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Abstract. Let ‖ · ‖ be an arbitrary norm on Cn. Let f be a normalized
biholomorphic convex mapping on the unit ball in Cn with respect to the
norm ‖ · ‖. We will give an upper bound of the growth of f .

Let Ω be a domain in Cn which contains the origin in Cn. A holomorphic
mapping f from Ω to Cn is said to be normalized, if f(0) = 0 and the Jacobian
matrix at the origin Df(0) is the identity matrix. Let Bn denote the Euclildean unit
ball in Cn. Let f(z) be a normalized biholomorphic convex mapping on Bn. Then
FitzGerald and Thomas [2], Liu [6] and Suffridge [7] independently used different
methods to prove the following growth theorem.

|z|
1 + |z| ≤ |f(z)| ≤ |z|

1− |z| ,

where | · | denotes the Euclidean norm. Let

Bp =

z ∈ Cn; ‖z‖p =

(
n∑

i=1

|zi|p
)1/p

< 1


for p ≥ 1. Gong and Liu [4] gave the following upper bound of the growth of
normalized biholomorphic convex mappings on Bp.

‖f(z)‖p ≤ ‖z‖p

1− ‖z‖p
.

They also obtained an upper bound of the growth of normalized biholomorphic
convex mappings on the convex complex ellipsoid

D(p1, . . . , pn) = {z ∈ Cn; |z1|p1 + · · ·+ |zn|pn < 1}
with p1, . . . , pn ≥ 1.

Let ‖ · ‖ be an arbitrary norm on Cn and let B denote the unit ball in Cn with
respect to the norm ‖ · ‖. Using the idea of FitzGerald and Thomas [2], we obtain
the following theorem.
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Theorem. Let f(z) be a normalized biholomorphic convex mapping from B to Cn.
Then

‖f(z)‖ ≤ ‖z‖
1− ‖z‖ .

Proof. Let ∆ be the unit disc in C. For any fixed w ∈ ∂B and ζ ∈ ∆, let

f(ζw) = ζw +
∞∑

i=2

diζ
i.

Since f is a holomorphic mapping into Cn, di ∈ Cn. Let m ≥ 2, m ∈ Z be fixed.
Let ε = exp(2πi/m). Then

m−1∑
k=0

f(ζ1/mεkw) = m

∞∑
i=1

dmiζ
i

is holomorphic with respect to ζ ∈ ∆. Since f(B) is convex,

h(ζ) = f−1

(
1
m

m−1∑
k=0

f(ζ1/mεkw)

)
is well-defined and holomorphic on ∆. Since f is normalized,

f−1(z) = z + O(|z|2).
Therefore, h(ζ) = dmζ + O(|ζ|2). Since h(∆) ⊂ B, we obtain ‖dm‖ ≤ (1 − δ)−1 by
applying the maximum modulus theorem with values in a complex Banach space
(cf. Dunford and Schwartz [1]) to the holomorphic mapping h(ζ)/ζ on |ζ| < 1− δ.
Letting δ tend to 0, we have ‖dm‖ ≤ 1. Then we have

‖f(ζw)‖ ≤ |ζ| +
∞∑

i=2

|ζ|i =
|ζ|

1− |ζ| =
‖ζw‖

1− ‖ζw‖ .

Let D be a bounded convex balanced domain in Cn. Then the Minkowski func-
tion of D is a norm on Cn and D is the unit ball with respect to the norm (cf.
Jarnicki and Pflug [5]). Then the above theorem holds for D. In particular, the
theorem gives another growth theorem of convex mappings on D(p1, . . . , pn) with
p1, . . . , pn ≥ 1.

The author would like to thank the referee for his helpful comments and sugges-
tions.
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