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A SPACE ON WHICH DIAMETER-TYPE PACKING MEASURE
IS NOT BOREL REGULAR

H. JOYCE

(Communicated by Christopher Croke)

Abstract. We construct a separable metric space on which 1-dimensional
diameter-type packing measure is not Borel regular.

1. Introduction

In [11] Taylor and Tricot introduced a new measure on Rn, which they named
packing measure. This measure was intended as a type of dual to Hausdorff measure,
where the idea of economical coverings by sets of small diameter was replaced by
that of extravagant packings by balls of small diameter.

For clarity in what follows we now provide a definition of what we shall refer to
as diameter-type packing measure. Our notation differs from that of [11], and we
do not restrict our attention to Rn. We also follow recent practice (see [3, 4, 5, 6],
and [9, 5.10]) in using closed balls rather than open in our definition of packing
measure.

By a packing of a subset S of a metric space X we mean a finite or countable
collection of closed balls {B(xi, ri) : xi ∈ S} such that for each i 6= j,

B(xi, ri) ∩B(xj , rj) = ∅.
A δ-packing is a packing such that for each i, diam B(xi, ri) ≤ δ.
If h is a Hausdorff function, that is, a non-decreasing function from R+ to R+

with h(0+) = 0, then Ph(S), the diameter-type h-packing measure of S, may be
defined thus:

P h
δ (S) = sup

{∑
h(diam B(xi, ri)) : {B(xi, ri)} a δ-packing of S

}
,

P h
0 (S) = lim

δ→0
P h

δ (S),

Ph(S) = inf

{ ∞∑
1

P h
0 (Si) : S ⊂

∞⋃
1

Si

}
.

In [4] it was noted that this definition led to a problem, namely that one could
not be sure that packing measure, thus defined, was Borel regular, that is, that
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every set was contained inside a Borel set of equal measure. A possible solution
proposed there was to modify this definition by replacing the final line by

Ph(S) = inf

{ ∞∑
1

P h
0 (Si) : S ⊂

∞⋃
1

Si, and Si Borel

}
.

Haase also introduced radius-type packing measure (see [2]), where he replaced
diamB(xi, ri) by 2ri throughout Taylor and Tricot’s definition. We write Rh

δ (S),
Rh

0 (S) and Rh(S) for the radius-type analogues of P h
δ (S), P h

0 (S) and Ph(S), and
Ps and Rs for the measures resulting from the Hausdorff functions h(r) = rs.

Radius-type packing measures are now often used. However, Haase’s suggested
modification to the definition of diameter-type packing measure has not entered
common use. This may be because the problem of non-Borel regularity does not
arise on Euclidean spaces, provided h is left-continuous (see Theorem 1.2 below).
Also, a useful (and immediate) fact about packing measures is that Ph(S) ≤ Ph

0 (S)
for every set S; if we modify packing measure as suggested above, then there is no
longer any reason why this inequality should hold.

In this paper we give a construction which shows that if closed balls are used
instead of open in the definition of diameter-type packing measures, then some such
modification is indeed needed in order to ensure Borel regularity on non-Euclidean
spaces.

The added step in the definition of packing measures as compared to Hausdorff
measures makes our result seem perhaps a little less surprising. For example, in
[10] the question of the measurability of the packing and Hausdorff measure and
dimension functions is investigated. It is shown there that while the Hausdorff
dimension and measure functions are indeed measurable with respect to the Borel
field generated by the compact subsets of a separable metric space, the packing
measure and dimension functions are not.

Lemma 1.1. Let X be a metric space and let S ⊆ X. If h is a left-continuous
Hausdorff function, then

Rh
0 (S) = Rh

0 (Clos S).
If also X = Rn, then

Ph
0 (S) = P h

0 (Clos S).

The proof is easy.

Theorem 1.2. Let X be a metric space and let S ⊆ X. If h is a left-continuous
Hausdorff function, then Rh is a Borel regular measure. If also X = Rn, then Ph

is a Borel regular measure.

Proof. Lemma 1.1 ensures that, under these assumptions, each set is contained in
an Fσδ set of the same measure (see for example [9, 5.10]).

However, the statement that the pre-measure Ph
0 of each set is the same as

that of its closure is not necessarily true, even for h continuous, on spaces other
than Rn; an example was provided in [7, 1.4.4]. This note takes the idea of that
example, and extends it to provide a construction of a separable metric space with
a non-Borel subset of P1 measure zero, such that every Borel subset of the metric
space containing that set has infinite P1 measure. In this construction, the highly
discrete metric will allow us to control the number of disjoint balls which may be
centred in certain subsets of our metric space.
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2. The construction

Our metric space X is constructed as follows.
First we construct a code space Y with a discrete metric. The measure µ on Y ,

which is the image of s-dimensional Hausdorff measure on the middle third Cantor
set C (s = log 2/ log 3) under the homeomorphism via the natural coding of C, will
play an auxiliary role.

In Lemma 2.1 we find a non-Borel subset S of Y . We then take the next step in
building up our metric space X by adding to Y countably many copies Zk of Y \S
and suitably extending our metric. Our aim here is to extend the metric space Y
to a space where the 1-dimensional packing measure of S is zero, but that of any
Borel set containing S is infinite. The role of these sets Zk is to ensure that balls
of certain radii centred in Y \ S have larger diameter than balls of the same radii
centred in S itself. The final step in constructing X will then be to add families of
sequences to our metric space and to extend our metric once more. The purpose
of these sequences is to ensure that there are not too many disjoint balls of certain
diameters centred in S.

In Lemma 2.2 we see that if a subset V of Y \ S has positive µ-measure, then
it must satisfy P 1

0 (V ) = ∞. In Lemma 2.1 it was established that if B is a Borel
subset of Y containing S, and B ⊆ ⋃

i Bi, then one of the Bi’s must contain such a
set V . In Lemmas 2.3 and 2.4 we see that a Borel subset B of X which contains S
must have infinite P1 measure, and that S itself has zero P1 measure. These two
lemmas lead directly to our main result, which is Theorem 2.5.

As the first step in our construction, we choose a positive sequence (dj)j with
dj+1 ≤ dj/2, and an increasing sequence (mj)j of integers, and write nj = 2mj ,
Nj =

∏j
i=1 ni, and Mj =

∑j
i=1 mi (so Nj = 2Mj ), such that

∞∑
i=1

Nkdk+1 < ∞,(1)

lim
k→∞

Nkdk = ∞.(2)

To see that this is possible choose d1 > 0 and a positive integer m1. Suppose
d1, . . . , dk and m1, . . . , mk have been chosen. Then we can choose dk+1 ≤ dk/2
sufficiently small such that Nkdk+1 < 2−(k+1), and mk+1 sufficiently large such
that Nk+1dk+1 > k + 1.

We write

Y = {(i1, i2, . . . ) : 1 ≤ ij ≤ nj for each j ≥ 1} ,

with

dist((i), (j)) = 2dk,

where k is least such that ik 6= jk. We shall write

Yi1,... ,il
= {(i1, i2, . . . , il, jl+1, jl+2, . . . ) : 1 ≤ jl+q ≤ nl+q for each q ≥ 1},

and refer to such sets as cylinder sets of Y . We note that Y is homeomorphic to the
middle third Cantor set C. To see this, for each k ≥ 1 write ϕk,1, . . . , ϕk,nk

for the
nk = 2mk similitudes from C onto the cylinder sets of C of diameter 3−mk . We may
then define a homeomorphism from Y to C by f((i1, i2, . . . )) =

⋂∞
k=1 ϕ1,i1 ◦ . . . ◦
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ϕk,ik
(C). We shall use this homeomorphism to define a (Borel regular) measure µ

on Y by setting

µ(S) = Hs(f(S)) for each S ⊆ Y,

where s = log 2/ log 3.

Lemma 2.1. There is a non-Borel set S ⊂ Y such that if B is a Borel set with
S ⊂ B ⊂ Y , and {Bi} are subsets of Y with B ⊂ ⋃∞

i=1 Bi, then there is an i with
µ(Bi \ S) > 0.

Proof. Since Y is a complete metric space without isolated points, and since 0 <
µ(Y ) < ∞, we may find S ⊂ Y such that if K is a closed subset of Y with µ(K) > 0,
then K intersects both S and its complement (see [1, 2.2.4]). This property ensures
that for each such K, K ∩ S is not µ-measurable, and in particular, since Borel
subsets of Y are µ-measurable, that S is not a Borel subset of Y .

If B is a Borel subset of Y containing S, then B contains some closed set D such
that µ(D) > 0 (otherwise B, like S, would not be µ-measurable). Then µ(D\S) > 0,
otherwise D \ S, and therefore D ∩ S, would be µ-measurable, contradicting the
choice of S. If B ⊂ ⋃∞

i=1 Bi, we have D \ S ⊂ ⋃∞
i=1(Bi \ S), so there is an i with

µ(Bi \ S) > 0, proving the lemma.

Choose S ⊂ Y according to Lemma 2.1. Let Z = Y \ S. For each k ≥ 1, let

Zk = Z × {dk}.
As for Y , we write

Zk
i1,... ,il

= {((i1, i2, . . . , il, jl+1, jl+2, . . . ), dk) : 1 ≤ jl+q ≤ nl+q for each q ≥ 1}.
We extend the metric on Y to a metric on Y ∪⋃∞

k=1 Zk by putting

dist((x, dk), y) = dist(x, y) + dk,

dist((x, dk), (z, dj)) = dist(x, z) + |dk − dj |,
for each y ∈ Y , x, z ∈ Z, and k, j ≥ 1. Note that these definitions ensure that if y ∈
Z, then B(y, dk)∩Zk

i1,... ,ik
contains the single point (y, dk), and diam B(y, dk) ≥ dk.

However, if y ∈ S, then B(y, dk) ∩ Zk = ∅, so a ball centred in S which intersects
Zk (and hence has diameter at least dk) must have radius strictly greater than dk.

Recall that our goal is to extend Y to a space where the 1-dimensional packing
measure of S is zero, but that of any Borel set containing S is infinite. The final step,
therefore, will be to add to our metric space sequences of points whose distances
from points in Yi1,... ,ik−1 approach dk; this will ensure that any two balls of radius
strictly greater than dk centred in Yi1,... ,ik−1 must intersect each other, but will have
no effect on balls of radius dk or less. Distances from points in these sequences to
each other, and to points outside Yi1,... ,ik−1 , will be chosen simply to satisfy the
triangle inequality.

We now complete the construction. Let Q0 = {q0
j : j ≥ 1} satisfy

dist(q0
j , q0

k) = d1/2,

dist(q0
j , y) = (1 + 2−j)d1 for each y in Y ,

dist(q0
j , z) = (1 + 2−j)d1 + dk for each z in Zk.
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For each (i1, . . . , ik) we also add a sequence Qi1,... ,ik = {qi1,... ,ik

j : j ≥ 1} such
that for p ≥ 1, r 6= l and (i1, . . . , ik) 6= (j1, . . . , jk),

dist
(
qi1,... ,ik
r , qi1,... ,ik

l

)
= dk+1/2,

dist
(
qi1,... ,ik
r , qj1,... ,jk

p

)
= dist(Yi1,... ,ik

, Yj1,... ,jk
),

dist
(
qi1,... ,ik
r , q0

p

)
= d1 − dk+1,

and for k 6= s,

dist
(
qi1,... ,ik
r , qj1,... ,js

p

)
= |dk+1 − ds+1|+ dist(Yi1,... ,ik

, Yj1,... ,js).

For each y ∈ Yi1,... ,ik
, z ∈ Z l

i1,... ,ik
and (i1, . . . , ik) 6= (j1, . . . , jk), we also set

dist
(
qi1,... ,ik
r , y

)
= (1 + 2−r)dk+1,

dist
(
qj1,... ,jk
r , y

)
= (1 + 2−r)dk+1 + dist(Yi1,... ,ik

, Yj1,... ,jk
),

dist
(
qi1,... ,ik
r , z

)
= (1 + 2−r)dk+1 + dl,

dist
(
qj1,... ,jk
r , z

)
= (1 + 2−r)dk+1 + dist(Yi1,... ,ik

, Yj1,... ,jk
) + dl.

Our final separable metric space X will then be

X = Y ∪
∞⋃

i=1

Zk ∪Q0 ∪
⋃
k≥1

{Qi1,... ,ik : 1 ≤ ij ≤ nj for each 1 ≤ j ≤ k}.

Lemma 2.2. If V ⊆ Z satisfies µ(V ) > 0, then

P 1
0 (V ) = ∞.

Proof. Let µ(V ) = a. Let ηk be the number of cylinder sets of the Cantor middle
third set C of diameter 3−Mk needed to cover f(V ) (there is a total of Nk = 2Mk

such intervals). Then for k sufficiently large (recalling the definition of µ and that
s = log 2/ log 3),

ηk

(
3−Mk

)s ≥ a/2,

ηk2−Mk ≥ a/2,

ηk ≥ aNk/2.

For each k,

ηk = # {(i1, . . . , ik) : Yi1,... ,ik
∩ V 6= ∅, 1 ≤ ij ≤ nj , 1 ≤ j ≤ k} .

Thus we may be assured that for k large enough, there is a fixed proportion of the
Nk cylinder sets Yi1,... ,ik

in which we may centre a ball of a packing of V . This
ensures that in packing V we may put disjoint balls of radius dk centred in each of
ηk distinct cylinder sets Yi1,... ,ik

. We now check that these balls are indeed disjoint.
Let (i1, i2, . . . ) and (j1, j2, . . . ) be points of V with ik 6= jk. Then the two balls

B((i1, i2, . . . ), dk) and B((j1, j2, . . . ), dk) cannot intersect in Y , since

dist(Yi1,... ,ik
, Yj1,... ,jk

) ≥ 2dk.

Nor can these two balls intersect in
⋃

Z l, since B((i1, i2, . . . ), dk)∩⋃
Z l⊂⋃

l Z
l
i1,... ,ik

and dist(Z l
i1,... ,ik

, Z l
j1,... ,jk

) ≥ 2dk for each l ≥ 1. Finally, they cannot intersect in
any set Ql1,... ,lp since if q

l1,... ,lp
j ∈ B((i1, i2, . . . ), dk), then

dist(Yj1,... ,jk
, q

l1,... ,lp
j ) ≥ 2dk.
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Suppose B(x, dk) is one of these balls. Since x ∈ V ⊂ Z, B(x, dk) contains the
point (x, dk) of Zk

i1,... ,ik
, and hence has diameter at least dk (and, of course, no

more than 2dk). Therefore

P 1
2dk

(V ) ≥ ηkdk ≥ aNkdk/2.

Since Nkdk →∞ as k →∞ by choice of Nk and dk, recall (2), the result follows.

Lemma 2.3. If B is a Borel subset of X such that B ⊃ S, then P1(B) = ∞.

Proof. Now, B∩Y is a Borel subset of Y containing S. Therefore, by Lemma 2.1, if
B ⊆ ⋃∞

i=1 Bi, then there is an i such that µ((Bi∩Y )\S) > 0. Then, by Lemma 2.2,
P 1

0 ((Bi ∩ Y ) \S) = ∞. Since P 1
0 (Bi) ≥ P 1

0 ((Bi ∩ Y ) \S), we have P1(B) = ∞.

Lemma 2.4. P1(S) = 0.

Proof. Let {B(xi, ri)} be a packing of S in X . Fix i, let k be such that dk < ri ≤
dk−1, and suppose that xi ∈ S∩Yj1,... ,jk

. We now establish an upper bound on the
diameter of B(xi, ri) in terms of dk rather than dk−1.

Now, since dist(Yj1,... ,jk−1 , Y \Yj1,... ,jk−1) = 2dk−1, we may be sure that B(xi, ri)

cannot intersect Y \ Yj1,... ,jk−1 . Similarly B(xi, ri) cannot intersect
(⋃

p≥1 Zp
)
\(⋃

p≥k Zp
j1,... ,jk−1

)
. Finally, if p < k − 1, or p ≥ k − 1 and (j1, . . . , jk−1) 6=

(l1, . . . , lk−1), then dist(ql1,... ,lp
r , Yj1,... ,jk

) > dk−1. Therefore

B(xi, ri) ⊆ Yj1,... ,jk−1 ∪
⋃
p≥k

Z l
j1,... ,jk−1

∪
⋃
p≥0

{Qj1,... ,jk−1,Jk,... ,Jk+p : 1 ≤ Jk+l ≤ nk+l each 0 ≤ l ≤ p}.

Since the diameters of these three sets are bounded above by 2dk, 3dk and 2dk

respectively, we see that diam B(xi, ri) ≤ 7dk.
We now find an upper bound on the number of balls of the packing such that

dk < ri ≤ dk−1. Note that there can be no ball of the packing besides B(xi, ri)
with radius greater than dk and centre in S ∩ Yj1,... ,jk−1 . This is because we may
find P ≥ 1 such that q

j1,... ,jk−1
p ∈ B(xi, ri) for all p ≥ P . Any other ball centred in

S ∩ Yj1,... ,jk−1 with radius greater than dk must also contain some of these points.
(This was the purpose of introducing the sequences Qj1,... ,jk−1 .) Therefore the total
number of balls in the packing with radius in the range (dk, dk−1] is no more than
Nk−1 (one for each set Yj1,... ,jk−1) and these balls have diameter no more than 7dk.
So, using (1),

P 1
0 (S) ≤ lim

j→∞
7
∞∑

k=j

Nk−1dk = 0.

The result follows.

Lemmas 2.3 and 2.4 and the fact that P1(S) ≤ P 1
0 (S) immediately give us our

final result:

Theorem 2.5. P1 is not Borel regular on X.

Note. The work above relies completely on the fact that we pack by closed balls.
As noted in the introduction, this follows recent practice, however in Taylor and
Tricot’s original definition of packing measure in [11] (see also [12]), open balls
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were used. If the Hausdorff function h is left-continuous, then packing measure
using open balls is Borel regular, since with this definition it is easy to prove that
the pre-packing measure Ph

0 is the same for a set as for its closure, and therefore
that each set is contained in an Fσδ set of the same measure. Thus the work of
this paper is in the style of previous papers (see [6, 8]), in which seemingly minor
differences between alternative definitions of packing measure are shown to lead to
significantly different measure-theoretic properties.

We also note that the choice of Hausdorff function h(r) = r above was in no way
crucial to the result. This choice was made partly to simplify the presentation, but
mostly to emphasise the fact that the existence of a space on which diameter-type
h-packing measure is not Borel regular in no way depends on some delicate choice
of h. Clearly a similar space could be constructed for any Hausdorff function h by
modifying the choice of the distances dk in a suitable manner.
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E-mail address: joyce@math.jyu.fi

Current address: 10 Shearwater, Orton Wistow, Peterborough, Cambs PE2 64W, England


