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C1 APPROXIMATIONS OF INERTIAL MANIFOLDS
VIA FINITE DIFFERENCES

KAZUO KOBAYASI

(Communicated by David R. Larson)

Abstract. We construct an inertial manifold for the evolution equation as a
limit of the inertial manifolds for the difference approximations of the Trotter-
Kato type and show that this limit is taken in a C1 topology.

1. Introduction

We shall study a class of nonlinear dissipative partial differential equations (PDE
for short) that have inertial manifolds (IM for short). The theory of IMs allows
us to reduce the long-time behavior of the PDE to that of a finite-dimensional
dynamical system. In order to implement the reduced finite dynamical system
computationally, one would need to know the explicit form of the IM. However,
even when existence of an IM can be established, the theory does not provide it in
an explicit form. Thus, a number of approximate IMs have been considered in the
literature. See, e.g., [2], [3], [4], [6], [9], [10], [11], [12].

In this paper, from the point of finite differences we shall construct an IM for
the PDE. Indeed, the IM is constructed as a limit of IMs for the associated finite
difference equations and the limit is taken in a C1 topology. This means that on
one hand the existence of the IMs for the finite difference equations assures the
existence of an IM for the PDE, and on the other the IMs for the finite differences
can be viewed as a small C1 perturbation of that for the PDE. The C1 closeness of
the IMs would be a necessary and important step toward establishing a relationship
between the dynamics of the PDE and its approximation (see [8], [14]).

Each of the PDEs can be viewed as an evolution equation in a Banach space Y

du(t)/dt = Au(t) + Fu(t), t ∈ R+ ≡ [0,∞),(1.1)

with a closed linear operator A in Y and F ∈ C1(X, Y ), where X is a Banach space
continuously embedded in Y .

We approximate (1.1) by the following discrete scheme:

xn
` = C(λ`)xn−1

` + λ`K`F`(xn−1
` ), n, ` ∈ N,(1.2)
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in a space Y` approximating Y in some sense, where λ` ↓ 0 as ` →∞, C(λ`) and K`

are given operators in B(Y`, Y`) and F` is a given nonlinear operator in Y` stated
below. We denote by B(W, Z) the space of bounded linear operators from a Banach
space W into a Banach space Z. The norm in B(W, Z) will be denoted by ‖ · ‖W,Z .

2. Assumptions and result

We shall make the following assumptions.
(C1) Let X and Y be reflexive Banach spaces such that X is densely and con-

tinuously embedded in Y and such that Y = Y1 ⊕ Y2, the direct sum of a finite
dimensional subspace Y1 and a closed subspace Y2.

(C2) For each ` ∈ N let X` and Y` be Banach spaces with norms ‖ · ‖` and | · |`,
respectively, such that X` is continuously embedded in Y`. Moreover, there exist
V` ∈ B(Y, Y`)∩B(X, X`) and W` ∈ B(Y`, Y )∩B(X`, X) such that lim`→∞ |V`y|` =
|y|, lim`→∞ ‖V`x‖` = ‖x‖, lim`→∞ |W`V`y − y| = 0 and V`W`z = z for x ∈ X, y ∈
Y, z ∈ Y` and such that both ‖W`‖Y`,Y and ‖W`‖X`,X are bounded in `.

(C3) There exist closed subspaces Y`1 and Y`2 such that Y` = Y`1 ⊕ Y`2, V`Pi =
P`iV` and W`P`i = PiW` for i = 1, 2, where Pi (resp. P`i) denotes a projection
from Y onto Yi (resp. Y` onto Y`i).

(C4) The linear operators C(λ`) and K` satisfy: (i) there exist M ≥ 0 and ω ≥ 0
such that |C(λ`)ny|` ≤ Meωnλ` |y|` and |K`y|` ≤ Meωλ` |y|` for `, n ∈ N, y ∈ Y`;
(ii) lim`→∞ |(K` − I)V`y|` = 0 for y ∈ Y ; (iii) for each `, `′ ∈ N and i = 1, 2, C(λ`)
commutes with P`i, C(λ`) with K`, K` with P`i, C̃(λ`) with C̃(λ`′) and C̃(λ`)
with K̃`′ , respectively, where C̃(λ`) = W`C(λ`)V` and K̃` = W`K`V`.

(C5) A is a densely defined linear operator in Y such that Y1 ⊂ D(A), the range
of I − λ0A is dense in Y for some λ0 > 0 and

lim
`→∞

|λ−1
` (C(λ`)− I)V`y − V`Ay|` = 0 for y ∈ D(A).

(C6) The inverse of C(λ`)P`1 exists in B(Y`1) and there exist constants α, β >
0, γ ∈ [0, 1), η < −max{α, β} and M1, · · · , M5 ≥ 0 such that

‖P`1y‖` ≤ M1|P`1y|`,(2.1)

|[C(λ`)P`1]−nP`1y|` ≤ M2e
−(α+η)nλ` |y|`,(2.2)

‖C(λ`)nP`2x‖` ≤ M3e
(η−β)nλ`‖x‖`,(2.3)

‖C(λ`)nP`2K`y‖` ≤ {M4((n + 1)λ`)−γ + M5}e(η−β)nλ` |y|`(2.4)
for n ≥ 0, ` ≥ 1, x ∈ X`, y ∈ Y`.

(C7) F` ∈ C1(X`, Y`) and there exists a constant LF ≥ 0 satisfying

|F`(ξ1)− F`(ξ2)|` ≤ LF‖ξ1 − ξ2‖` for ` ∈ N, ξ1, ξ2 ∈ X`.

(C8) For each x, z ∈ X and each positive sequence {ν`} convergent to 0 we have

lim
`→∞

|F`(V`x) − V`F (x)|` = 0,

lim
`→∞

|DF`(V`x)V`z − V`DF (x)z|` = 0, and

lim
`→∞

( sup
‖ξ‖`≤ν`

|(DF`(V`x + ξ)−DF`(V`x))V`z|`) = 0.
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Then we have

Theorem. Let (C1)-(C8) be satisfied and F ∈ C1(X, Y ). In addition we assume

K(α, β)LF < 1 and
M2M

′
3K(α, β)LF

1−K(α, β)LF
< 1(G)

where

k(α, β) = M{M1M2α
−1 + M ′

4Γ(1− γ)βγ−1 + M ′
5β
−1},(2.5)

M ′
i = Mi max{1, lim `→∞‖W`‖X`,X} for i = 3, 4, 5 and Γ denotes the gamma func-

tion. Then, (1.1) (resp. (1.2)) has an inertial manifold M (resp. M`) represented
as a graph of a function h ∈ C1(Y1, P2X) (resp. h` ∈ C1(Y`1, P`2X`)). (See, e.g.,
[2], [5], [12] for the definitions of the IMs.) Moreover, it holds that for every bounded
set B ⊂ Y1

lim
`→∞

sup
y∈B

‖h`(V`y)− V`h(y)‖` = 0, and(2.6)

lim
`→∞

sup
y∈B

‖Dh`(V`y)− V`Dh(y)‖Y1,X`
= 0.(2.7)

3. Proof

Existence: To prove the existence of IMs we use the results of [11] and [12] (also
see [1]). By (C4) and (C5) the discrete version of the Trotter-Kato theorem (see
[13, Theorem 6.7]) shows that Ā, the closure of A in Y , generates a C0-semigroup
{S(t); t ≥ 0} on Y satisfying

lim
k`λ`→t

|C(λ`)k`V`y − V`S(t)y|` = 0 for y ∈ Y, t ≥ 0.(3.1)

In particular, (3.1) together with (C3) and (C4) implies that |PiS(t)y−S(t)Piy| =
lim`→∞ |V`(PiS(t)y−S(t)Piy)|` = 0, which shows that PiS(t) = S(t)Pi for i = 1, 2
and t ≥ 0. Set A1 = Ā|Y1 . Then, D(A1) = Y1 by (C5), so that A1 ∈ B(Y1) by
the closed graph theorem. The family {S1(t)} defined by S1(t) = S(t)|Y1 forms a
uniformly continuous group on Y1 with the infinitesimal generator A1. This proves
conditions (S2) and (S3) in [11]. To show condition (S4) in [11] we fix y ∈ Y and
t ≥ 0. By (2.2) and (3.1) we have one of the inequalities in (S4):

|S1(−t)P1y| = lim
k`λ`→t

|V`S1(−t)P1y|`
≤ M2 lim

k`λ`→t
e−(α+η)k`λ` |V`y|` = M2e

−(α+η)t|y|.
Moreover, we have by (2.4)

‖W`C(λ`)k`P`2K`V`y‖(3.2)

≤‖W`‖X`,X{M4((k` + 1)λ`)−γ + M5}e(η−β)k`λ` |V`y|`,
which implies that ‖W`C(λ`)k`P`2K`V`y‖ is bounded as k`λ` → t > 0. Note that
by (3.1) W`C(λ`)k`P`2K`V`y converges as ` → ∞ to S(t)P2y in Y . Since X is
reflexive and Y ∗ is dense in X∗ by assumption, it also converges weakly in X to
S(t)P2y. Then, passing to the limit in (3.2) yields

‖S(t)P2y‖ ≤ lim `→∞‖W`‖X`,X{M4t
−γ + M5}e(η−β)t|y|,

the second inequality in (S4). Likewise, the remainder inequalities in (S4) will be
proved.
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Finally, let us prove condition (S1) in [11]. Note that S(t)Y = P1S(t)Y +
S(t)P2Y ⊂ X for t > 0 and S(·)x ∈ C(R+; Y ) for x ∈ X . Since ‖S(t)x‖ ≤ C‖x‖
by (S4), we find that S(·)x is weakly continuous in X and hence S(·)x ∈ C(R+; X)
(see [7, Theorem 10.6.5]). Thus (S1) is proved. Consequently, we can conclude
from [11] and [1] that (1.1) has an IM, provided (G) is satisfied. The existence of
an IM for (1.2) is already proved in [12] under the same assumptions as above.

Convergence: Next we prove (2.6) and (2.7). To this end recall ([12]) that the
IM M for (1.1) is constructed as the graph of the function h : Y1 → X defined by
h(y) = f(y, 0)− y, where f(y, t) is the unique function in C1(Y1, Cη+ε(R+, X)) for
all ε ∈ [0, α) satisfying

f(y, s) = S(−t)y −
∫ t

0

S(s− t)P1F (f(y, s))ds +
∫ ∞

t

S(s− t)P2F (f(y, s))ds

(3.3)

for y ∈ Y1 and t ≥ 0. Here Cη(R+, X) denotes the Banach space of continuous
functions u : R+ → X with the norm ‖u‖(η) = supt≥0 eηt‖u(t)‖. Similarly, the IM
M` for (1.2) is constructed as the graph of the function h` : Y`1 → X` defined by
h`(ξ) = ϕ`(ξ, 0) − ξ, where ϕ`(ξ, n) is the unique function in C1(Y`1, cη+ε(N, X`))
for all ε ∈ [0, α) satisfying

ϕ`(ξ, n) = Rn
` ξ − λ`

n∑
i=1

Rn−i+1
` P`1K`F`(ϕ`(ξ, i))(3.4)

+ λ`

∞∑
i=n+1

Qi−n−1
` P`2K`F`(ϕ`(ξ, i))

for ξ ∈ Y`1 and n ≥ 0. Here R` = [C(λ`)P`1]−1, Q` = C(λ`)P`2 and cη(N, X`)
denotes the Banach space of bounded sequences x̃ = {xn}n≥0 in X` with the norm
‖x̃‖(η)

` = supn≥0 eηnλ`‖xn‖`.
Since (2.6) is proved in [12], we shall show (2.7) only. Fix an arbitrary bounded

set B ⊂ Y1 and set for y ∈ B

Ω`(y) = sup
n≥0

{ sup
t∈G`n

eηnλ`‖Dϕ`(V`y, n)V` − V`Df(y, t)‖Y1,X`
}(3.5)

where G`n = ((n − 1)λ`, nλ`] ∩ R+. Here Df(y, ·) denotes the Fréchet derivative
of f at y ∈ Y1, and so Df(y, t) ∈ B(Y1, X). Likewise, Dϕ`(ξ, n) ∈ B(Y`1, X`) for
ξ ∈ Y`1. To prove (2.7) it suffices to show

lim
`→∞

sup
y∈B

Ω`(y) = 0.(3.6)

For n ∈ N, t ∈ G`n and y ∈ B we write

Dϕ`(V`y, n)V` − V`Df(y, t) =
8∑

i=1

Hi
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with

H1 = Rn
` V` − V`S(−nλ`)P1,

H2 = −
n∑

i=1

∫
G`i

Rn−i+1
` K`DF`(ϕ`(V`y, i)){Dϕ`(V`y, i)V` − V`Df(y, s)}ds,

H3 = −
n∑

i=1

∫
G`i

Rn−i+1
` K`{DF`(ϕ`(V`y, i))V` − V`DF (f(y, s))}Df(y, s)ds,

H4 = −
n∑

i=1

∫
G`i

{Rn−i+1
` K`V` − V`S(s− nλ`)P1}DF (f(y, s))Df(y, s)ds,

H5 =
∞∑

i=n+1

∫
G`i

Qi−n−1
` P`2K`DF`(ϕ`(V`y, i)){Dϕ`(V`y, i)V` − V`Df(y, s)}ds,

H6 =
∞∑

i=n+1

∫
G`i

Qi−n−1
` P`2K`{DF`(ϕ`(V`y, i))V` − V`DF (f(y, s))}Df(y, s)ds,

H7 =
∞∑

i=n+1

∫
G`i

{Qi−n−1
` P`2K`V` − V`S(s− nλ`)P2}DF (f(y, s))Df(y, s)ds,

H8 = V`(Df(y, nλ`)−Df(y, t)).

By [12, Lemma 3.7] we have that for ε > 0, α + εη > 0, z ∈ Y1 and k, n ∈ N

eηnλ`‖H1z‖` ≤ Cε,kρ1(`, z) + Cρ2(k, z)

with the functions ρj(m, y), j = 1, 2, such that the family {ρj(m, y)}m≥1 is equicon-
tinuous in y ∈ Y and limm→∞ ρj(m, y) = 0 for each y. Here and in what fol-
lows, C denotes various constants and Cε,k denotes a constant depending on ε
and k. Set B1 = {z ∈ Y1; |z| ≤ 1}. Since B1 is compact in Y1, we have
limm→∞ supz∈B1

ρj(m, z) = 0, and hence

lim
`→∞

sup
n≥0

eηnλ`‖H1‖Y1,X`
= 0.(3.7)

By a similar way as in [12, p.176] we can compute

eηnλ`‖H2‖Y1,X`
≤ e(ω−η)λ`MM1M2LF α−1Ω`(y).(3.8)

For a fixed T > 0 take T` ∈ N so that T/λ` − 1 < T` ≤ T/λ`. Set

d`,T = sup |{DF`(ϕ`(V`y, i))V` − V`DF (f(y, s))}Df(y, s)z|`,
where the supremum is taken with respect to s, i, y and z satisfying s ∈ G`1, 1 ≤
i ≤ T`, y ∈ B and z ∈ B1. Observing

|{DF`(ϕ`(V`y, i))V` − V`DF (f(y, s))}Df(y, s)z|`
≤|{DF`(ϕ`(V`y, i))−DF`(V`f(y, s))}V`Df(y, s)z|`

+ |{DF`(V`f(y, s))V` − V`DF (f(y, s))}Df(y, s)z|`
and lim`→∞ ‖ϕ`(V`y, i) − V`f(y, s)‖` = 0 uniformly for y ∈ B, s ∈ G`i and 1 ≤
i ≤ T` by (2.6) (also see [12, (4.3)]), we see that lim`→∞ d`,T = 0 by (C8) because
the sets {f(y, s); y ∈ B, s ∈ [0, T ]} and {Df(y, s)z; y ∈ B, z ∈ B1, s ∈ [0, T ]} are
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compact in X and Y , respectively. We also observe that ‖V`‖X,X`
and ‖V`‖Y,Y`

are
bounded in ` by the uniform boundedness principle and that

‖Df(y, s)‖Y1,X ≤e−(η+ε)iλ`‖Df(y)‖Y1,Cη+ε(R+,X)(3.9)

≤Ce−(η+ε)iλ` for s ∈ G`i and y ∈ B.

Hence, by (C3)-(C7) ‖H3z‖` for z ∈ B1 is estimated by

Ce−(α+η)nλ`

{
d`,T

T∑̀
i=1

λ`e
(α+η)(i−1)λ`

+LF

n∑
i=T`+1

e(α+η)(i−1)λ`

∫
G`i

‖Df(y, s)z‖ds

}
,

and so by (3.9)

eηnλ`‖H3‖Y1,X`
≤ C(d`,T + e−εT ).(3.10)

To estimate H4 we take z ∈ B1 and put w = DF (f(y, s))Df(y, s)z. By [12,
Lemma 3.7] again eηnλ`‖H4z‖` is estimated by

eηnλ`

T∑̀
i=1

∫
G`i

e−(n−i+1)(α+η)λ`/(1−ε)(Cε,kρ1(`, w) + Cρ2(k, w))ds

+ Ceηnλ`

n∑
i=T`+1

∫
G`i

e−(nλ`+s)(α+η)LF ‖Df(y, s)z‖ds

≤e−(α+η)T/(1−ε)(Cε,kρ∗1(`) + Cρ∗2(k) + Ce−εT ).

Here we set

ρ∗j (m) = sup{ρj(m, w); y ∈ B, z ∈ B1, s ∈ [0, T ]}, j = 1, 2.

Since the set {w; y ∈ B, z ∈ B1, s ∈ [0, T ]} is compact in Y , it holds that
limm→∞ ρ∗j (m) = 0. Hence, letting ` → ∞, k → ∞ and T → ∞ in this order,
we get

lim
`→∞

sup
n≥1,y∈B

eηnλ`‖H4‖Y1,X`
= 0.(3.11)

By a similar manner as in [12, p.178] we can compute

eηnλ`‖H5‖Y1,X`
≤ e(β−η)λ`LF {M4Γ(1− γ)βγ−1 + M5β

−1}Ω`(y).(3.12)

By using (2.4) one can estimate ‖H6‖Y1,X`
by

C

T∑̀
i=n+1

λ`{((i− n)λ`)−γ + 1}e(η−β)(i−n−1)λ`d`,T

+ C
∞∑

i=T`+1

∫
G`i

{((i− n)λ`)−γ + 1}e(η−β)(i−n−1)λ`LF‖Df(y, s)‖Y1,Xds.

Hence, by (3.9)

eηnλ`‖H6‖Y1,X`
≤ C(d`,T + e−εT ).(3.13)
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Next, by using [12, Lemma 3.10] we obtain for z ∈ B1 and v = DF (f(y, s))Df(y, s)z

‖H7z‖` ≤
∫ T−nλ`

0

(s−γ + 1)e(1−ε)(η−β)s(Cε,kσ1(`, v) + Cσ2(k, v))ds

+ C

∫ ∞

T−nλ`

(s−γ + 1)e(η−β)s‖Df(y, s)z‖ds

with the functions σj(m.w), j = 1, 2, such that the family {σj(m, w)}m≥1 is equicon-
tinuous in w ∈ Y and limm→∞ σj(m, w) = 0 for each w. Hence, by (3.9)

eηnλ`‖H7‖Y1,X`
≤ Cε,kσ∗1(`) + Cσ∗2(k) + Ce−εT .(3.14)

Here we set

σ∗j (m) = sup{σj(m, v); y ∈ B, z ∈ B1, s ∈ [0, T ]}, j = 1, 2.

Just as in the case of ρ∗j we see that limm→∞ σ∗j (m) = 0.
Finally, set

δT (h) = sup ‖Df(y, s)z −Df(y, ŝ)z‖
where the supremum is taken over all y ∈ B, z ∈ B1 and s, ŝ ∈ [0, 2T ] with |s− ŝ| ≤
h. It is easy to see that limh↓0 δT (h) = 0. A similar computation as in [12, p.179]
yields that for z ∈ B1, y ∈ B

eηnλ`‖H8z‖` ≤ C(δT (λ`) + e−εT ‖Df(y)‖Y1,Cη+ε(R+,X)).(3.15)

We are now in a position to prove (3.6). By virtue of (3.7), (3.8) and (3.10)-(3.15)
we obtain

lim `→∞ sup
y∈B

Ω`(y) ≤ K(α, β)LF lim `→∞ sup
y∈B

Ω`(y).

Since K(α, β)LF < 1 by (G), we conclude that (3.6) holds.

4. Example

We briefly consider the renormalized Kuramoto-Sivashinsky equation (KSE)

ut + D4u + D2u + uDu = 0, (x, t) ∈ R× R+,

subject to periodic boundary condition, with period L. We refer to [4], [6], [12]
in the notation and some results concerning the KSE. We view it as an evolution
equation in the Hilbert space Y = {u ∈ L2

per(0, L); u is odd} with the usual L2

norm. Since the KSE in Y has a bounded absorbing set in X = H2
per(0, L) ∩ Y ,

i.e., there exists a constant r0 > 0 such that for every r > 0 we can choose a
time T ∗(r) > 0 satisfying ‖u(t)‖H2 ≤ r0 for all t ≥ T ∗(r) and all u(0) ∈ Y with
‖u(0)‖L2 ≤ r, we may consider the prepared equation instead of the KSE

du/dt = Au + Fu, t ∈ R+,(4.1)

where Au = −D4u and Fu = −D2u − ρ(‖u‖H2)uDu with a smooth function ρ
satisfying 0 ≤ ρ ≤ 1 and ρ(r) = 1 if |r| ≤ r0, ρ(r) = 0 if |r| ≥ 2r0.

Let Y` be the Hilbert space S`
odd,per, the set of vectors ξ = (ξ0, · · · , ξ`−1) satisfy-

ing ξ0 = 0 and ξj = ξ`−j for j = 1, · · · , `− 1, with norm |ξ|` = (h
∑`−1

k=1 ξ2
k)1/2, h =

L/`. For convenience ξ will be extended periodically to an infinite sequence by
ξj+` = ξj . Define ∆` : Y` → Y` by

(∆`ξ)k = h−2(ξk−1 − 2ξk + ξk+1) for ξ ∈ Y`,
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where (∆`ξ)k denotes the k-th element of ∆`ξ. We also consider S`
odd,per as a

Hilbert space with norm ‖ξ‖` = |∆`ξ|`, which is denoted by X`.
We approximate (4.1) by the finite difference scheme

λ−1
` (ξi+1 − ξi) + ∆2

` ((1− θ)ξi + θξi+1)− F`(ξi) = 0, ξi ∈ Y`, i ∈ N(4.2)

(1/2 < θ ≤ 1), where F`(ξ) = −∆`ξ−ρ(‖ξ‖2`)B`(ξ) and B` : Y`×Y` → Y` is defined
by

(B`(ξ))k = (6h)−1(ξk−1 + ξk + ξk+1)(ξk+1 − ξk−1) for ξ ∈ Y`.

Then, (4.2) is rewitten as the form (1.2) by setting

C(λ`) = (I − (1− θ)λ`∆2
` )(I + θλ`∆2

` )
−1 and K` = (I + θλ`∆2

`)
−1.

By some operational calculi and spectral theorems one finds that conditions (C1)-
(C8) hold with M = M2 = M3 = 1, M4 = 2, γ = 1/2, ω = 0, M1 = ν

1/2
N , M5 =

(2νN+1)1/2, α = β = (νN+1 − νN )/4, η = −(νN+1 + νN )/2 for N ∈ N. Here we set
νk = (2πk/L)4, the eigenvalues of the operator A in Y . Hence, if N is large, then
condition (G) is satisfied and consequently we can apply our theorem.
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