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Abstract. In this paper we study stable constant mean curvature surfaces in
the Euclidean space R3 with circular boundary. We show that in the case of
genus zero, the only such surfaces are the spherical caps and the flat discs. We
also extend this result to the case of surfaces in the other space forms, namely
the sphere S3 and the hyperbolic space H3.

1. Introduction

The mathematical model of a soap bubble which has its boundary on a round
hoop is a constant mean curvature surface with circular boundary. The surface
forms in such a way as to minimize surface area while enclosing a fixed volume and
spanning a fixed boundary. The surfaces we almost always observe are spherical
caps and so it is natural to ask if these are the only solutions. Strictly speaking,
the answer is no. Kapouleas [4] has shown that there exist high genus constant
mean curvature (non-embedded) surfaces with circular boundaries. However, if we
impose some additional restriction, such as that the surface is embedded or that
it is a topological disc, the answer is unknown, although the problem has been
treated by different authors in the last years. When the surface is embedded some
partial results have been obtained in [2, 5, 8]; for the genus zero case, there are
some answers in [7, 8], under certain hypotheses on the area of the surface.

Here we consider the question of the existence of stable constant mean curvature
genus zero surfaces with boundary on a circle. We will assume, by rescaling if
necessary, that the boundary is S1 := {(x1, x2, x3) ∈ R3 : x3 = 0, x2

1 + x2
2 = 1}.

Recall that a constant mean curvature surface Σ is called stable if the second
variation of area of the surface is non-negative for every smooth deformation of
the surface which fixes the enclosed oriented three-volume and fixes the boundary.
Let J denote the corresponding Jacobi operator, that is, J = ∆ + ||dν||2, where ∆
stands for the Laplacian operator of Σ. Then the stability of Σ means that

−
∫

Σ

fJ [f ]dA ≥ 0
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for all f ∈ C∞
0 (Σ) such that ∫

Σ

fdA = 0.(1)

We refer the reader to [1] for further details.
In this paper we will prove the following.

Theorem 1. Let D denote the unit disc in the complex plane and let X : D−→ R3

be a conformal immersion with constant mean curvature h. Assume X is stable and
that X(∂D) ⊂ S1. Then X(D) is a spherical cap of radius 1/|h|. (The case h = 0
corresponds to a flat disc.)

In relation to this, M. Koiso [6] has shown that for circular boundaries, spherical
caps are the unique absolute minimizers for area enclosing a fixed volume.

2. Proof of the theorem

If the mean curvature is h = 0, then, by the maximum principle, X(D) is a flat
disc, so we assume that h 6= 0.

Let V be the vector field on R3 given by V (x) = E3 ∧ x where E3 denotes the
vertical unit vector and ∧ is the vector cross product. The field V can be expressed
as V (x) = αx with α ∈ so(3). The one-parameter subgroup etα generates rotations
about the vertical axis. If X : D−→ R3 is a constant mean curvature immersion,
then Xt := etαX gives a one-parameter family of such immersions and therefore
the function

ψ := 〈∂t(Xt)t=0, ν〉 = 〈E3 ∧X, ν〉,
where ν is a unit normal to the immersion, defines a Jacobi field along X . This
means that ψ solves the equation

0 = J [ψ] := (∆ + ‖dν‖2)ψ.

If X(∂D) ⊂ S1, then Xt(∂D) ⊂ S1 for all t and ψ ≡ 0 on ∂D. Further, by applying
the divergence theorem to the Killing field V , it is easy to see that∫

D

ψdA = 0(2)

which is the condition that the deformation of X given by Xt preserves the enclosed
oriented 3-volume.

Our result will be esentially a consequence of the following statement.

Claim. The normal derivative of ψ vanishes at least three times.

Let z = x + iy = reiθ be the usual coordinate in D. Then the first and second
fundamental forms of the immersion can be expressed as

ds2 =: eµ|dz|2, II =: Re{φdz2 + heµdzdz̄},
where φdz2 is the Hopf differential of the immersion. It is well known that φ is
holomorphic with respect to the local coordinate z. The unit tangent and unit
normal to ∂D with respect to ds2 are given by

t := e−µ/2∂θ and n := e−µ/2∂r.(3)

Computing the normal derivative of ψ on the boundary gives

∂nψ = ∂n〈E3 ∧X, ν〉 = 〈E3 ∧ dX(n), ν〉+ 〈E3 ∧X, dν(n)〉.
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Because the immersion is conformal, we have ν ∧ dX(n) = dX(t) and so

〈E3 ∧ dX(n), ν〉 = 〈E3, dX(t)〉 = 0.

Also, by elementary geometry E3 ∧X = dX(t) on ∂D and so

∂nψ = 〈dX(t), dν(n)〉 = −II(t, n)(4)

on ∂D.
On a neighborhood of any point on ∂D we can choose a branch of the logarithm

and make the holomorphic change of coordinate w = log z. Since w ≡ log |z| + iθ
(mod 2πi), we have

∂w =
1
2
(∂r − i∂θ)

globally on ∂D since ∂θ is independent of the branch of logarithm. Also note that
∂w = z∂z globally on 0 < |z| ≤ 1. Therefore on 0 < |z| ≤ 1 we have

z2φ = z22II(∂z, ∂z) = 2II(∂w, ∂w)

and on |z| = 1 we have
Im(z2φ) = −II(∂r, ∂θ).

Using (3) and (4) we therefore obtain

Im(z2φ) = eµ∂nψ, on ∂D.

Let us see that there are at least three distinct points on ∂D where Im(z2φ) = 0.
In order to prove this we can assume that there are at most two distinct points
a1, a2 on the boundary with φ(aj) = 0. We will assume that there are exactly two
points and we include the other cases by allowing zeros of zero order. Since φ has no
singularities on ∂D, we can extend φ analytically to a slightly larger disc of radius
R > 1. Let ε > 0 be a sufficiently small number so that φ−1(0) ∩ D̄ε(aj) = {aj},
where Dε(aj) = {z : |z − aj | < ε}.

Let D∗
ε = D \ (Dε(a1) ∪ Dε(a2)) and let Cε = ∂D∗

ε oriented positively (i.e. so
that D∗

ε always lies to the left). Since there are no zeros of z2φ on Cε, we have

1
i

∮
Cε

(
2
z

+
φ′

φ
)dz = 4π + 2πM(ε),(5)

where M(ε) denotes the number of zeros of φ inside Cε with multiplicity. Note that
the right hand side of (5) is the total variation of arg z2φ along the curve Cε.

A standard residue calculation shows that

lim
ε↓0

1
i

∫
Cε∩∂Dε(aj)

φ′

φ
dz = −mjπ

where mj denotes the order of the zero of φ at aj . Therefore

1
i

lim
ε↓0

∫
Cε\∂(Dε(a1)∪Dε(a2))

(
2
z

+
φ′

φ
)dz = 4π + 2πM + π(m1 +m2)(6)

where M denotes the number of umbilics, with multiplicities, in the interior of D.
If m1 = m2 = 0, then the image of ∂D under the map z2φ has winding number

at least 2 with respect to the origin. Hence Im(z2φ) vanishes in at least four distinct
points on ∂D. If m1 + m2 > 0 holds, then by (6) the total variation in arg z2φ
over the two arcs determined by the aj ’s is at least 5π. It is then easy to see that
there must be at least three points on ∂D where Im(z2φ) vanishes. This finishes
the proof of the claim.
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Our objective now is to show that ψ vanishes identically on D. In fact, if
this is not the case, then by (2) ψ changes sign. Let {λj}j=1,2,3,... denote the
Dirichlet eigenvalues for J in D listed in increasing order. It follows that ψ does
not correspond to λ1 since an eigenfunction for λ1 cannot change sign. On the other
hand ψ cannot belong to λ2 either. To see this, recall [3] that an eigenfunction f2
belonging to λ2 can partition D into at most two nodal domains whose common
boundary can intersect ∂D in either two or zero points. By the Hopf maximum
principle, f2 has non-vanishing normal derivative at all other points on ∂D and
we have claimed above that the normal derivative of ψ vanishes at least three
times. Thus 0 > λj , j = 1, 2. It is then possible to define a function f as a linear
combination of the first two eigenfunctions such that (1) holds but

−
∫
fJ [f ]dA < 0.

This means that the immersion is unstable.
Therefore, ψ ≡ 0 on D, which means that the vector field V is tangent to

the surface at every point. Its integral curves foliate the surface by circles which
project to concentric circles in the plane x3 = 0. It follows that X defines a surface
of revolution. Since the surface is a topological disc and has constant non-zero
mean curvature, it is a spherical cap, which yields the result.

3. The case of other space forms

In this section we will consider the same problem for surfaces in the remaining
space forms, namely the sphere and the hyperbolic space. The main ideas of our
proof also work here, so that we will briefly sketch the proof.

Let S3 = {x ∈ R4 : |x| = 1} ⊂ R4 be the three-dimensional unit sphere and
let X : D−→ S3 ⊂ R4 be a conformal immersion with constant mean curvature h
and circular boundary. This means that X(∂D) ⊂ S1(r), where we may assume,
by rotating S3 in R4 if necessary, that the boundary is

S1(r) = {(x1, x2, x3, x4) ∈ S3 : x3 = 0, x2
4 = 1− r2, x2

1 + x2
2 = r2}, 0 < r ≤ 1.

In this case V is the vector field on S3 given by V (x) = E3 ∧E4 ∧x, where ∧ is the
vector cross product in R4 determined by

〈v1 ∧ v2 ∧ v3, v〉 = det(v1, v2, v3, v),

det being the determinant in the canonical basis. The field V corresponds now to
the one-parameter subgroup etα of rotations of R4 around the plane passing through
the origin and generated by E3 and E4. If X : D−→ S3 ⊂ R4 is a constant mean
curvature immersion with X(∂D) ⊂ S1(r), then Xt = etα gives a one-parameter
family of such immersions and the function

ψ := 〈∂t(Xt)t=0, ν〉 = 〈E3 ∧ E4 ∧X, ν〉,
where ν is a unit normal to X in S3, defines a Jacobi field along X . That is, ψ
solves the equation

J [ψ] := (∆ + ‖dν‖2 + 2)ψ = 0,

and ψ ≡ 0 on ∂D. The divergence theorem applied to the Killing field V also gives∫
D

ψdA = 0,
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which is the condition that the deformation of X given by Xt preserves the enclosed
oriented 3-volume.

As for the three-dimensional unit hyperbolic space H3, we will consider the
Minkowski model given by H3 = {x ∈ L4 : 〈x, x〉 = −1} ⊂ L4, where 〈, 〉 stands
now for the Lorentzian inner product in L4 with signature (+ + +−). In this case,
up to a rigid motion of H3 in L4, we may assume that the circular boundary S1(r)
is

S1(r) = {(x1, x2, x3, x4) ∈ H3 : x3 = 0, x2
4 = 1 + r2, x2

1 + x2
2 = r2}, r > 0.

The vector field V is now the Killing vector field on H3 given by V (x) = E3∧E4∧x,
where ∧ stands now for the Lorentz vector cross product in L4, which is determined
by

〈v1 ∧ v2 ∧ v3, v〉 = det(v1, v2, v3, v),

but using now the Lorentzian inner product. Let X : D−→ H3 ⊂ L4 be a constant
mean curvature immersion with X(∂D) ⊂ S1(r) and let ν be a unit normal to X
in H3. The same reasoning as above implies now that the function

ψ := 〈∂t(Xt)t=0, ν〉 = 〈E3 ∧ E4 ∧X, ν〉
is a Jacobi field along X . That is, ψ solves the equation

J [ψ] := (∆ + ‖dν‖2 − 2)ψ = 0,

and ψ ≡ 0 on ∂D, and it also satisfies∫
D

ψdA = 0.

As in the case of Euclidean space, the idea is to see that ψ vanishes identically
on D. Following the proof above, it suffices to show now that the normal derivative
of ψ vanishes again at least three times. Computing the normal derivative of ψ
gives

∂nψ = ∂n〈E3 ∧ E4 ∧X, ν〉 = 〈E3 ∧E4 ∧ dX(n), ν〉+ 〈E3 ∧ E4 ∧X, dν(n)〉.
Since the immersion is conformal, now we have ν ∧ dX(n)∧X = dX(t), so that on
the boundary we get that E3 ∧ E4 ∧ dX(n) and E3 ∧ E4 ∧X are both collinear to
dX(t). Therefore,

∂nψ = ±r II(t, n).

The rest of the proof works as in the Euclidean case.

Corollary 2. Let D denote the unit disc in the complex plane and let X be a
conformal immersion of D into S3 or H3 with constant mean curvature. Assume
X is stable and that X(∂D) ⊂ S1(r). Then X(D) is a geodesic sphere of a totally
umbilic surface.
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[8] R. López and S. Montiel, Constant mean curvature surfaces with planar boundary, Duke
Math. J., 85 (1996), 583–604. MR 97m:53015
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