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Abstract. For a cube B of size B, we obtain a lower bound on B so that
B ∩ V is nonempty, where V is the algebraic subset of Fn

p defined by

x1x2x3 . . . xn ≡ c (mod p),

n a positive integer and c an integer not divisible by p. For n = 3 we obtain

that B ∩ V is nonempty if B � p
2
3 (log p)

2
3 , for n = 4 we obtain that B ∩ V is

nonempty if B � √
p log p, and for n ≥ 5 we obtain that B ∩ V is nonempty

if B � p
1
4+ 1√

2(n+4) (log p)
3
2 . Using the assumption of the Grand Riemann

Hypothesis we obtain B ∩ V is nonempty if B �ε p
2
n

+ε.

1. Introduction

We use multiplicative characters to study the congruence

x1x2x3 . . . xn ≡ c (mod p),(1)

where c is an integer not divisible by p, and n > 2 is a positive integer. In particular
if V is the algebraic subset of Fn

p defined by (1), and B the cube of size B defined
by

B = {x ∈ Fn
p : ai + 1 ≤ xi ≤ ai + B, 1 ≤ i ≤ n},(2)

we find how large B must be to guarantee that B∩V is nonempty. More generally,
if B is a box having sides of arbitrary lengths,

B = {x ∈ Fn
p : ai + 1 ≤ xi ≤ ai + Bi, 1 ≤ i ≤ n},(3)

then our interest is in finding how large the cardinality |B| of B must be to guarantee
B ∩ V is nonempty. For n = 2 it is known for a cube of type (2) that B ∩ V is
nonempty if B � p

3
4 . This follows from Weil’s bound on the Kloosterman sum. R.

A. Smith [4] conjectured that for a cube centered at the origin, B ∩ V is nonempty
if B � p

2
3 . He was able to prove this result on the assumption of a conjecture of

Hooley.
In this paper we consider larger values of n, and we have the following main

theorems.
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Theorem 1. Let B be a box of type (3), and V the algebraic subset of Fn
p defined

by (1). Then
(i) For n = 3, B ∩ V is nonempty if |B| � p2 log2 p. In particular if B is a cube

of size B, then B ∩ V is nonempty if B � p
2
3 (log p)

2
3 .

(ii) For n = 4, B ∩ V is nonempty if |B| � p2 log4 p. In particular if B is a cube
of size B, then B ∩ V is nonempty if B � √

p log p.

With extra work using other methods we can obtain a slight saving in this
theorem. When n = 3 we can show that for a box of type (3), B ∩ V is nonempty
if |B| � p2. For n = 4 we can save a factor of

√
log p on the size B, and show that

for any cube B of type (2), B ∩ V is nonempty if B � √
p log p. The details will

appear in forthcoming work.
For larger values of n we use the result of Burgess [2] and prove

Theorem 2. Let B be a cube of type (2), and V the algebraic subset of Fn
p defined

by (1) with n ≥ 5. Then B ∩ V is nonempty if

B � p
1
4 + 1√

2(n+4) (log p)
3
2 .

On the assumption of the generalized Lindelöf hypothesis we are able to sharpen
the result of Theorem 2 and prove

Theorem 3. For any cube B of type (2), and algebraic set V defined by (1) with
n ≥ 5, B ∩ V is nonempty if B �ε p

2
n +ε.

2. Lemmas

For any prime p, we let
∑

χ6=χo
denote a sum over all multiplicative characters

χ (mod p) with χ 6= χo, the principal character.

Lemma 1.

1
p− 1

∑
χ6=χo

|
a+B∑

x=a+1

χ(x)|4 = O
(
B2 log2 p

)
.

This is just Theorem 2 of Ayyad, Cochrane, and Zheng [1].

Lemma 2. ∑
χ6=χo

|
a+B∑

x=a+1

χ(x)|2 ≤ (p− 1)B.

Proof. ∑
χ6=χo

|
a+B∑

x=a+1

χ(x)|2 =
∑

χ6=χo

(
a+B∑

x=a+1

χ(x)
a+B∑

y=a+1

χ(y)

)

=
a+B∑

x,y=a+1

∑
χ6=χo

χ(xy−1)


≤

a+B∑
x,y=a+1

x=y

∑
χ6=χo

χ(xy−1)


≤ (p− 1)B.
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To obtain results for values of n ≥ 5 we need the following result of Burgess.

Lemma 3 (Burgess [2]). For any positive integer r ≥ 2, and nonprincipal charac-
ter χ,

|
a+B∑

x=a+1

χ(x)| � B1− 1
r p

r+1
4r2 (log p)

3
2r .(4)

Lemma 4. For every integer n ≥ 5 there exists an integer r ≥ 2 such that

2r2 + n− 4
r(8r + 4n− 16)

<
1√

2(n + 4)
.

Proof. For any integer n ≥ 5 and positive real number x we have

2x2 + n− 4
x(8x + 4n− 16)

<
1√

2(n + 4)

⇐⇒ x2 +
2(n− 4)x

4−√2(n + 4)
− (n− 4)

√
2(n + 4)

2(4−√2(n + 4))
< 0.

(5)

The graph of the quadratic function

f(x) = ax2 + bx + c =: x2 +
2(n− 4)x

4−√2(n + 4)
− (n− 4)

√
2(n + 4)

2(4−√2(n + 4))

is a parabola opening upwards. Now

b2 − 4ac =
4(n− 4)2

(4−√2(n + 4))2
− 2(4− n)

√
2(n + 4)

4−√2(n + 4)

=
128− 32n− 8(4− n)

√
2(n + 4)

(4−√2(n + 4))2
.

We also have

128− 32n− 8(4− n)
√

2(n + 4) > (4−
√

2(n + 4))2

⇐⇒ (8n− 24)
√

2(n + 4) > 34n− 104.

Since the last inequality holds true for n ≥ 5 we see that b2 − 4ac > 1. Therefore
f(x) has real roots x1 < x2, with x2 − x1 =

√
b2 − 4ac > 1. Moreover,

x2 =
−b +

√
b2 − 4ac

2
>

n− 4√
2(n + 4)− 4

+
1
2

> 2,

for n ≥ 5. Since x2 − x1 > 1 and x2 > 2, there exists an integer r ≥ 2 with
x1 < r < x2. Also, since f(x) < 0 on the interval (x1, x2), we have f(r) < 0. Thus
r satisfies (5) and so

2r2 + n− 4
r(8r + 4n− 16)

<
1√

2(n + 4)
.
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3. Proof of Theorem 1

Suppose that n = 3 and that B is a box of type (3). Then

|B ∩ V | =
∑
x∈B

x1x2x3=c

1 =
∑
x∈B

x1x2x3c−1=1

1

=
1

p− 1

∑
χ

 ai+Bi∑
xi=ai+1
i=1,2,3

χ(x1x2x3c
−1)


=

|B|
p− 1

+
1

p− 1

∑
χ6=χo

χ(c−1)
ai+Bi∑

xi=ai+1
i=1,2,3

χ(x1)χ(x2)χ(x3).

(6)

Using the Cauchy-Schwarz inequality we bound the error term in (6) as follows:

|
∑

χ6=χo

χ(c−1)
ai+Bi∑

xi=ai+1
i=1,2,3

χ(x1)χ(x2)χ(x3)|

≤
∑

χ6=χo

(
|

a1+B1∑
x1=a1+1

χ(x1)||
a2+B2∑

x2=a2+1

χ(x2) ·
a3+B3∑

x3=a3+1

χ(x3)|
)

≤
∑

χ6=χo

|
a1+B1∑

x1=a1+1

χ(x1)|2
 1

2
∑

χ6=χo

|
a2+B2∑

x2=a2+1

χ(x2)|2 · |
a3+B3∑

x3=a3+1

χ(x3)|2
 1

2

≤
∑

χ6=χo

|
a1+B1∑

x1=a1+1

χ(x1)|2


1
2

·
3∏

i=2

∑
χ6=χo

|
ai+Bi∑

xi=ai+1

χ(xi)|4


1
4

.

Now by Lemma 1 and Lemma 2 we obtain the following bound on the error term
in (6):

|error| � 1
p− 1

√
(p− 1)B1 ·

3∏
i=2

((p− 1)B2
i log2 p)

1
4

� |B| 12 log p.

Thus

|B ∩ V | = |B|3
p− 1

+ O
(
|B| 12 log p

)
.

For B ∩ V not to be empty it suffices that

|B|3
p− 1

� |B| 12 log p,

that is,

|B| � p2 log2 p.
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When n = 4, we proceed in a similar manner to obtain

|B ∩ V | = |B|
p− 1

+
1

p− 1

∑
χ6=χo

χ(c−1)
ai+Bi∑

xi=ai+1
i=1,2,3,4

χ(x1)χ(x2)χ(x3)χ(x4).(7)

Using the Cauchy-Schwarz inequality we obtain

|
∑

χ6=χo

χ(c−1)
ai+Bi∑

xi=ai+1
i=1,2,3,4

χ(x1)χ(x2)χ(x3)χ(x4)|

≤
∑

χ6=χo

(
|

a1+B1∑
x1=a1+1

χ(x1)
a2+B2∑

x2=a2+1

χ(x2)| · |
a3+B3∑

x3=a3+1

χ(x3)
a4+B4∑

x4=a4+1

χ(x4)|
)

≤
∑

χ6=χo

|
2∏

i=1

ai+Bi∑
xi=ai+1

χ(xi)|2
 1

2
∑

χ6=χo

|
4∏

i=3

ai+Bi∑
xi=ai+1

χ(xi)|2
 1

2

≤
4∏

i=1

∑
χ6=χo

|
ai+Bi∑

xi=ai+1

χ(xi)|4


1
4

.

Now by Lemma 2 we obtain the following bound on the error term in (7):

|error| � 1
p− 1

4∏
i=1

(pB2
i log2 p)

1
4

�
√

B1B2B3B4 log2 p = |B| 12 log2 p.

(8)

Therefore we obtain

|B ∩ V | = |B|
p− 1

+ O
(
|B| 12 log2 p

)
.

Thus for B ∩ V not to be empty it suffices that

|B|
p− 1

� |B| 12 log2 p,

that is,

|B| � p2 log4 p.

4. Proof of Theorem 2

For any cube B of size B we have

|B ∩ V | = Bn

p− 1
+

1
p− 1

∑
χ6=χo

χ(c−1)
ai+B∑

xi=ai+1
i=1,2,...,n

χ(x1)χ(x2) . . . χ(xn).(9)

The error term in (9) is bounded above by

1
p− 1

∑
χ6=χo

(
n∏

i=1

|
ai+B∑

xi=ai+1

χ(xi)|
)

.
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Thus

|B ∩ V | ≥ Bn

p− 1
− 1

p− 1

∑
χ6=χo

(
n∏

i=1

|
ai+B∑

xi=ai+1

χ(xi)|
)

.(10)

The term

1
p− 1

∑
χ6=χo

(
n∏

i=1

|
ai+B∑

xi=ai+1

χ(xi)|
)

in (10) may be bounded as follows:

1
p− 1

∑
χ6=χo

(
n∏

i=1

|
ai+B∑

xi=ai+1

χ(xi)|n
)

≤
n∏

i=5

(
max
χ6=χo

|
ai+B∑

xi=ai+1

χ(xi)|
)
· 1
p− 1

∑
χ6=χo

(
4∏

i=1

|
ai+B∑

xi=ai+1

χ(xi)|
)

.

Inserting the upper bound of Burgess, Lemma 3, and the upper bound in (8) we
obtain

1
p− 1

∑
χ6=χo

(
n∏

i=1

|
ai+B∑

xi=ai+1

χ(x)|
)
�
(
B1− 1

r p
r+1
4r2 (log p)

3
2r

)n−4

B2 log2 p

= B2+ nr−4r−n+4
r p

nr+n−4r−4
4r2 (log p)

4r+3n−12
2r .

Therefore

|B ∩ V | = Bn

p− 1
+ O

(
B2+ nr−4r−n+4

r p
nr+n−4r−4

4r2 (log p)
4r+3n−12

2r

)
.

Thus B ∩ V is nonempty if
Bn

p− 1
� B2+ nr−4r−n+4

r p
nr+n−4r−4

4r2 (log p)
4r+3n−12

2r ,

that is,

B � p
4r2+nr+n−4r−4

8r2+4rn−16r (log p)
4r+3n−12
4r+2n−8 .(11)

Now the power of p in (11) is

4r2 + rn + n− 4r − 4
8r2 + 4rn− 16r

=
1
4

+
2r2 + n− 4

r(8r + 4n− 16)
.

By Lemma 4 for any integer n ≥ 5 there exists an integer r ≥ 2 such that

2r2 + n− 4
r(8r + 4n− 16)

<
1√

2(n + 4)
.

For such choice of r the power of p in (11) satisfies

4r2 + rn + n− 4r − 4
8r2 + 4rn− 16r

<
1
4

+
1√

2(n + 4)
.

Since the power of log p in (11) satisfies
4r + 3n− 12
4r + 2n− 8

<
3
2
,
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we have that B ∩ V is nonempty if

B � p
1
4 + 1√

2(n+4) (log p)
3
2 .

The optimal choice of r in (11). The best choice of r is that integer which
minimizes the power of p in (11). Using calculus it is easy to see that the power of
p in (11) is minimal when

(8r2 + 4rn− 16)(8r + n− 4)− (4r2 + nr − 4r + n− 4)(16r + 4n− 16) = 0,

that is,

r2(2n− 8) + r(16 − 4n) + n(8− n)− 16 = 0.

Therefore for n ≥ 5 we take r to be

r =

[
1 +

√
2n3 − 20n2 + 64n− 64

2n− 8

]
or

[
1 +

√
2n3 − 20n2 + 64n− 64

2n− 8

]
+ 1.

The following table gives the optimal choice of r for various values of n. We also
include the corresponding power of p in (11).

n r power of p

5 2 0.4749
10 3 0.4166
20 4 0.375
100 8 0.3125
1000 23 0.2714
1000000 708 0.2507

5. Proof of Theorem 3

It is conjectured that

|
∑
n≤x

χ(n)| �ε x
1
2 pε,(12)

for any nonprincipal character χ (mod p). As Montgomery and Vaughan [3] have
pointed out, the conjecture is known to be true under the assumption of the Grand
Riemann Hypothesis. It is actually a consequence of the generalized Lindelöf hy-
pothesis. Under the assumption of (12) we can substantially sharpen the result of
Theorem 2, and prove Theorem 3 as follows.

In (10) we have shown

|B ∩ V | ≥ Bn

p− 1
− 1

p− 1

∑
χ6=χo

(
n∏

i=1

|
ai+B∑

xi=ai+1

χ(xi)|
)

.

Also

1
p− 1

∑
χ6=χo

(
n∏

i=1

|
ai+B∑

xi=ai+1

χ(xi)|
)

≤
n∏

i=5

(
max
χ6=χo

|
ai+B∑

xi=ai+1

χ(xi)|
)
· 1
p− 1

∑
χ6=χo

(
4∏

i=1

|
ai+B∑

xi=ai+1

χ(xi)|
)

.
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Inserting the upper bounds of (12) and (8) we obtain

1
p− 1

∑
χ6=χo

(
n∏

i=1

|
ai+B∑

xi=ai+1

χ(xi)|
)
�ε

(
B

1
2 pε
)n−4

B2(log p)2

= B
n
2 p(n−4)ε(log p)2.

Thus by (10) we have

|B ∩ V | ≥ Bn

p− 1
− c(ε)B

n
2 p(n−4)ε(log p)2,

where c(ε) is a constant depending on ε. Therefore B ∩ V is nonempty if

B �ε p
2
n + 2ε(n−4)

n (log p)
4
n .

It suffices to take

B �ε p
2
n +ε.
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