THE DISTRIBUTION OF SOLUTIONS
 OF THE CONGRUENCE $x_{1} x_{2} x_{3} \ldots x_{n} \equiv c(\bmod p)$

ANWAR AYYAD

(Communicated by Dennis A. Hejhal)

Abstract. For a cube \mathcal{B} of size B, we obtain a lower bound on B so that $\mathcal{B} \cap V$ is nonempty, where V is the algebraic subset of \mathbb{F}_{p}^{n} defined by

$$
x_{1} x_{2} x_{3} \ldots x_{n} \equiv c \quad(\bmod p)
$$

n a positive integer and c an integer not divisible by p. For $n=3$ we obtain that $\mathcal{B} \cap V$ is nonempty if $B \gg p^{\frac{2}{3}}(\log p)^{\frac{2}{3}}$, for $n=4$ we obtain that $\mathcal{B} \cap V$ is nonempty if $B \gg \sqrt{p} \log p$, and for $n \geq 5$ we obtain that $\mathcal{B} \cap V$ is nonempty if $B \gg p^{\frac{1}{4}+\frac{1}{\sqrt{2(n+4)}}(\log p)^{\frac{3}{2}} \text {. Using the assumption of the Grand Riemann }}$ Hypothesis we obtain $\mathcal{B} \cap V$ is nonempty if $B \gg_{\epsilon} p^{\frac{2}{n}+\epsilon}$.

1. Introduction

We use multiplicative characters to study the congruence

$$
\begin{equation*}
x_{1} x_{2} x_{3} \ldots x_{n} \equiv c \quad(\bmod p) \tag{1}
\end{equation*}
$$

where c is an integer not divisible by p, and $n>2$ is a positive integer. In particular if V is the algebraic subset of \mathbb{F}_{p}^{n} defined by (1), and \mathcal{B} the cube of size B defined by

$$
\begin{equation*}
\mathcal{B}=\left\{\mathbf{x} \in \mathbb{F}_{p}^{n}: a_{i}+1 \leq x_{i} \leq a_{i}+B, 1 \leq i \leq n\right\} \tag{2}
\end{equation*}
$$

we find how large B must be to guarantee that $\mathcal{B} \cap V$ is nonempty. More generally, if \mathcal{B} is a box having sides of arbitrary lengths,

$$
\begin{equation*}
\mathcal{B}=\left\{\mathbf{x} \in \mathbb{F}_{p}^{n}: a_{i}+1 \leq x_{i} \leq a_{i}+B_{i}, 1 \leq i \leq n\right\} \tag{3}
\end{equation*}
$$

then our interest is in finding how large the cardinality $|\mathcal{B}|$ of \mathcal{B} must be to guarantee $\mathcal{B} \cap V$ is nonempty. For $n=2$ it is known for a cube of type (2) that $\mathcal{B} \cap V$ is nonempty if $B \gg p^{\frac{3}{4}}$. This follows from Weil's bound on the Kloosterman sum. R. A. Smith [4] conjectured that for a cube centered at the origin, $\mathcal{B} \cap V$ is nonempty if $B \gg p^{\frac{2}{3}}$. He was able to prove this result on the assumption of a conjecture of Hooley.

In this paper we consider larger values of n, and we have the following main theorems.

[^0]Theorem 1. Let \mathcal{B} be a box of type (3), and V the algebraic subset of \mathbb{F}_{p}^{n} defined by (1). Then
(i) For $n=3, \mathcal{B} \cap V$ is nonempty if $|\mathcal{B}| \gg p^{2} \log ^{2} p$. In particular if \mathcal{B} is a cube of size B, then $\mathcal{B} \cap V$ is nonempty if $B \gg p^{\frac{2}{3}}(\log p)^{\frac{2}{3}}$.
(ii) For $n=4, \mathcal{B} \cap V$ is nonempty if $|\mathcal{B}| \gg p^{2} \log ^{4} p$. In particular if \mathcal{B} is a cube of size B, then $\mathcal{B} \cap V$ is nonempty if $B \gg \sqrt{p} \log p$.

With extra work using other methods we can obtain a slight saving in this theorem. When $n=3$ we can show that for a box of type (3), $\mathcal{B} \cap V$ is nonempty if $|\mathcal{B}| \gg p^{2}$. For $n=4$ we can save a factor of $\sqrt{\log p}$ on the size B, and show that for any cube \mathcal{B} of type $(2), \mathcal{B} \cap V$ is nonempty if $B \gg \sqrt{p \log p}$. The details will appear in forthcoming work.

For larger values of n we use the result of Burgess [2] and prove
Theorem 2. Let \mathcal{B} be a cube of type (2), and V the algebraic subset of \mathbb{F}_{p}^{n} defined by (1) with $n \geq 5$. Then $\mathcal{B} \cap V$ is nonempty if

$$
B \gg p^{\frac{1}{4}+\frac{1}{\sqrt{2(n+4)}}}(\log p)^{\frac{3}{2}}
$$

On the assumption of the generalized Lindelöf hypothesis we are able to sharpen the result of Theorem 2 and prove

Theorem 3. For any cube \mathcal{B} of type (2), and algebraic set V defined by (1) with $n \geq 5, \mathcal{B} \cap V$ is nonempty if $B>{ }_{\epsilon} p^{\frac{2}{n}+\epsilon}$.

2. Lemmas

For any prime p, we let $\sum_{\chi \neq \chi_{o}}$ denote a sum over all multiplicative characters $\chi(\bmod p)$ with $\chi \neq \chi_{o}$, the principal character.

Lemma 1.

$$
\frac{1}{p-1} \sum_{\chi \neq \chi_{0}}\left|\sum_{x=a+1}^{a+B} \chi(x)\right|^{4}=O\left(B^{2} \log ^{2} p\right)
$$

This is just Theorem 2 of Ayyad, Cochrane, and Zheng [1].

Lemma 2.

$$
\sum_{\chi \neq \chi_{o}}\left|\sum_{x=a+1}^{a+B} \chi(x)\right|^{2} \leq(p-1) B
$$

Proof.

$$
\begin{aligned}
\sum_{\chi \neq \chi_{o}}\left|\sum_{x=a+1}^{a+B} \chi(x)\right|^{2} & =\sum_{\chi \neq \chi_{o}}\left(\sum_{x=a+1}^{a+B} \chi(x) \sum_{y=a+1}^{a+B} \overline{\chi(y)}\right) \\
& =\sum_{x, y=a+1}^{a+B}\left(\sum_{\chi \neq \chi_{o}} \chi\left(x y^{-1}\right)\right) \\
& \leq \sum_{x, y=a+1}^{a+B}\left(\sum_{\chi \neq \chi_{o}} \chi\left(x y^{-1}\right)\right) \\
& \leq(p-1) B .
\end{aligned}
$$

To obtain results for values of $n \geq 5$ we need the following result of Burgess.
Lemma 3 (Burgess [2]). For any positive integer $r \geq 2$, and nonprincipal character χ,

$$
\begin{equation*}
\left|\sum_{x=a+1}^{a+B} \chi(x)\right| \ll B^{1-\frac{1}{r}} p^{\frac{r+1}{4 r^{2}}}(\log p)^{\frac{3}{2 r}} \tag{4}
\end{equation*}
$$

Lemma 4. For every integer $n \geq 5$ there exists an integer $r \geq 2$ such that

$$
\frac{2 r^{2}+n-4}{r(8 r+4 n-16)}<\frac{1}{\sqrt{2(n+4)}}
$$

Proof. For any integer $n \geq 5$ and positive real number x we have

$$
\begin{align*}
& \frac{2 x^{2}+n-4}{x(8 x+4 n-16)}<\frac{1}{\sqrt{2(n+4)}} \\
& \Longleftrightarrow x^{2}+\frac{2(n-4) x}{4-\sqrt{2(n+4)}}-\frac{(n-4) \sqrt{2(n+4)}}{2(4-\sqrt{2(n+4)}}<0 \tag{5}
\end{align*}
$$

The graph of the quadratic function

$$
f(x)=a x^{2}+b x+c=: x^{2}+\frac{2(n-4) x}{4-\sqrt{2(n+4)}}-\frac{(n-4) \sqrt{2(n+4)}}{2(4-\sqrt{2(n+4)}}
$$

is a parabola opening upwards. Now

$$
\begin{aligned}
b^{2}-4 a c & =\frac{4(n-4)^{2}}{(4-\sqrt{2(n+4)})^{2}}-\frac{2(4-n) \sqrt{2(n+4)}}{4-\sqrt{2(n+4)}} \\
& =\frac{128-32 n-8(4-n) \sqrt{2(n+4)}}{(4-\sqrt{2(n+4)})^{2}}
\end{aligned}
$$

We also have

$$
\begin{aligned}
& 128-32 n-8(4-n) \sqrt{2(n+4)}>(4-\sqrt{2(n+4)})^{2} \\
& \Longleftrightarrow(8 n-24) \sqrt{2(n+4)}>34 n-104 .
\end{aligned}
$$

Since the last inequality holds true for $n \geq 5$ we see that $b^{2}-4 a c>1$. Therefore $f(x)$ has real roots $x_{1}<x_{2}$, with $x_{2}-x_{1}=\sqrt{b^{2}-4 a c}>1$. Moreover,

$$
x_{2}=\frac{-b+\sqrt{b^{2}-4 a c}}{2}>\frac{n-4}{\sqrt{2(n+4)}-4}+\frac{1}{2}>2
$$

for $n \geq 5$. Since $x_{2}-x_{1}>1$ and $x_{2}>2$, there exists an integer $r \geq 2$ with $x_{1}<r<x_{2}$. Also, since $f(x)<0$ on the interval $\left(x_{1}, x_{2}\right)$, we have $f(r)<0$. Thus r satisfies (5) and so

$$
\frac{2 r^{2}+n-4}{r(8 r+4 n-16)}<\frac{1}{\sqrt{2(n+4)}}
$$

3. Proof of Theorem 1

Suppose that $n=3$ and that \mathcal{B} is a box of type (3). Then

$$
\begin{align*}
& |\mathcal{B} \cap V|=\sum_{\substack{\mathbf{x} \in \mathcal{B} \\
x_{1} x_{2} x_{3}=c}} 1=\sum_{\substack{\mathbf{x} \in \mathcal{B} \\
x_{1} x_{2} x_{3} c^{-1}=1}} 1 \\
& =\frac{1}{p-1} \sum_{\chi}\left(\sum_{\substack{x_{i}=a_{i}+1 \\
i=1,2,3}}^{a_{i}+B_{i}} \chi\left(x_{1} x_{2} x_{3} c^{-1}\right)\right) \tag{6}\\
& =\frac{|\mathcal{B}|}{p-1}+\frac{1}{p-1} \sum_{\chi \neq \chi_{o}} \chi\left(c^{-1}\right) \sum_{\substack{x_{i}=a_{i}+1 \\
i=1,2,3}}^{a_{i}+B_{i}} \chi\left(x_{1}\right) \chi\left(x_{2}\right) \chi\left(x_{3}\right) .
\end{align*}
$$

Using the Cauchy-Schwarz inequality we bound the error term in (6) as follows:

$$
\begin{aligned}
& \left|\sum_{\chi \neq \chi_{o}} \chi\left(c^{-1}\right) \sum_{\substack{x_{i}=a_{i}+1 \\
i=1,2,3}}^{a_{i}+B_{i}} \chi\left(x_{1}\right) \chi\left(x_{2}\right) \chi\left(x_{3}\right)\right| \\
& \leq \sum_{\chi \neq \chi_{o}}\left(\left|\sum_{x_{1}=a_{1}+1}^{a_{1}+B_{1}} \chi\left(x_{1}\right)\right|\left|\sum_{x_{2}=a_{2}+1}^{a_{2}+B_{2}} \chi\left(x_{2}\right) \cdot \sum_{x_{3}=a_{3}+1}^{a_{3}+B_{3}} \chi\left(x_{3}\right)\right|\right) \\
& \leq\left(\sum_{\chi \neq \chi_{o}}\left|\sum_{x_{1}=a_{1}+1}^{a_{1}+B_{1}} \chi\left(x_{1}\right)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{\chi \neq \chi_{o}}\left|\sum_{x_{2}=a_{2}+1}^{a_{2}+B_{2}} \chi\left(x_{2}\right)\right|^{2} \cdot\left|\sum_{x_{3}=a_{3}+1}^{a_{3}+B_{3}} \chi\left(x_{3}\right)\right|^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{\chi \neq \chi_{o}}\left|\sum_{x_{1}=a_{1}+1}^{a_{1}+B_{1}} \chi\left(x_{1}\right)\right|^{2}\right)^{\frac{1}{4}} \cdot \prod_{i=2}^{3}\left(\sum_{\chi \neq \chi_{o}}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B_{i}} \chi\left(x_{i}\right)\right|^{4}\right)^{.} .
\end{aligned}
$$

Now by Lemma 1 and Lemma 2 we obtain the following bound on the error term in (6):

$$
\begin{aligned}
\mid \text { error } \mid & \ll \frac{1}{p-1} \sqrt{(p-1) B_{1}} \cdot \prod_{i=2}^{3}\left((p-1) B_{i}^{2} \log ^{2} p\right)^{\frac{1}{4}} \\
& \ll|\mathcal{B}|^{\frac{1}{2}} \log p
\end{aligned}
$$

Thus

$$
|\mathcal{B} \cap V|=\frac{|\mathcal{B}|^{3}}{p-1}+O\left(|\mathcal{B}|^{\frac{1}{2}} \log p\right) .
$$

For $\mathcal{B} \cap V$ not to be empty it suffices that

$$
\frac{|\mathcal{B}|^{3}}{p-1} \gg|\mathcal{B}|^{\frac{1}{2}} \log p
$$

that is,

$$
|\mathcal{B}| \gg p^{2} \log ^{2} p
$$

When $n=4$, we proceed in a similar manner to obtain

$$
\begin{equation*}
|\mathcal{B} \cap V|=\frac{|\mathcal{B}|}{p-1}+\frac{1}{p-1} \sum_{\chi \neq \chi_{o}} \chi\left(c^{-1}\right) \sum_{\substack{x_{i}=a_{i}+1 \\ i=1,2,3,4}}^{a_{i}+B_{i}} \chi\left(x_{1}\right) \chi\left(x_{2}\right) \chi\left(x_{3}\right) \chi\left(x_{4}\right) \tag{7}
\end{equation*}
$$

Using the Cauchy-Schwarz inequality we obtain

$$
\begin{aligned}
& \left|\sum_{\chi \neq \chi_{o}} \chi\left(c^{-1}\right) \sum_{\substack{x_{i}=a_{i}+1 \\
i=1,2,3,4}}^{a_{i}+B_{i}} \chi\left(x_{1}\right) \chi\left(x_{2}\right) \chi\left(x_{3}\right) \chi\left(x_{4}\right)\right| \\
& \leq \sum_{\chi \neq \chi_{o}}\left(\left|\sum_{x_{1}=a_{1}+1}^{a_{1}+B_{1}} \chi\left(x_{1}\right) \sum_{x_{2}=a_{2}+1}^{a_{2}+B_{2}} \chi\left(x_{2}\right)\right| \cdot\left|\sum_{x_{3}=a_{3}+1}^{a_{3}+B_{3}} \chi\left(x_{3}\right) \sum_{x_{4}=a_{4}+1}^{a_{4}+B_{4}} \chi\left(x_{4}\right)\right|\right) \\
& \leq\left(\sum_{\chi \neq \chi_{o}}\left|\prod_{i=1}^{2} \sum_{x_{i}=a_{i}+1}^{a_{i}+B_{i}} \chi\left(x_{i}\right)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{\chi \neq \chi_{o}}\left|\prod_{i=3}^{4} \sum_{x_{i}=a_{i}+1}^{a_{i}+B_{i}} \chi\left(x_{i}\right)\right|^{2}\right)^{\frac{1}{2}} \\
& \leq \prod_{i=1}^{4}\left(\sum_{\chi \neq \chi_{o}}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B_{i}} \chi\left(x_{i}\right)\right|^{4}\right)^{\frac{1}{4}} .
\end{aligned}
$$

Now by Lemma 2 we obtain the following bound on the error term in (7):

$$
\begin{align*}
\mid \text { error } \mid & \ll \frac{1}{p-1} \prod_{i=1}^{4}\left(p B_{i}^{2} \log ^{2} p\right)^{\frac{1}{4}} \tag{8}\\
& \ll \sqrt{B_{1} B_{2} B_{3} B_{4}} \log ^{2} p=|\mathcal{B}|^{\frac{1}{2}} \log ^{2} p
\end{align*}
$$

Therefore we obtain

$$
|\mathcal{B} \cap V|=\frac{|\mathcal{B}|}{p-1}+O\left(|\mathcal{B}|^{\frac{1}{2}} \log ^{2} p\right) .
$$

Thus for $\mathcal{B} \cap V$ not to be empty it suffices that

$$
\frac{|\mathcal{B}|}{p-1} \gg|\mathcal{B}|^{\frac{1}{2}} \log ^{2} p
$$

that is,

$$
|\mathcal{B}| \gg p^{2} \log ^{4} p
$$

4. Proof of Theorem 2

For any cube \mathcal{B} of size B we have

$$
\begin{equation*}
|\mathcal{B} \cap V|=\frac{B^{n}}{p-1}+\frac{1}{p-1} \sum_{\chi \neq \chi_{o}} \chi\left(c^{-1}\right) \sum_{\substack{x_{i}=a_{i}+1 \\ i=1,2, \ldots, n}}^{a_{i}+B} \chi\left(x_{1}\right) \chi\left(x_{2}\right) \ldots \chi\left(x_{n}\right) \tag{9}
\end{equation*}
$$

The error term in (9) is bounded above by

$$
\frac{1}{p-1} \sum_{\chi \neq \chi_{o}}\left(\prod_{i=1}^{n}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B} \chi\left(x_{i}\right)\right|\right) .
$$

Thus

$$
\begin{equation*}
|\mathcal{B} \cap V| \geq \frac{B^{n}}{p-1}-\frac{1}{p-1} \sum_{\chi \neq \chi_{o}}\left(\prod_{i=1}^{n}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B} \chi\left(x_{i}\right)\right|\right) \tag{10}
\end{equation*}
$$

The term

$$
\frac{1}{p-1} \sum_{\chi \neq \chi_{o}}\left(\prod_{i=1}^{n}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B} \chi\left(x_{i}\right)\right|\right)
$$

in (10) may be bounded as follows:

$$
\begin{aligned}
& \frac{1}{p-1} \sum_{\chi \neq \chi_{o}}\left(\prod_{i=1}^{n}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B} \chi\left(x_{i}\right)\right|^{n}\right) \\
& \leq \prod_{i=5}^{n}\left(\max _{\chi \neq \chi_{o}}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B} \chi\left(x_{i}\right)\right|\right) \cdot \frac{1}{p-1} \sum_{\chi \neq \chi_{o}}\left(\prod_{i=1}^{4}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B} \chi\left(x_{i}\right)\right|\right)
\end{aligned}
$$

Inserting the upper bound of Burgess, Lemma 3, and the upper bound in (8) we obtain

$$
\begin{aligned}
\frac{1}{p-1} \sum_{\chi \neq \chi_{o}}\left(\prod_{i=1}^{n}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B} \chi(x)\right|\right) & \ll\left(B^{1-\frac{1}{r}} p^{\frac{r+1}{4 r^{2}}}(\log p)^{\frac{3}{2 r}}\right)^{n-4} B^{2} \log ^{2} p \\
& =B^{2+\frac{n r-4 r-n+4}{r}} p^{\frac{n r+n-4 r-4}{4 r^{2}}}(\log p)^{\frac{4 r+3 n-12}{2 r}}
\end{aligned}
$$

Therefore

$$
|\mathcal{B} \cap V|=\frac{B^{n}}{p-1}+O\left(B^{2+\frac{n r-4 r-n+4}{r}} p^{\frac{n r+n-4 r-4}{4 r^{2}}}(\log p)^{\frac{4 r+3 n-12}{2 r}}\right)
$$

Thus $\mathcal{B} \cap V$ is nonempty if

$$
\frac{B^{n}}{p-1} \gg B^{2+\frac{n r-4 r-n+4}{r}} p^{\frac{n r+n-4 r-4}{4 r^{2}}}(\log p)^{\frac{4 r+3 n-12}{2 r}}
$$

that is,

$$
\begin{equation*}
B \gg p^{\frac{4 r^{2}+n r+n-4 r-4}{8 r^{2}+4 r n-16 r}}(\log p)^{\frac{4 r+3 n-12}{4 r+2 n-8}} . \tag{11}
\end{equation*}
$$

Now the power of p in (11) is

$$
\frac{4 r^{2}+r n+n-4 r-4}{8 r^{2}+4 r n-16 r}=\frac{1}{4}+\frac{2 r^{2}+n-4}{r(8 r+4 n-16)}
$$

By Lemma 4 for any integer $n \geq 5$ there exists an integer $r \geq 2$ such that

$$
\frac{2 r^{2}+n-4}{r(8 r+4 n-16)}<\frac{1}{\sqrt{2(n+4)}}
$$

For such choice of r the power of p in (11) satisfies

$$
\frac{4 r^{2}+r n+n-4 r-4}{8 r^{2}+4 r n-16 r}<\frac{1}{4}+\frac{1}{\sqrt{2(n+4)}}
$$

Since the power of $\log p$ in (11) satisfies

$$
\frac{4 r+3 n-12}{4 r+2 n-8}<\frac{3}{2}
$$

we have that $\mathcal{B} \cap V$ is nonempty if

$$
B \gg p^{\frac{1}{4}+\frac{1}{\sqrt{2(n+4)}}}(\log p)^{\frac{3}{2}}
$$

The optimal choice of r in (11). The best choice of r is that integer which minimizes the power of p in (11). Using calculus it is easy to see that the power of p in (11) is minimal when

$$
\left(8 r^{2}+4 r n-16\right)(8 r+n-4)-\left(4 r^{2}+n r-4 r+n-4\right)(16 r+4 n-16)=0
$$

that is,

$$
r^{2}(2 n-8)+r(16-4 n)+n(8-n)-16=0
$$

Therefore for $n \geq 5$ we take r to be

$$
r=\left[1+\frac{\sqrt{2 n^{3}-20 n^{2}+64 n-64}}{2 n-8}\right] \text { or }\left[1+\frac{\sqrt{2 n^{3}-20 n^{2}+64 n-64}}{2 n-8}\right]+1
$$

The following table gives the optimal choice of r for various values of n. We also include the corresponding power of p in (11).

n	r	power of p
5	2	0.4749
10	3	0.4166
20	4	0.375
100	8	0.3125
1000	23	0.2714
1000000	708	0.2507
5.	PROOF OF	THEOREM 3

It is conjectured that

$$
\begin{equation*}
\left|\sum_{n \leq x} \chi(n)\right|<_{\epsilon} x^{\frac{1}{2}} p^{\epsilon} \tag{12}
\end{equation*}
$$

for any nonprincipal character $\chi(\bmod p)$. As Montgomery and Vaughan [3] have pointed out, the conjecture is known to be true under the assumption of the Grand Riemann Hypothesis. It is actually a consequence of the generalized Lindelöf hypothesis. Under the assumption of (12) we can substantially sharpen the result of Theorem 2, and prove Theorem 3 as follows.

In (10) we have shown

$$
|\mathcal{B} \cap V| \geq \frac{B^{n}}{p-1}-\frac{1}{p-1} \sum_{\chi \neq \chi_{o}}\left(\prod_{i=1}^{n}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B} \chi\left(x_{i}\right)\right|\right)
$$

Also

$$
\begin{aligned}
& \frac{1}{p-1} \sum_{\chi \neq \chi_{o}}\left(\prod_{i=1}^{n}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B} \chi\left(x_{i}\right)\right|\right) \\
& \leq \prod_{i=5}^{n}\left(\max _{\chi \neq \chi_{o}}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B} \chi\left(x_{i}\right)\right|\right) \cdot \frac{1}{p-1} \sum_{\chi \neq \chi_{o}}\left(\prod_{i=1}^{4}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B} \chi\left(x_{i}\right)\right|\right)
\end{aligned}
$$

Inserting the upper bounds of (12) and (8) we obtain

$$
\begin{aligned}
\frac{1}{p-1} \sum_{\chi \neq \chi_{o}}\left(\prod_{i=1}^{n}\left|\sum_{x_{i}=a_{i}+1}^{a_{i}+B} \chi\left(x_{i}\right)\right|\right) & \lll \epsilon\left(B^{\frac{1}{2}} p^{\epsilon}\right)^{n-4} B^{2}(\log p)^{2} \\
& =B^{\frac{n}{2}} p^{(n-4) \epsilon}(\log p)^{2} .
\end{aligned}
$$

Thus by (10) we have

$$
|\mathcal{B} \cap V| \geq \frac{B^{n}}{p-1}-c(\epsilon) B^{\frac{n}{2}} p^{(n-4) \epsilon}(\log p)^{2}
$$

where $c(\epsilon)$ is a constant depending on ϵ. Therefore $\mathcal{B} \cap V$ is nonempty if

$$
B \gg \epsilon p^{\frac{2}{n}+\frac{2 \epsilon(n-4)}{n}}(\log p)^{\frac{4}{n}} .
$$

It suffices to take

$$
B \gg_{\epsilon} p^{\frac{2}{n}+\epsilon}
$$

References

1. A. Ayyad, T. Cochrane, and Z. Zheng, The congruence $x_{1} x_{2} \equiv x_{3} x_{4}(\bmod p)$, the equation $x_{1} x_{2}=x_{3} x_{4}$, and mean values of character sums, J. of Number Theory 59 (2) (1996), 398-413. MR 97i:11091
2. D.A. Burgess, On character sums and primitive roots, Proc. London Math. Soc.(3) 12 (1962), 179-192. MR 24:A2569
3. H.L. Montgomery and R.C. Vaughan, Exponential sums with multiplicative coefficients, Invent. Math. 43 (1977), 69-82. MR 56:15579
4. R.A. Smith, The distribution of rational points on a curve modulo q, Rocky Mountain J. of Math. 15 (2) (1985), 589-597. MR 87h:11055

Department of Mathematics, Kansas State University, Manhattan, Kansas 66506
Current address: Department of Mathematics, University of Gaza, P.O. Box 1418, Gaza Strip, Via Israel

E-mail address: anwar@math.ksu.edu

[^0]: Received by the editors May 9, 1997.
 1991 Mathematics Subject Classification. Primary 11D79, 11L40.
 Key words and phrases. Distribution, congruences, solutions.

