1=A(D;))| <

2m|D|. Let d € D; then |Cg(d)| < 2m and so claim 1 holds.

Case 2: |O| = r. Write xgr = e(¢1 + w2 + -+ + ©s), where p1,¢a,..., @, are
the distinet Clifford conjugates of ¢ = ¢ with ¢ € Irr(G’). By the Frobenius
reciprocity, [p%,x] = e. Let A € Lin(G); then xA(z) = x(z) for all z € G’ and
since % vanishes on G — G’ we get that [p%, x\] = [p%,x] = e. Thus )\ is a
constituent of % with multiplicity e, for all A € Lin(G). Now, O is a regular orbit
under Lin(G) so 0 = ex Z)\GLin(G) \ is a constituent of . Comparing degrees we
get:

ro(1) = p%(1) > ex(1)r = e -esp(1) -+ which implies that e?s < 1.

Thus e = s = 1, s0 xg = ¢ € Irr(G"). Furthermore (1) = x(1)r = ¢(1)r = ¢%(1)
and hence ¢ = X 2 xeLin(G) A Which is another claim of 2.

Since Agr = 1 for all A € Lin(G), we get that (x\)er = xa» = ¢, and so every
element of O is an extension of ¢. Next, if § € Irr(G) is an arbitrary extension of
@, then 1 = [0gr, ¢lar = [0, ¢]. But, ¢ is the sum of the irreducible elements of
O, and so 0 € O. Finally, as p(1) = x(1) > 1, ¢ is non-linear and so G” #1. O

Remark 2.1. The above proof shows that equality in claim 1 holds if and only if
ker(A) = G-~ D; and all elements of {D1, Ds, ..., D,,} have the same size %
So |G : ker(\)| = 2 and |J], D; is the non-identity coset of ker(\).

Corollary 2.2. Let G be a finite non-abelian metabelian group. Let s be the min-
imal size of a centralizer of an element of G. Then every non-linear irreducible
character of G vanishes on at least 5 conjugacy classes.

Proof. Let x be a non-linear irreducible character of G and let m be the number

of conjugacy classes on which y vanishes. Since G’ # G and G = 1, Theorem

1.1 states that |Cg(x)| < 2m for some z € G. So s < |Cg(x)| < 2m implies that

m > £, O
=3

We need the following easy lemma.

Lemma 2.3. If an element of a finite non-abelian group G has a centralizer of
size 2, then G is a Frobenius group with a complement of order 2 and an abelian
odd-order kernel.

Proof. Clearly, |G| > 2. Let € G be such that |Cq(z)| = 2. As 1 # x € Cg(x),
x has order 2. Let S € Syl,(G) be such that z € S. If z ¢ Z(S), then (Z(S5),x) is
a group of order at least four which is contained in Cg(z), a contradiction. Thus
x € Z(S) so that S C Cg(x) forcing |S| = 2. Then G has a normal subgroup O
of index 2, and by assumption = acts on O without fixed points. It follows that G
is a Frobenius group with S a complement and O the Frobenius kernel. It is well
known that if the complement has even order, the kernel is abelian. O

Corollary 2.4. Let G be a finite non-abelian group such that G # G'. Let x be a
non-linear irreducible character of G that vanishes on exactly one conjugacy class
of G. Then one of the following holds:
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1. G is a Frobenius group with a complement of order 2 and an abelian odd-order
kernel.

2. ¢ =xg € Irr(G') and ¢¢ = x Y AN | A € Irr(G), A1) = 1}. In particular, ¢
is not linear and G" # 1.

Proof. By Theorem 1.1, either G has an element whose centralizer has size 2, in
which case claim 1 holds by Lemma 2.3, or claim 2 is true. O

Remark 2.5. We note that the class upon which x vanishes in Corollary 2.4 is either
outside or inside G’, and these two cases correspond exactly to the two conclusions
of Corollary 2.4. Compare Corollary 2.4 with [11] and [13].

Proof of Theorem 1.2. 1. Let x € Irt(G). If x € Lin(G), then xo = 1l¢v € Irr(G),
so assume that xy ¢ Lin(G). If there exists an = € G such that |Co(x)| < 2n(x);
then 2m < |Cg(z)| < 2n(x) implies that m < n(x) contradicting the definition of
m. Thus no such x exists and so by Theorem 1.1, xg» € Irr(G’) and {x\ | A €
Irr(G), A(1) = 1} consists of exactly |G : G’| extensions of xg, which are all the
extensions of xq.

2. Let ¢ € Trr(G'); then [p%, x] # 0 for some x € Irr(G). Then [xgr, ¢lar # 0
and claim 1 implies that xgr = .

3. Let ¢ € Lin(G"); then by claim 2, ¢ = x¢ for some x € Irr(G) so that x is
linear. But then ¢ = x¢ = 1/, so Lin(G’) = {1¢/} implying that G = G".

4. This follows from Brauer’s permutation lemma ([7], p. 93). Since all elements
of Irr(G’) are invariant under G (by claim 2), all the conjugacy classes of G’ are
G-invariant as well. Now the claim follows.

5. By 4, G fixes every conjugacy class of G’. Thus a theorem of Gallagher ([3])
implies that each non-linear irreducible character x of G has zeros outside G’. As
xa' € Irr(G’) is non-linear, it is well known that it has a zero in G’ as well. |

An obvious corollary is:

Corollary 2.6. Let G be a finite non-abelian group such that G # G' # G" (in
particular, this holds for G solvable). For every x € Irt(G), let n(x) be the number
of conjugacy classes of G on which x vanishes. Set m = max{n(x) | x € Irr(G)}.
Then G has an element x such that |Ca(z)| < 2m.

The proof of the following consequence uses the classification of the finite simple
groups in the case G = G’. The classification is not needed if G # G'.

Proposition 2.7. Let G be a finite non-abelian group. Assume that each x €
Irr(G) vanishes on at most one conjugacy class. Then G is a Frobenius group with
a complement of order 2 and an abelian odd-order kernel.

Proof. Assume first that G # G’. With the notation of Theorem 1.2, here m = 1. If
|Ca(x)] > 2 for all x € G, then Theorem 1.2 states that each non-linear irreducible
character of G vanishes on at least two classes (one in G’ and one outside G’),
a contradiction. Hence |Cg(x)] = 2 for some x € G and the result follows from
Lemma 2.3. We now show that G = G’ is impossible.

Assume the contrary, that is, G = G’. By assumption, G has a normal subgroup
N, such that X = G/N is a non-abelian simple group. Let x € Irr(G/N) be non-
linear. If x(aN) = x(bN) = 0, then x(a) = x(b) = 0 and by assumption a and b are
conjugate in G, so alN and bN are conjugate in X. It follows that every non-linear
irreducible character of X vanishes on exactly one conjugacy class of X. We will
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now show that there exists x € Irr(X) vanishing on at least two conjugacy classes.
This will provide the needed contradiction. Suppose first that X has a 2-block of
defect zero. Then by Theorem 8.17, p. 133 of [7], X has an irreducible character
vanishing on every element of even order. It follows that X has exactly one class
of element of even order and this must be the class of involutions. In particular
a Sylow 2-subgroup S of X is elementary abelian and if g € S, then Cg(s) = S
(otherwise there would be elements of even order which are not involutions). By
[9] (see remark at the end of the proof) X =~ L5(2") for some n (as S,(2") has
non-abelian Sylow 2-subgroups). So X has an irreducible character vanishing on at
least two conjugacy classes (see for example pp. 1829-1830 of [8]), a contradiction.
So X has no 2-block of defect zero. Now [10] implies that X is one of the following
groups: Ay, Myo, Moo, Moy, Jo, HS, Suz, Ru, C1, C3, BM. Each of the sporadic
groups from this list as well as A,,, n <9, has an irreducible character vanishing on
more than one conjugacy class, as can be seen from [2]. So X = A,,, n > 10. Then
X has an irreducible character 6 of degree n — 1 such that for g € X, 0(g) is the
number of fixed points of g minus 1. Let z = (1,2,...,n—4)(n—3,n—2,n—1)(n)
and y = (1,2,...,n—=6)(n —5,n—4,n—-3,n—2,n—1)(n). If nis odd, then
z,y € Ay, 0(z) = 0(y) = 0 and = and y are not conjugate. So n is even. Then
z=(1,2,...,n—1)(n) and w = (1,2,...,n —5)(n —4,n — 3)(n — 2,n — 1)(n) are
two non-conjugate elements of A,, with 6(z) = 6(w) = 0, a contradiction. |

Remark 2.8. 1. In the proof of Proposition 2.7 we had the situation in which X is
a simple group with an abelian Sylow 2-subgroup S such that S = Cg(x) for all
x € S —{1}. We quoted [9] to conclude that X ~ Lo(2"). It was pointed out by
the referee and the editor that a very elegant and elementary proof of this result
can be found in [5], and that in fact this result goes back to Burnside.

2. Let k be the number of conjugacy classes of the group G, C' be a conjugacy
class of maximal size, and ¢ € C. Then clearly |Cg(c)| < k. So the results of the
existence of a centralizer of size at most 2m gives new information only if m is small
relative to k (m < £).

3. Y. Berkovich pointed out that if G is an arbitrary non-abelian p-group, then
every non-linear irreducible character x vanishes on at least n, = p(p—1) conjugacy
classes. If G is not of maximal class, then y vanishes on at least n, = p*(p — 1)
conjugacy classes.

3. THE NUMBER OF IRREDUCIBLE CHARACTERS
VANISHING ON A CONJUGACY CLASS

The proof of Theorem 1.3 is kind of “dual” to that of Theorem 1.1.

Proof of Theorem 1.8. Set Z = Z(G). Let ¢ € C and let {01,6a,...,0,,} be the set
of all irreducible characters of G vanishing on C'. Next, Z acts on the set of the
conjugacy classes of G by multiplication. Let O = {2C | z € Z} be the orbit of C
in this action. Recall that for every x € Irr(G) we have that xz = x(1)\y for some
Ay € Irr(Z) (see [7], pp. 26-27), in particular ker(\y) C ker(x). We now deal with
two cases.

Case 1: |O] < |Z]. In this case C is fixed by some z € Z — {1}, that is, 2C = C.
So zc is conjugate to ¢ and consequently x(zc) = x(¢) for all x € Irr(G). So
A (2)x(c) = x(c) for all x € Irr(G). It follows that I = Irr(G) — {61,602, ...,0m} C
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Trr( % ). Thus,

Gl=) M+ XM<Y GO+ Y X
i=1 =

x€el i=1 XEIrr(%)
G G
<ml*(1) + | —| < mb*(1) + | =
<m?(1) + | 55| <m0 + |,
where 0 € {61,605, ...,0,,} is of maximal degree. So 0|2L(1|) < 2m and claim 1 holds.
Case 2: |O| = |Z|. Tt is easy to see (e.g. Lemma 1.1 of [1]) that |clg(c)| >
lclz(cZ)|. To get the inverse inequality we set clg(c) = {c9,¢92,...,¢%} where

{91 = 1, 92,.-.,9s} C G, and show that ¢Z ¢92Z, ... 97 are all distinct.
Indeed, if ¢%°Z = 9 Z for some i # j, then for some v € Z — {1}, we have
9 = c%v = (ew)% so that clg(c) = clg(cv) = wvclg(c). Hence v fixes clg(c)
implying that |O| < |Z|, a contradiction. |

Corollary 3.1. Let G be a nilpotent group of class 2 and a € G— Z(G). Let m be

the number of irreducible characters of G vanishing on a. Then G has an irreducible

character such that XLC(;‘l) <2m.

Proof. Since [clg(a)| > 1 and |clg/z(a)(aZ(G))| = 1, claim 2 of Theorem 1.3 cannot
hold. So claim 1 holds. O

Corollary 3.2. Let G be a finite non-abelian group such that Z(G) # 1. For each
a € G let n(a) be the number of irreducible characters of G vanishing on a and set
m = max{n(a) | a € G}. Assume that XLCH) > 2m for all x € Irr(G). Then for
every a € G, |clg/z)(aZ(G))| = |cla(a)|. In particular Z3(G) = Z(G).

Proof. Set Z = Z(G) and let a € G. If a € Z, then [clg(a)| = |clg/z(aZ)| = 1,

so we may assume that ¢ ¢ Z. If G has an irreducible character x such that
X‘ZL(‘l) < 2n(a), then XLL(‘l) < 2m, contradicting our assumption. Thus claim 1 of
Theorem 1.3 does not hold. So claim 2 holds and so [clg(a)| = |clg/z(aZ)| > 1,

as claimed. In particular |clg/z(aZ)| = 1 if and only if aZ = Z proving that

Z(%) = 1, which is the second claim of the corollary. O

An immediate corollary is:

Corollary 3.3. Let G be a finite non-abelian group such that 1 < Z(G) < Z3(QG).
For each a € G let n(a) be the number of irreducible characters of G vanishing on
a and set m = max{n(a) | a € G}. Then G has an irreducible character x such

[€]
that 575 < 2m.
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