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SUCCESSIONAL STABILITY OF VECTOR FIELDS
IN DIMENSION THREE
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Abstract. A topological invariant, the community transition graph, is intro-
duced for dissipative vector fields that preserve the skeleton of the positive
orthant. A vector field is defined to be successionally stable if it lies in an
open set of vector fields with the same community transition graph. In dimen-
sion three, it is shown that vector fields for which the origin is a connected
component of the chain recurrent set can be approximated in the C1 Whitney
topology by a successionally stable vector field.

1. Introduction

Ever since the founding work of Lotka and Volterra, theoretical ecologists and
mathematicians have studied dissipative systems of the form

dx

dt
= f(x)(1)

where x = (x1, . . . , xn) is a vector of species’ densities, f = (f1, . . . , fn) is the
vector of species’ growth rates and fi(x) = 0 whenever xi = 0. In studying
(1), a lot of attention has revolved around finding conditions that result in co-
existence or exclusion. Coexistence refers to the long term survival of a collec-
tion of species and has been equated with the existence of a local [1, 9, 20] or
global [3, 4, 11, 14, 26, 27] attractor that lies in the interior of the positive orthant.
In contrast, exclusion refers to the extinction of a subset of species and has been
equated with the existence of a local or global attractor that lies in the boundary
of the positive orthant [1, 12, 13, 29, 31]. By studying both of these processes
for all subsets of species in (1), theoretical ecologists have begun to examine what
rules govern the assembly of ecological communities [5, 7, 19, 24]. Inspired by this
work, we introduce a topological invariant, the community-transition graph, for (1).
This invariant is a graph with directed and labeled edges whose vertices represent
communities (permanent/uniformly persistent subsystems of (1)) and whose edges
represent transitions from one community to another community due to invasions
by other species.
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Since in the natural world only robust phenomena are observable, we define
f to be successionally stable if its community transition graph remains unaltered
following sufficiently small perturbations of f . The main theorem of this article
shows that successionally stable vector fields are dense amongst “reasonable” vector
fields in dimension three where by “reasonable” we mean the origin is a connected
component of the chain recurrent set. This condition is met by most models of
population growth.

2. Preliminaries and statement of the main theorem

Let Rn
+ denote the closed positive orthant of Rn. For any subset S ⊆ {1, . . . , n}

define RS = {(x1, . . . , xn) ∈ Rn : xi = 0 ∀i /∈ S} and RS
+ = RS ∩Rn

+. If |S| = k,
then RS

+ is a k-dimensional face of Rn
+. The k-skeleton of Rn

+ is the union of the
k-dimensional faces of Rn

+. Given S ⊆ {1, . . . , n} and A ⊆ RS
+, we let ∂A, A and

intA denote the boundary, closure and interior of A relative to the topology of RS
+.

We recall several definitions from dynamical systems theory. Given a C1 vector
field, f : Rn

+ → Rn, that generates a global flow, φ : R × Rn
+ → Rn

+, define
φt(x) = φ(t, x). A set K ⊂ Rn

+ is called f invariant if φt(K) = K for all t ∈ R.
An f invariant set K is called an attractor for f provided there exists an open
neighborhood U of K such that φt(U) ⊂ intU for sufficiently large t and K =⋂

t>0 φt(U). An invariant set K is isolated if there exists a neighborhood U of K
such that K is the maximal invariant set in U . In this case, U is called an isolating
neighborhood of K. Given x ∈ Rn

+, the omega limit set of x, ω(f, x), is the collection
of points y ∈ Rn

+ such that there exists an increasing sequence tk ↑ ∞ satisfying
φtk

(x) → y as k → ∞. Given x ∈ Rn
+, the alpha limit set of x, α(f, x), is the

collection of points y ∈ Rn
+ such that there exists a decreasing sequence tk ↓ −∞

satisfying φtk
(x) → y as k → ∞. The stable set and unstable set of an isolated

invariant set K are defined by

W s(f, K) = {x ∈ Rn
+ : ω(f, x) 6= ∅ and ω(f, x) ⊆ K}

and

Wu(f, K) = {x ∈ Rn
+ : α(f, x) 6= ∅ and α(f, x) ⊆ K}.

A vector field f : Rn
+ → Rn is dissipative if there exists a compact attractor

K ⊂ Rn
+ such that ω(f, x) ⊆ K for all x ∈ Rn

+. A point x ∈ K is called chain
recurrent for f restricted to K provided that for every ε > 0 and T > 0 there exist
points in K, x = x0, x1, . . . , xk = x, and real numbers, t0, . . . , tk−1, greater than T
such that d(φ(ti, xi), xi+1) < ε for all 0 ≤ i ≤ k − 1. Let R(f, K) denote the set of
chain recurrent points for f restricted to K. Let R(f) refer to the chain recurrent
set of f on its entire domain.

At this point, we are ready to introduce the definitions necessary to state our
main result.

Definition 1. Let Pn be the set of C1 dissipative vector fields f : Rn
+ → Rn such

that fi(x) = 0 whenever xi = 0.

We view Pn as the space of all possible descriptions of n interacting species and
endow it with the C1 Whitney topology (uniform convergence on compact sets).

Given f ∈ Pn, f is called permanent [11, 27] or, equivalently, uniformly persis-
tent [3, 4] provided that there exists a compact attractor K ⊂ intRn

+ such that
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Figure 1. The phase diagrams and corresponding community
transition graphs for the Lotka-Volterra equations of two compet-
ing species

ω(f, x) ⊆ K for all x ∈ intRn
+. Given S ⊆ {1, . . . , n}, let fS denote f restricted to

RS
+.

Definition 2. S ⊆ {1, . . . , n} is called a community for (1) if fS is uniformly
persistent. Equivalently, there exists a compact attractor K ⊂ intRS

+ such that
ω(f, x) ⊆ K for all x ∈ intRS

+.

Definition 3. Assume S and T are distinct communities for (1) and that I ⊆
{1, . . . , n}\S. There is a transition from S to T due to an invasion by I if ω(f, x) ⊆
R(fT ) ∩ intRT

+ for all x ∈ intRS∪I
+ . When this occurs, we write S

I→ T .

Definition 4. Given f ∈ Pn, the community transition graph of f , Γ(f), is a
directed graph with labeled edges: the vertices represent communities of f and the
edges between S and T represent all possible transitions from S to T .

Definitions 2, 3 and 4 essentially are rigorous restatements of definitions found in
the ecological literature [18, 19]. The main difference is that our definitions account
for multiple species invasions (i.e., |I| > 1) while the ecological literature thus far
only considers single species invasions. In Figure 1, we illustrate these definitions
with the Lotka-Volterra equations for two competing species.

The community transition graph defines an equivalence relation on Pn.

Definition 5. Assume f, g ∈ Pn. f is successionally equivalent to g provided there
exists a permutation σ of the coordinates of Rn

+ such that Γ(σ ◦ f ◦ σ−1) = Γ(g).

Using this equivalence relationship, we make the following

Definition 6. f ∈ Pn is successionally stable if it is contained in an open set of
successionally equivalent vector fields.
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Our main result is

Theorem 1. Let f ∈ P3 be such that the origin is a connected component of
R(f, ∂R3

+). Then every neighborhood N ⊆ P3 of f contains successionally sta-
ble vector fields.

Remark 1. The condition that the origin is a connected component of R(f, ∂R3
+)

is met by most ecological models. For instance, if f ∈ P3 is a vector field such that
f has at most one equilibrium on the interior of any 1-dimensional face and such
that the equilibria on the 1-skeleton are hyperbolic, then this condition is met.

3. Community robustness

The approximation of a vector field by a successionally stable vector field depends
on a simpler problem. This problem involves the notion of community robustness
of a vector field which, roughly stated, means that no communities are created or
destroyed by small perturbations of the vector field.

Definition 7. f ∈ Pn has robust communities provided that there is a neighbor-
hood N ⊆ Pn of f such that for every S ⊆ {1, . . . , n} either S is a community for
all h ∈ N or S is not a community for all h ∈ N .

To approximate a vector field by a successional stable vector field, we need to
address the following question:

Question 1. Given f ∈ Pn, can we approximate f by a vector field with robust
communities?

Thus far, this question has received little study (see [14] for discussion). An
affirmative answer to this question for n ≤ 2 is easily proven. In this section we
answer the question for “reasonable” vector fields when n = 3.

Theorem 2. Let f be a vector field in P3 such that the origin is a connected
component of R(f, ∂R3

+). Then every neighborhood N ⊆ P3 of f contains vector
fields with robust communities.

To prove this theorem we use Garay’s characterization of uniform persistence in
terms of the stable sets of the connected components of R(f, ∂R3

+) [8].

Theorem 3 (Garay 1989). Let f ∈ Pn. Suppose every connected component C
of R(f, ∂Rn

+) is an isolated invariant set and W s(f, C) ∩ intRn
+ = ∅. Then f is

uniformly persistent.

For our purposes, it is sufficient to understand the chain recurrent set of the
boundary flow generically. This is facilitated by the following definition.

Definition 8. A vector field f ∈ Pn is called Kupka-Smale if
1. Each element of the set of periodic orbits and equilibrium points, Per(f), is

hyperbolic.
2. For any S ⊆ {1, . . . , n} and τ1, τ2 ∈ Per(fS), all points of non-transversal

intersection of W s(fS , τ1) and Wu(fS , τ2) lie in ∂RS
+.

Definition 8 differs from the traditional definition of Kupka-Smale vector fields
for manifolds without boundary in that it permits non-transversal intersections of
stable and unstable manifolds. This difference is necessary as these non-transversal
intersections can not be perturbed away within Pn. For compact manifolds without
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Figure 2. Three types of robust heteroclinic cycles in ∂R3
+: (a)

attracting, (b) repelling and (c) semi-stable.

boundary, Kupka [17] and Smale [28] independently proved that the set of Kupka-
Smale vector fields is residual (i.e. a countable intersection of open and dense sets).
Peixoto [23] extended this result to non-compact manifolds without boundary. Since
for dissipative vector fields on Rn

+ the non-compact proof applies to the interior
of any face of Rn

+, it follows that Kupka-Smale vector fields as defined above are
residual in Pn. Therefore, given f ∈ Pn we can always approximate it by a Kupka-
Smale vector field that lies in Pn.

To characterize the connected components of the chain recurrent set for a Kupka-
Smale vector field, recall that a set of k distinct equilibria {p1, . . . , pk} defines a
heteroclinic cycle γ if k ≥ 2 and W u(pi)∩W s(pi+1) 6= ∅ for all 1 ≤ i ≤ k where we
identify pk+1 with p1. When this occurs, we write γ =

⋃k
i=1 Wu(pi) ∩W s(pi+1).

Proposition 4. Let f ∈ P3 be Kupka-Smale. If C is a connected component of
R(f, ∂R3

+), then one of the following statements apply:
1. C ∈ Per(f).
2. C is a heteroclinic cycle consisting of k distinct equilibria p1 ∈ intR{σ(1)}

+ , . . . ,

pk ∈ intR{σ(k)} where σ(i) ∈ {1, 2, 3}. Furthermore, this heteroclinic cycle
is either attracting (i.e ∂fσ(i)

∂xσ(i)
(pi) < 0 for all 1 ≤ i ≤ k) or repelling (i.e.

∂fσ(i)

∂xσ(i)
(pi) > 0 for all 1 ≤ i ≤ k) for f restricted to ∂R3

+.
3. C includes a heteroclinic orbit γ that passes through the origin.

Several of the possibilities are illustrated in Figure 2. Notice that when the chain
component C contains a heteroclinic cycle that passes through the origin, then this
heteroclinic cycle can be stable, unstable or semi-stable for f restricted to ∂R3

+.

Proof. Let f∂ denote f restricted to ∂R3
+. Since f is Kupka- Smale and ∂R3

+ is two
dimensional, a standard argument shows that Per(f∂) is finite (see, for example,
Chapter 4.2 in [22]). Let A be the set of equilibria in ∂R3

+ that are saddles for
f∂. The set A\{0} consists of three types of equilibria: those in the interior of
a 1-face R{i}

+ that are stable for f{i}, those in the interior of a 1-face R{i}
+ that

are unstable for f{i}, and those that lie in the interior of a 2-face. We call these
sets As, Au and Ao, respectively. Let B = Per(f∂)\A. Transversality of the stable
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and unstable manifolds in the interior of the 2-faces implies that no 2-face contains
a heteroclinic cycle. This observation and the Poincaré-Bendixson theorem imply
that ∂R3

+ = W s(f∂ , A) ∪W s(f∂ , B).
Let C be a connected component of R(f∂). Suppose C /∈ Per(f). The Poincaré-

Bendixson theorem implies that C contains a heteroclinic cycle γ ⊆ W s(f∂ , A).
Suppose γ is defined by k distinct equilibria {p1, . . . , pk} ⊂ A\{0}. Transversal-
ity of the stable and unstable manifolds in the interior of the 2-faces implies that
{p1, . . . , pk} ⊆ As ∪Au. Suppose p1 ∈ As. Since f is Kupka-Smale and γ is a het-
eroclinic orbit, Wu(f∂ , p1) and W s(f∂ , p2) intersect non-trivially and transversely
in the interior of a 2-face. As Wu(f, As) ∩ ∂R3

+ and W s(f, Au) ∩ ∂R3
+ cannot

intersect non-trivially and transversely in the interior of a 2-face, p2 must lie in As.
Induction implies that {p1, . . . , pk} ⊆ As. In this case, γ is an attractor for f∂ and
γ = C. On the other hand, suppose that p1 ∈ Au. As W s(f∂ , p1) and Wu(f∂ , pk)
intersect non-trivially and transversely in the interior of a 2-face, pk must lie in
Au. Induction implies {p1, . . . , pk} ⊆ Au. In this case, γ is a repellor for f∂ and
γ = C.

While the stable manifold theorem provides a local description of the stable sets
of hyperbolic periodic orbits and equilibria, we need some additional definitions to
understand the stable sets of heteroclinic cycles. Assume γ ⊂ ∂R3

+ is a heteroclinic
cycle for a Kupka-Smale vector field and is determined by the equilibria p1 ∈
intR{σ(1)}, . . . , pk ∈ intR{σ(k)}. The geometry of this heteroclinic cycle allows us
to divide the eigenvalues of the linearized flow at an equilibrium pi into three classes.
There are the radial eigenvalues ∂fσ(i)

∂xσ(i)
(pi) that determine whether the heteroclinic

cycle is attracting or repelling for the flow restricted to ∂R3
+. Along the heteroclinic

cycle, there is the expanding eigenvalue ei (i.e, the largest eigenvalue of Df(pi)
corresponding to an eigenvector v /∈ R{σ(i)}) and the contracting eigenvalue ci (i.e.,
the largest eigenvalue of −Df(pi) corresponding to an eigenvector v /∈ R{σ(i)}).
With these definitions in place, we get the following lemma which is based upon
results of [2, 4, 10, 16].

Lemma 5. Let f ∈ P3 be a Kupka-Smale vector field. Suppose that f restricted to
∂R3

+ has an attracting or repelling heteroclinic cycle γ determined by the equilibria,
p1 ∈ intR{σ(1)}

+ , . . . , pk ∈ intR{σ(k)}
+ .

1. If
∏k

i=1 ei >
∏k

i=1 ci, then γ is an isolated invariant set and W s(f, γ) ⊆ ∂R3
+.

2. If
∏k

i=1 ci >
∏k

i=1 ei, then γ is an isolated invariant set and W s(f, γ) ∩
intR3

+ 6= ∅.
Remark 2. It is exactly here that a proof for density of successional stability is
technically obstructed. In particular, we know of no algebraic criterion that provides
information about the stable sets for heteroclinic cycles of the type illustrated in
Figure 2c.

Proof. Let f∂ denote f restricted to ∂R3
+. When γ is an attractor for f∂ , the

assertions of this lemma are well-known and have been proven using either average
Lyapunov functions [10] or Poincaré sections [2, 16]. In fact these authors prove
that if

∏k
i=1 ci >

∏k
i=1 ei, then γ is an attractor for f .

To deal with the case when γ is a repellor for f∂ , it suffices to investigate the
behavior of the flow generated by −f . For −f∂, γ is attracting. Furthermore if
the ci (ei) are the contracting (expanding) eigenvalues for f , then the ei (ci) are
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the contracting (expanding) eigenvalues for −f . Suppose
∏k

i=1 ei >
∏k

i=1 ci; then
γ is an attractor for −f . Hence W s(f, γ) = Wu(−f, γ) = γ. Now suppose that∏k

i=1 ci >
∏k

i=1 ei; then W s(−f, γ) ⊆ ∂R3
+. We want to show that W s(f, γ) ∩

intR3
+ = Wu(−f, γ) ∩ intR3

+ 6= ∅. This can be accomplished by modifying an
argument of Butler and Waltman [4, Lemma 2.1] as follows. Since γ is an isolated
invariant set for −f , let V ⊂ R3

+ be a compact isolating neighborhood such that
U = V ∩ ∂R3

+ is contained in W s(−f, γ). Let φ(t, x) be the flow generated by
−f . Define φ([0, t), q) = {φ(s, q) : 0 ≤ s < t}. Since W s(−f, U) ⊆ ∂R3

+ and
V is an isolating neighborhood, for each q ∈ V \U , there exists t(q) ≥ 0 such
that φ(t(q), q) ∈ ∂V \U and φ([0, t(q)), q) ⊂ V . Consider a sequence of points
qm ∈ V \U such that qm converge to a point in γ. Let mk be a subsequence such
that φ(t(qmk

), qmk
) converges to a point y ∈ ∂V . Since qmk

converges to a point in
γ, it follows that t(qmk

) → ∞. Compactness of V and continuity of φ imply that
φ((−∞, 0], y) ⊆ V . Since U ⊆ W s(−f, γ), y must lie in V \U . As V is an isolating
neighborhood, we get α(−f, y) ⊆ γ. Hence Wu(−f, γ) ∩ intR3

+ 6= ∅.

Now, we are ready to prove Theorem 2. Let f ∈ P3 be such that 0 is a connected
component of R(f, ∂R3

+). Let N ⊆ P3 be a neighborhood of f . Conley [6] proved
there is a continuous Lyapunov function V : ∂R3

+ → R+ such that V is strictly
decreasing off of R(f, ∂R3

+). Using the smoothing techniques of Wilson [30] (see,
e.g., [21, Proposition 6]), V can be made to be C∞ and to satisfy DV (x)g(x) < 0
for all x ∈ ∂R3

+\R(f, ∂R3
+) and V −1([0, c]) is compact for all c ≥ 0.

Remark 3. The work of Conley applies to flows on compact manifolds. To com-
pactify the flow of g ∈ Pn, let β : Rn

+ → (0, 1] be a smooth function that approaches
0 sufficiently fast as |x| → ∞ (e.g., β(x) = exp(−|x|2 − |f(x)|2)). The flow of βg
extends to a flow on the one point compactification of Rn

+. The work of Conley ap-
plies to this flow. Since βg is just a reparameterization of g, any Lyapunov function
for βg is also a Lyapunov function for g.

Since 0 is a connected component of R(f, ∂R3
+), there exists an open neighbor-

hood U ⊂ ∂R3
+ of 0 such that DV (x)f(x) < 0 for all x ∈ U\{0}. Our choice of

U implies there exists a neighborhood N0 ⊆ N of f such that U ∩ R(g, ∂R3
+) is

compact for all g ∈ N0. Since 0 is the only equilibrium for f in U , fi(x) is non-
zero for x ∈ ⋃

i intR{i}
+ ∩ U . Therefore we can choose a Kupka-Smale vector field

g ∈ N0 such that Per(g)∩U ∩ (
⋃

i R
{i}
+ ) = {0} and such that any heteroclinic orbit

γ ⊂ ∂R3
+\{0} for g satisfies one of the eigenvalue inequalities of Lemma 5. Since

U ∩R(f, ∂R3
+) is compact and Per(g)∩U ∩ (

⋃
i R

{i}
+ ) = {0}, Proposition 4 implies

that 0 is connected component of R(g, ∂R3
+).

Let L : ∂R3
+ → R+ be a smooth Lyapunov function for g (i.e. DL(x)g(x) < 0 for

all x ∈ ∂R3
+\R(g, ∂R3

+)). Let a1, . . . , am be distinct non-negative reals such that
the connected components of R(g, ∂R3

+) are given by Ci(g) = L−1(ai). Choose
δ > 0 sufficiently small such that the following fact holds:

(F) The sets Ui = L−1((ai − δ, ai + δ)) are disjoint.

Since DL(x)g(x) < 0 for all x ∈ ∂R3
+\R(g, ∂R3

+), there exists a neighborhood
N1 ⊆ N0 of g such that every h ∈ N1 satisfies the following property:

(P1) DL(x)h(x) < 0 for all x ∈ ∂R3
+\

⋃
i Ui.
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Hyperbolicity of the elements of Per(g) implies that there exists a neighborhood
N2 ⊆ N1 such that each h ∈ N2 satisfies (see, e.g., Proposition 3.1 in Chapter 2
of [22])

(P2) h restricted to ∂R3
+ is Kupka-Smale and |Per(h) ∩ Ui ∩ intRS

+| =
|Per(g) ∩ Ui ∩ intRS

+| for all S ⊂ {1, 2, 3}.
For h ∈ N2 define Ci(h) = R(h, ∂R3

+) ∩ Ui. (F) and (P1) imply that the Ci(h)
are compact and disjoint. The stable manifold theorem and the long tubular flow
theorem (e.g. Proposition 1.1. in Chapter 3 of [22]) imply that there exists a
neighborhood N3 ⊆ N2 of g such that every h ∈ N3 satisfies

(P3) If Ci(g) is an attracting (repelling) heteroclinic cycle for g restricted to
∂R3

+ and is determined by the points p1 ∈ intR{σ(1)}
+ , . . . , pk ∈ intR{σ(k)}

+ ,
then Ci(h) is an attracting (repelling) heteroclinic cycle for h restricted to
∂R3

+ and is determined by some points q1 ∈ intR{σ(1)}
+ , . . . , qk ∈ intR{σ(k)}

+ .
(P3) is commonly referred to the “robustness” of the heteroclinic cycle Ci(g) (see,
e.g., [15] for a review). (P1)–(P3) imply that for any h ∈ N3, Ci(h) is a connected
component of R(h, ∂R3

+) and is of the same “type” as Ci(g) (e.g., if Ci(h) is a
periodic orbit, then Ci(g) is a periodic orbit). Lemma 5 and the stable manifold
theorem imply there exists a neighborhood N4 ⊆ N3 of g such that every h ∈ N4

satisfies
(P4) Given S ⊆ {1, 2, 3}, W s(h, Ci(h))∩intRS

+ 6= ∅ if and only if W s(g, Ci(g))
∩ intRS

+ 6= ∅.
(P4) and Theorem 3 imply that for any S ⊆ {1, 2, 3} and h ∈ N4, hS is uniformly
persistent if and only if gS is uniformly persistent. Hence, we have shown that g
has robust communities.

4. Proof of Theorem 1

Let f ∈ P3 be a vector field such that 0 a connected component of R(f, ∂R3
+).

Let N ⊆ P3 be a neighborhood of f . In the proof of Theorem 2 we have shown
that there exists a g ∈ N such that g is Kupka-Smale, has robust communities, 0
is a connected component of R(g, ∂R3

+) and any heteroclinic cycle γ ⊂ ∂R3
+ for g

satisfies one of the eigenvalue inequalities of Lemma 5. In addition, Pugh’s general
density theorem [25] implies that we can choose g such that ω(g, x) ⊂ intR3

+ for
some x ∈ intR3

+ if and only if Per(g) ∩ intR3
+ 6= ∅. Let L : ∂R3

+ → R+ be a
smooth Lyapunov function such that DL(x)g(x) < 0 for all x ∈ ∂R3\R(g, ∂R3

+).
Choose δ > 0 such that (F) holds . Let N4 ⊆ N be a neighborhood of g such that
every h ∈ N4 satisfies (P1)–(P4). Since the elements of Per(g) are hyperbolic, we
can choose a neighborhood N5 ⊆ N4 of g such that every h ∈ N5 satisfies

(P5) ω(h, x) ⊂ intR3
+ for some x ∈ intR3

+ if and only if Per(h)∩ intR3
+ 6= ∅.

To verify that f is successionally stable, it suffices to check two things. First, we
need to verify that S ⊆ {1, 2, 3} is a community for g if and only if S is community
for every h ∈ N5. This follows immediately from Theorem 2. Second, given two
distinct communities, S and T , for g (hence also communities for all h ∈ N5) and
I ⊆ {1, 2, 3}\S, we need to verify that S

I→ T for g if and only if S
I→ T for every

h in a neighborhood of g. We break down this verification into three cases. First,
suppose that |S ∪ I| ≤ 2. Then (P1)–(P4) imply that S

I→ T for g if and only if
S

I→ T for every h ∈ N4. Second, suppose that S ∪ I = {1, 2, 3} and T = {1, 2, 3}.
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In this case, S
I→ T occurs for h if and only if h is uniformly persistent. Since g

is uniformly persistent if and only if every h ∈ N5 is uniformly persistent, we have
verified this case. Finally, suppose that S ∪ I = {1, 2, 3} and |T | ≤ 2. In this case,
S

I→ T occurs for h ∈ N5 if and only if the following two conditions hold:

(C1) W s(Ci(h)) ∩ intR3
+ = ∅ for all connected components Ci(h) of

R(h, ∂R3
+\ intRT

+).
(C2) ω(h, x) ⊂ ∂R3

+ for all x ∈ intR3.

(P4) implies that (C1) is satisfied for h ∈ N5 if and only if (C1) is satisfied for g.
(P5) implies that if (C2) is not satisfied for g, then (C2) is not satisfied for any
h ∈ N5. Alternatively suppose that (C2) is satisfied for g. Then L : ∂R3

+ → R+

extends to a Lyapunov function L̃ : R3
+ → R+ such that DL̃(x)g(x) < 0 for all

x ∈ intR3. (P1)–(P4), Lemma 5 and the stable manifold theorem imply that there
exist a compact neighborhood V ⊂ R3

+ of R(g, ∂R3
+) and a neighborhood N6 ⊆ N5

of g such that every h ∈ N6 satisfies

(P6) V is an isolating neighborhood for R(h, ∂R3
+).

Since DL̃(x)g(x) < 0 for all x ∈ R3
+\R(g, ∂R3

+), we can choose a neighborhood
N7 ⊆ N6 such that every h ∈ N7 satisfies

(P7) DL̃(x)h(x) < 0 for x ∈ R3
+\V .

(P6) and (P7) imply that if (C2) holds for g, then (C2) holds for all h ∈ N7. Hence
S

I→ T for h ∈ N7 if and only if S
I→ T for g.
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