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FINITE RANK PERTURBATIONS
AND DISTRIBUTION THEORY
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Abstract. Perturbations AT of a selfadjoint operator A by symmetric finite
rank operators T from H2(A) to H−2(A) are studied. The finite dimensional
family of selfadjoint extensions determined by AT is given explicitly.

1. Introduction

Finite rank perturbations of selfadjoint operators are used in quantum mechanics
to construct exactly solvable models for different physical problems (see [2]). The
resolvents of any selfadjoint operator A and its finite rank perturbation AT = A+T
are related by M.Krein’s formula [17, 1], since these two selfadjoint operators are
extensions of one symmetric operator. The symmetric operator coincides with the
restriction of the original operator A to the set of elements from the kernel of the
finite dimensional operator T. If the finite dimensional operator T is a bounded
operator in the Hilbert space, then the domains of the perturbed and original
operators coincide. We are going to concentrate our attention on the finite rank
perturbations determined by the operator T acting in the rigged Hilbert spaces
H2(A) → H−2(A) associated with the operator A. The perturbation in the latter
case can be defined using the method of quadratic forms. Thus if the quadratic
form associated with the operator T is infinitesimally bounded with respect to the
quadratic form of the operator A, then the operator AT can be determined using
the KLMN theorem ([18]). If the operator T does not have the property described
above, then the perturbed operator is not defined uniquely. It is not clear which
selfadjoint extension of the restricted operator corresponds to the formal sum A+T.
Therefore the selfadjoint perturbed operator is determined by a set of additional
parameters.

The corresponding problem for rank one perturbations

Aα = A+ α〈ϕ, ·〉ϕ, ϕ ∈ H−2(A), α ∈ R,

has been intensively studied during the last few years [3, 4, 5, 6, 9, 10, 11, 13, 14,
16, 19]. It has been shown in [5, 6] that the set of additional parameters in this case
consists of one parameter only. The unique additional parameter in fact determines
the choice of the Q-function appearing in M.Krein’s formula. Krein’s Q-function is
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determined by the relation

Q(λ)−Q(µ)
λ− µ

=
〈

1
A− λ

ϕ,
1

A− µ
ϕ

〉
and therefore contains one arbitrary additive parameter. It determines the parame-
terization of the one dimensional family of the selfadjoint extensions. The problem
described above can be understood as the regularization problem for the quadratic
form of the resolvent. Consider the scale of Hilbert spaces Hn(|A|) associated with
the positive operator |A|. Let ϕ ∈ H−1(|A|); then Krein’s Q-function can be chosen
to be equal to

Q(λ) = 〈ϕ, 1
A− λ

ϕ〉.

The latter equality determines a natural choice of the arbitrary additive parameter.
If ϕ ∈ H−2(A)\H−1(|A|), then the scalar product 〈ϕ, 1

A−λϕ〉 is not always defined.
The latter quadratic form can formally be written as follows:

〈ϕ, 1
A− λ

ϕ〉 = 〈ϕ, A

A2 + 1
ϕ〉+ 〈ϕ, 1 + λA

(A2 + 1)(A− λ)
ϕ〉.

The second scalar product on the right hand side of the latter formula is well
defined. Therefore to define the scalar product which appears on the left hand side
it is enough to determine the real parameter 〈ϕ, A

A2+1ϕ〉. This parameter is uniquely
defined in the case ϕ ∈ H−1(|A|)) and can in general be chosen arbitrary in the
case ϕ ∈ H−2(A) \ H−1(|A|). It has been proven in [5, 6] that the parameter can
be determined uniquely even in the latter case if the original operator A and the
vector ϕ are homogeneous with respect to a certain one-parameter group of unitary
transformations of the Hilbert space. Then there exists a unique homogeneous
extension of the functional ϕ to the element A

A2+1ϕ. These methods permit us to
construct approximations of unbounded perturbations by bounded ones.

In the present paper we extend the methods described above to include finite
rank perturbations. More precisely, we show that every symmetric finite rank
perturbation of a selfadjoint operator A is determined by a finite set of vectors
ϕn ∈ H−2(A), n = 1, 2, ..., N , and a Hermitian N × N matrix. The Q-matrix
appearing in Krein’s formula contains an arbitrary N × N Hermitian matrix R.
It is proven that the perturbed operator is uniquely defined if all ϕn are elements
from H−1(|A|), i.e., there exists a natural choice of the matrix R in this case. If
the latter condition is not satisfied then the perturbed operator is determined by a
certain N ×N Hermitian matrix R. We discuss the question of when the elements
of the latter matrix cannot be chosen arbitrary. The case of homogeneous vectors
ϕn is also studied.

In section 2 we give the definition of perturbations AT of selfadjoint operators A
by finite rank operators T from H2(A) to H−2(A) and give the general form of the
associated selfadjoint extensions. In section 3 we consider in detail the case where
T is form bounded with respect to A. In section 4 we consider in detail the case
where T is not form bounded with respect to A. We show that a certain Hermitian
matrix satisfying a certain admissibility condition determines the perturbation.
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2. Definition and general construction of the perturbed operators

Additive finite rank perturbations of a selfadjoint operator A acting in the (com-
plex) Hilbert space H are given formally by

AT = A+ T,(1)

where the operator T is a finite dimensional operator acting from the Hilbert space
H2(A) to the Hilbert space H−2(A). We consider the case where T is a symmetric
operator acting in those Hilbert spaces, i.e. for every two functions u, v ∈ H2(A)
the following equality holds:

〈u, T v〉 = 〈Tu, v〉.(2)

The fact that the image of the operator T has finite dimension implies that there
exist linearly independent elements ϕj , j = 1, 2, ...,M , from the space H−2(A)
which span the image space, i.e., the following formula holds:

Tu =
M∑

j=1

ψj(u)ϕj ,(3)

where ψj are certain linear bounded functionals on H2(A). Formula (2) implies
that the functionals ψj are equal to linear combinations of the functionals ϕj , i.e.
there exists a matrix T = {tij}M

i,j=1, tij ∈ C, such that

ψj =
M∑
i=1

tjiϕi.(4)

Moreover, the latter representation and formula (2) imply that

0 = 〈u, T v〉 − 〈Tu, v〉 =
M∑

j,i=1

(
tji − tij

) 〈ϕj , v〉〈ϕj , u〉.

Therefore the matrix T must in fact be Hermitian, tji = tij . Thus every symmetric
finite rank perturbation of a selfadjoint operator is determined by a finite set of
elements ϕj , j = 1, 2, ...,M , from the Hilbert spaceH−2(A) and a Hermitian M×M
matrix T = {tij}M

i,j=1. We suppose in addition that the matrix T is invertible. The
latter assumption does not restrict the set of perturbations considered. If the matrix
T is not invertible, i.e., has zero determinant, then let us denote by N the kernel of
T. Considering the orthogonal complement to the subspace N , we get a finite rank
operator of order less than M determined by a nondegenerate Hermitian matrix.
Thus every additive symmetric finite rank perturbation of the operator A is given
on the domain of A by

AT = A+
M∑

i,j=1

tji〈ϕi, ·〉ϕj ,(5)

where the matrix T is invertible and Hermitian and the vectors ϕj , j = 1, ...,M ,
are elements from the Hilbert space H−2(A). We suppose that the vectors ϕj form
an orthonormal system in the Hilbert space H−2(A):

〈 1
A− i

ϕi,
1

A− i
ϕj〉 = δij ,
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where δij is the Kronecker symbol. We suppose in addition that the vectors ϕj are
H-independent, i.e. no nontrivial linear combination of these vectors belongs to the
original Hilbert space H.

The selfadjoint operator corresponding to the symmetric operator (5) defined on
Dom(A) coincides with one of the selfadjoint extensions of the operator A restricted
to the following domain:

DomM = Dom(A) ∩Ker(T ),

where Ker(T ) denotes the kernel of the operator T.
It has been proven in [5, 6] that the restricted operator is densely defined and

has deficiency indices (1, 1) in the case M = 1 (Lemma 2.1 from [6]).

Lemma 1. Suppose that the vectors ϕj ∈ H−2(A) \ H, j = 1, 2, ...,M , are H-
independent and form an orthonormal system in H−2(A), i.e. 〈 1

A−iϕj ,
1

A−iϕk〉 =
δjk. Then the restriction A0

M of the operator A to the domain Dom(A0
M ) = {ψ ∈

Dom(A) : 〈ϕj , ψ〉 = 0, j = 1, 2, ...,M} is a densely defined symmetric operator with
the deficiency indices (M,M).

Proof. The restricted operator A0
M is densely defined, since the vectors ϕj are H-

independent. One can easily prove that the deficiency subspace for λ = i coincides
with the linear hull of the vectors 1

A−iϕj . Since these vectors are orthogonal, the
dimension of the deficiency subspace coincides with the number of basis vectors. It
follows that the operator A0

M is densely defined and has deficiency indices (M,M).
This completes the proof of the lemma.

In the proof of the lemma we have not used the fact that the vectors ϕj have unit
norm in H−2(A). It was enough to suppose that the vectors are H-independent.
But every such system can easily be orthonormalized and has basis elements not
belonging to the Hilbert space H. Therefore we are going to use only orthonormal
systems {ϕj}M

j=1 in what follows.
The condition that the vectors ϕj are H-independent is not essential. If the set

of vectors is not H-independent then the operator A0
M is not densely defined. But

its selfadjoint extensions can be described by similar formulas.
Every element ψ from the domain of the adjoint operator Dom(A0∗

M ) can be
presented in the following form:

ψ = ψ̂ +
M∑

j=1

(
a+j(ψ)

1
A− i

ϕj + a−j(ψ)
1

A+ i
ϕj

)
,(6)

where ψ̂ ∈ Dom(A0
M ), a±j(ψ) ∈ C. We are going to use the following vector

notation:

~a± ≡ {a±j}M
j=1.(7)

The adjoint operator A0∗
M acts as follows on every ψ ∈ Dom(A0∗

M ):

A0∗
M

ψ̂ +
∑

j

(
a+j(ψ)

1
A − i

ϕj + a−j(ψ)
1

A+ i
ϕj

)
= Aψ̂ +

M∑
j=1

(
a+j(ψ)

i

A− i
ϕj + a−j(ψ)

−i
A + i

ϕj

)
.
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The boundary form of the adjoint operator is given by

〈A0∗
Mψ, η〉 − 〈ψ,A0∗

Mη〉

= 2i
M∑

j,k=1

(
a−j(ψ)a−k(η) − a+j(ψ)a+k(η)

)
〈 1
A− i

ϕj ,
1

A− i
ϕk〉

= 2i
M∑

j=1

(
a−j(ψ)a−j(η)− a+j(ψ)a+j(η)

)
= 2i (〈~a−(ψ),~a−(η)〉CM − 〈~a+(ψ),~a+(η)〉CM ) ,

since the vectors 1
A−iϕj form an orthonormal system.

The selfadjoint extensions of the operator A0∗
M can be parameterized by M ×M

unitary matrices using the von Neumann theory. Let V = {vjk}M
j,k=1 be such a

matrix. The corresponding selfadjoint operator AV coincides with the restriction
of the operator A0∗

M to the domain DomV = {ψ ∈ Dom(A0∗
M ) : ~a−(ψ) = V~a+(ψ)}.

The extension corresponding to the matrix V = −I coincides with the original
operator A.

To define the finite rank perturbations of A we consider again two scales of
Hilbert spaces. The first set of spaces is the standard scale of Hilbert spaces asso-
ciated with the operator |A|:

H2(A) ⊂ H1(|A|) ⊂ H ⊂ H−1(|A|) ⊂ H−2(A).

The second scale of Hilbert spaces

H2(A) = Dom(A) ⊂ BM (A) ⊂ H ⊂ BM (A)∗ ⊂ Dom(A)∗ = H−2(A)(8)

is constructed using the operators A and T . Here BM (A) denotes the domain of
the adjoint operator A0∗

M . The norms in the spaces H2(A) and H−2(A) are equal
to the standard norms in these Hilbert spaces. The norm in the space BM (A) is
defined using the orthonormal basis in the deficiency subspace. Let ψ be an element
from the space BM (A) = Dom(A0∗

M ); then ψ possesses the representation (6). This
representation can be written as follows:

ψ = ψ̂ +
M∑

j=1

(
a+j(ψ)

(
i

A2 + 1
+

A

A2 + 1

)
ϕj + a−j(ψ)

( −i
A2 + 1

+
A

A2 + 1

)
ϕj

)

= ψ̃ +
M∑

j=1

bj(ψ)
A

A2 + 1
ϕj ,

(9)

where

ψ̃ = ψ̂ +
M∑

j=1

(a+j(ψ) − a−j(ψ))
i

A2 + 1
ϕj ;

bj(ψ) = a+j(ψ) + a−j(ψ).

The norm in the space BM (A) is then defined by the formula

‖ ψ ‖BM (A) = ‖ ψ̃ ‖Dom(A) +

√√√√ M∑
j=1

|bj(ψ)|2.(10)
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The space BM (A) can be considered as a finite dimensional extension of the space
Dom(A) in the sense that BM (A) is isomorphic with Dom(A)+̇CM . The natural
norm-preserving embedding ρM of Dom(A)+̇CM into Bm(A) is defined by (9). The
norms in the dual spaces are defined correspondingly.

3. Form bounded finite rank perturbations

Let the operator T be form bounded with respect to the operator A, i.e. the
following inequality holds:

〈ψ, Tψ〉 ≤ a〈ψ, |A|ψ〉+ b〈ψ, ψ〉(11)

for every ψ from the domain Dom(A) and some a, b ≥ 0. This assumption holds if
and only if all the vectors ϕj , j = 1, 2, ...,M , are from the Hilbert space H−1(|A|).
In this section we only consider this case. Let ϕj ∈ H−1(|A|); then

|〈ψ, Tψ〉| = |
M∑

i,j=1

tji〈ψ, ϕj〉〈ϕi, ψ〉|

≤
 M∑

i,j=1

|tij | ‖ 1√|A|+ i
ϕj ‖ ‖ 1√|A|+ i

ϕi ‖
 ‖ (

√
|A| − i)ψ ‖2

=

 M∑
i,j=1

|tij | ‖ ϕj ‖H−1(|A|) ‖ ϕi ‖H−1(|A|)

 (〈ψ, |A|ψ〉+ 〈ψ, ψ〉) ,

since the norms of the vectors 1√
|A|+i

ϕj can be calculated as follows:

‖ 1√|A|+ i
ϕj ‖2= 〈ϕj ,

1
|A|+ 1

ϕj〉 =‖ ϕj ‖2
H−1(|A|) .

Theorem 1. Let ϕj ∈ H−1(|A|) \ H form an orthonormal basis in H−2(A), i.e.
〈 1

A−iϕj ,
1

A−iϕk〉 = δjk, and let T = {tij}M
i,j=1 be a Hermitian invertible matrix.

Then the selfadjoint operator AT = A+
∑M

i,j=1 tij〈ϕj , ·〉ϕi is the selfadjoint exten-
sion of the operator A0

M to the domain

Dom(AT ) = {ψ ∈ Dom(A0∗
M ) : ~a+(ψ) = −(T−1 + Φ)−1(T−1 + Φ∗)~a−(ψ)},

(12)

where Φ is the M ×M matrix Φij = 〈ϕi,
1

A−iϕj〉, i, j = 1, 2, ...,M.

Comment. The matrix T is supposed to be invertible. For T = 0 we therefore have
A0 = A.

Proof. The operator AT is defined as a linear operator acting in the Hilbert spaces
BM (A) = Dom(A0∗

M ) → Dom(A)∗. Let ψ ∈ BM (A); then the operator AM acts as
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follows:

AMψ =

A+
M∑

i,j=1

tij〈ϕj , ·〉ϕi


×

(
ψ̂ +

∑M
k=1

(
a+k(ψ) 1

A−iϕk + a−k(ψ) 1
A+iϕk

))
= Aψ̂ +

M∑
i,j=1

tij〈ϕj , ψ̂〉ϕi

+
∑M

k=1

(
a+k(ψ)(ϕk + i

A−iϕk) + a−k(ψ)(ϕk − i
A+iϕk)

)
+

M∑
i,j,k=1

(
a+ktij〈ϕj ,

1
A− i

ϕk〉ϕi + a−ktij〈ϕj ,
1

A+ i
ϕk〉ϕi

)

= A0∗
Mψ +

M∑
k=1

{
a+k + a−k +

M∑
i,j=1

(
tkj〈ϕj ,

1
A− i

ϕi〉a+i

+ tkj〈ϕj ,
1

A+iϕi〉a−i

)}
ϕk.

In the calculations we used the fact that 〈ϕj , ψ̂〉 = 0. The domain Dom(AT ) of
the selfadjoint operator AT coincides with the following set: {ψ ∈ Dom(A0∗

M ) :
ATψ ∈ H}. The element ATψ belongs to the Hilbert space H if and only if the
expression in the curly brackets is equal to zero, i.e. the following equation is
satisfied:

a+k + a−k +
M∑

i,j=1

(
tkj〈ϕj ,

1
A− i

ϕi〉a+i + tkj〈ϕj ,
1

A+ i
ϕi〉a−i

)
= 0.

(13)

The latter equation can be written in matrix form using the notation (7) as follows:

(I + TΦ)~a+ = −(I + TΦ∗)~a−,(14)

where I denotes the unit M ×M matrix. The matrix I +TΦ is invertible, since T
is an invertible Hermitian matrix and the imaginary part of the matrix Φ is equal
to the unit matrix. The latter statement follows from the following formula:

Φij = <Φij + i=Φij , <Φij = 〈ϕi,
A

A2 + 1
ϕj〉, =Φij = I,(15)

which is valid, since the vectors ϕj form an orthonormal system in the space
H−2(A). Thus the condition (14) can be written in the form

~a+(ψ) = − (
T−1 + Φ

)−1
(T−1 + Φ∗)~a−(ψ).(16)

The matrix − (
T−1 + Φ

)−1 (T−1 + Φ∗) is unitary, and the adjoint operator re-
stricted to the domain of functions satisfying the conditions (16) is selfadjoint.

If the matrix T is equal to zero, then (13) implies that ~a− = −~a+, and the
extended operator is just the original operator A. This completes the proof of the
theorem.

We consider now the set of all selfadjoint extensions of the operator A0
M . Every

such operator coincides with the restriction of the adjoint operator A0∗
M to the

domain of functions satisfying boundary conditions of the form

~a+(ψ) = V~a−(ψ),
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where V is a certain unitary M×M matrix. The domain of the extended selfadjoint
operator coincides with the domain of a certain operator AT if and only if the
following equality holds:

V = −(T−1 + Φ)−1(T−1 + Φ∗).(17)

The following lemma describes the set of all selfadjoint extensions of the operator
A0

M which can be obtained as finite rank additive perturbations of the operator A
providing that the family of singular vectors ϕj from H−1(|A|) remains unchanged.

Lemma 2. Let ϕj ∈ H−1(|A|) \ H, j = 1, 2, ...,M , form an orthonormal system
in H−2(A). If det(V − i−<Φ

i+<Φ ) 6= 0, then the operator A0∗
M restricted to the domain

of functions {ψ ∈ Dom(A0∗
M : ~a−(ψ) = V~a+(ψ)} is a finite dimensional additive

perturbation of the operator A.

Proof. Suppose that the matrix I + V is invertible (det(I + V ) 6= 0). Then the
matrix T−1 can be calculated as follows using the representation (15):

T−1 = −Φ(I + V ∗)−1 − Φ∗(I + V )−1 = −<Φ + i
I − V

I + V
.(18)

The determinant of the matrix in the right hand side of the latter equality is not
equal to zero:

det
(
−<Φ + i

I − V

I + V

)
= − (det(I + V ))−1 det(<Φ + i) det

(
V − i−<Φ

i+ <Φ

)
.

Then the Hermitian matrix −<Φ + i I−V
I+V is invertible, and the matrix T can be

reconstructed as follows:

T =
(
−<Φ + i

I − V

I + V

)−1

.(19)

T is then Hermitian.
Consider now the case where det(I + V ) = 0. This equality implies that the

matrix V has a nontrivial eigensubspace N−1 corresponding to the eigenvalue −1.
The restriction of the adjoint operator A0∗

M to the subspace

{ψ ∈ Dom(A0∗
M ) : PN−1~a+(ψ) = −PN−1~a−(ψ)}

coincides with the restriction of the operator A to the same subspace. Thus the
set of vectors {ϕj}M

j=1 contains extra elements in the following sense: one can find
some new set of elements {ϕ′j}M ′

j=1, M
′ < M , such that the corresponding matrix V ′

has a trivial eigensubspace N ′−1. We have already proven that every unitary matrix
which does not have eigenvalue −1 describes a certain finite rank perturbation of
the original operator. The lemma is proven.

This last lemma characterizes the set of selfadjoint extensions of the operator A0
M

which are finite rank perturbations of the original operator. The selfadjoint exten-
sions corresponding to the matrices V satisfying the equality det(V − i−<Φ

i+<Φ ) = 0 can
be described by finite rank perturbations with infinite strength using the projective
space formalism. This approach is developed in [15], where point interactions for
the second derivative operator in one dimension are studied.
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4. Form unbounded finite rank perturbations

Form unbounded finite rank perturbations can be described following the main
ideas developed in [5, 6] for rank one perturbations. We suppose in this section
that the vectors ϕj in the representation (5) are elements from the Hilbert space
H−2(A) and that the matrix T is Hermitian and invertible. The quadratic form
defined by the perturbation is not necessarily bounded with respect to the qua-
dratic form of the operator A. The unique selfadjoint extension of the operator A0

M

corresponding to the expression (5) defined on the domain Dom(A) can be deter-
mined only if all elements ϕj can be extended as bounded linear functionals to the
domain BM (A) = Dom(A0∗

M ). The space BM (A) is a finite dimensional extension
of the space H−2(A) = Dom(A). Thus the extensions are defined if the following
coefficients are determined:

Φij = 〈ϕi,
1

A− i
ϕj〉 = 〈ϕi,

A

A2 + 1
ϕj〉+ i〈ϕi,

1
A2 + 1

ϕj〉.(20)

The second scalar product on the right hand side of the latter equality is well
defined, since ϕj , ϕi ∈ H−2(A). Therefore to determine the matrix Φ it is enough
to find a Hermitian matrix R with the coefficients

Rij = 〈ϕi,
A

A2 + 1
ϕj〉,(21)

provided these are well defined.
Let us denote by µϕi,ϕj(λ) the spectral measure corresponding to the elements

ϕi, ϕj and the operator A:

〈 1
A− zi

ϕi,
1

A− zj
ϕj〉 =

∫ ∞

−∞

1
λ− z̄i

1
λ− zj

dµϕi,ϕj (λ);

∫ ∞

−∞

1
λ2 + 1

dµϕi,ϕj(λ) ≤‖ ϕi ‖H−2(A)‖ ϕj ‖H−2(A)<∞.

If the integral
∫∞
−∞

λ
λ2+1dµϕi,ϕj (λ) is absolutely convergent, then the scalar product

〈ϕi,
A

A2+1ϕj〉 is indeed well defined. The latter integral converges absolutely if
both vectors ϕi, ϕj are elements from the space H−1(|A|). The same is true if the
following inclusions hold: ϕi ∈ H−2,0(A), ϕj ∈ H0,−2(A). (The spaces Hn,m(A)
denote the vector spaces of elements having spectral projections to the negative,
resp. positive, halfaxis belonging to Hn(|A|), resp. Hm(|A|). )

Definition 1. The Hermitian matrix R corresponding to the set of vectors ϕj ∈
H−2(A), j = 1, ...,M , is called admissible if the equality

〈f, A

A2 + 1
g〉 =

M∑
i,j=1

f̄jRjigi(22)

holds for every two functions f and g provided that

• f and g are elements from the linear hull of the vectors ϕj , i.e.

f =
M∑

j=1

fjϕj , g =
M∑

j=1

gjϕj ;
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• the spectral measure µf,g corresponding to the functions f and g determines
the absolutely convergent integral∫ ∞

−∞

λ

λ2 + 1
dµf,g(λ) <∞.(23)

There exist sets of vectors ϕj such that for no two linear combinations of them
does the integral (23) converge. Every Hermitian matrix R is admissible in this
case. If all the vectors ϕj are elements from the Hilbert space H−1(|A|) then the
admissible matrix R is unique, as we have already seen in the previous section.

We shall consider in what follows only admissible Hermitian matrices R. The
following theorem can be proven

Theorem 2. Let ϕj ∈ H−2(A) \ H and let T = {tij}M
i,j=1 be a Hermitian in-

vertible matrix. Suppose that the Hermitian matrix R = {Rij}M
i,j=1 is admissi-

ble for the set of vectors ϕj , j = 1, ...,M . Then the selfadjoint operator AT =
A+

∑M
i,j=1 tij〈ϕj , ·〉ϕi is the selfadjoint extension of the operator A0

M to the follow-
ing domain:

Dom(AT ) = {ψ ∈ Dom(A0∗
M ) : ~a+(ψ) = −(T−1 + Φ)−1(T−1 + Φ∗)~a−(ψ)},

(24)

where Φ = R + iI.

Proof. The proof is very similar to that of Theorem 1.

We note that the domain of the operator AT depends on the choice of the
admissible matrix R. If all the vectors ϕj are elements from the Hilbert space
H−1(|A|), then the admissible matrix R is unique and there is a unique selfadjoint
operator corresponding to the formal expression (5). This case has been studied in
section 3.

The unique admissible matrix R can be determined by some extra conditions
even if the vectors ϕj are not elements from the Hilbert space H−1(|A|). For ex-
ample, such a unique matrix exists if all the vectors ϕj and the operator A are
homogeneous with respect to a certain group of unitary transformations. Consider
for example the operator in L2(R) formally given by (i d

dx)n +
∑n−1

k=0 αkδ
(k), where

δ(k) are the derivatives of the delta function. Not all δ(k), k = 1, 2, ..., n − 1, are
from the Hilbert space H−1(|(i d

dx)n|). Therefore the operator corresponding to the
formal expression can be uniquely defined using only the fact that the original oper-
ator and the distributions δ(k) are homogeneous with respect to the scaling group.
This approach has been developed for second order differential operators in [15]
and for operators of arbitrary order in [8].

The approach developed in this paper can be used to construct model few-body
operators with H−1 and H−2 cluster interactions. Such operators can be obtained
as infinite dimensional perturbations of the operators describing the system of non-
interacting particles ([7]).
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