
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 127, Number 4, April 1999, Pages 1079–1087
S 0002-9939(99)05195-3

A COUNTEREXAMPLE TO THE FREDHOLM ALTERNATIVE
FOR THE p-LAPLACIAN
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Abstract. The following nonhomogeneous Dirichlet boundary value problem
for the one-dimensional p-Laplacian with 1 < p < ∞ is considered:

−(|u′|p−2u′)′ − λ|u|p−2u = f(x) for 0 < x < T ; u(0) = u(T ) = 0,

(*)

where f ≡ 1 + h with h ∈ L∞(0, T ) small enough. Solvability properties of
Problem (*) with respect to the spectral parameter λ ∈ R are investigated. We

focus our attention on some fundamental differences between the cases p 6= 2
and p = 2. For p 6= 2 we give a counterexample to the classical Fredholm
alternative (which is valid for the linear case p = 2).

1. Introduction and main results

We consider the following elliptic boundary value problem:

−(ψp(u′))′ − λψp(u) = f(x) for 0 < x < T ; u(0) = u(T ) = 0.(1.1)

Here, ψp(v)
def= |v|p−2v for p ∈ (1,∞) and v ∈ R. Hence, ∆pu = (ψp(u′))′ is the one-

dimensional p-Laplacian. We assume that 0 < T <∞, f ∈ L∞(0, T ), and λ ∈ R is
a spectral parameter. Finally, under a solution of Problem (1.1) we understand a
(real-valued) function u ∈ C1[0, T ] such that u(0) = u(T ) = 0, the function ψp(u′)
is absolutely continuous, and Eq. (1.1) holds a.e. in (0, T ).

For the case p = 2, Problem (1.1) reduces to the well-known Dirichlet problem
for the Laplace operator. The solvability of this linear boundary value problem is
fully described by the classical Fredholm alternative. In the past, several attempts
have been made to extend the Fredholm alternative to problems involving nonlinear
operators. It has been shown by various authors (see e.g. del Pino and Manásevich
[11]) that the set of all eigenvalues of the homogeneous Problem (1.1) (that is, for
f ≡ 0 in (0, T )) forms a sequence

λk = (kπp/T )p for k = 1, 2, . . . ,(1.2)
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where

πp = 2(p− 1)1/p

∫ 1

0

(1− sp)−1/p ds.(1.3)

The case when λ 6∈ {λk : k = 1, 2, . . . } is extensively treated in Fuč́ık et al. [8].
Then, for any f ∈ L∞(0, T ), the existence of at least one solution to Problem (1.1)
follows from a general result in [8, Chapt. II, Theorem 3.2]. Unlike in the linear
case p = 2, for p 6= 2 the uniqueness holds only if λ ≤ 0. If 0 < λ < λ1, then
there exists some f ∈ L∞(0, T ) for which Problem (1.1) has at least two distinct
solutions; cf. Fleckinger et al. [7, Example 2] for 1 < p < 2 and del Pino, Elgueta
and Manásevich [10, Eq. (5.26), p. 12] for 2 < p <∞. However, if 0 < λ < λ1 and
0 ≤ f ∈ L∞(0, T ), then uniqueness is preserved for all p ∈ (1,∞); see Dı́az and Saa
[6] or Fleckinger et al. [7, Theorem 1]. Making the special choice f ≡ 1 in (0, T ),
del Pino and Manásevich [11] have demonstrated nonuniqueness for certain values
of the parameter λ > λ1, that is, for all λ ∈ ⋃∞

k=1 Jk where Jk is an open bounded
interval with one of the end-points equal to λ2k. The length of Jk tends to infinity
as k → ∞, and some of the intervals overlap for k large enough. The number of
solutions increases to infinity as λ → ∞. Unfortunately, from their work it is not
clear if, for p 6= 2, the lack of uniqueness persists for all λ ≥ λ1.

The case when λ = λk, for some k ∈ N, is much more delicate. In the linear case
p = 2 the classical Fredholm alternative provides a very transparent necessary and
sufficient condition for the solvability of Problem (1.1), namely,∫ T

0

f(x) sin (x/T ) dx = 0.(1.4)

It is shown in Binding, Drábek and Huang [2, Theorem D] that for p 6= 2 the
condition ∫ T

0

f(x) sinp (x/T ) dx = 0(1.5)

is not necessary for the solvability of Problem (1.1) with λ = λ1, where sinp(x/T )
denotes the eigenfunction associated with the first eigenvalue λ1. This result easily
extends to every eigenvalue λ = λk, k ∈ N, with the corresponding eigenfunction
sinp(kx/T ) in place of sinp(x/T ) in Eq. (1.5). The first attempt to show that the
set of all functions f on the right-hand side of Problem (1.1), for which this problem
has at least one solution, need not be a manifold was made in Binding, Drábek and
Huang [3]. More precisely, considering Eq. (1.1) subject to the boundary conditions
u(0) = 0 and u(T ) = u′(T ), the authors of [3] employed the method of linearization
and the general implicit function theorem (see e.g. Deimling [5, Theorem 15.1]) to
show the following result: given any λ ≥ 0, there exists an open set M ⊂ L2(0, T ),
0 6∈M , such that for any f ∈M the problem{

−(ψp(u′))′ − λψp(u) = f(x) for 0 < x < T ;
u(0) = 0, u(T ) = u′(T ),

(1.6)

has at least one solution. Obviously, this result holds for all eigenvalues of the cor-
responding homogeneous problem; the first one is equal to zero. Unfortunately, the
same approach does not work for the homogeneous Dirichlet boundary conditions
which appear to be more complicated.

The purpose of the present paper is twofold. First, when p 6= 2, we obtain that
the nonuniqueness of the solution to Problem (1.1) persists for all λ > 0 regardless
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if λ is an eigenvalue (the resonant case) or not (the nonresonant case). Second, we
show that for every λ = λ2k with k ≥ 1, and for every λ = λ2k+1 with k > k(p) > 0
(k(p) → ∞ as p → 2), the resonant Problem (1.1) has at least one solution for
f ≡ 1+h, where h belongs to an open neighborhood of zero in L∞(0, T ). We prove
the following two theorems.

Theorem 1.1 (Nonuniqueness). Let 1 < p < ∞, p 6= 2, and λ > 0. Then there
exists f ∈ C([0, T ]) such that Problem (1.1) has at least two distinct solutions.

Theorem 1.2 (Resonance). Let 1 < p <∞, p 6= 2, and set

k(p) =

{
p−1
2−p if 1 < p < 2;
1

p−2 if 2 ≤ p <∞.
(1.7)

Let either λ = λ2k with k ≥ 1, or else λ = λ2k+1 with k > k(p), where k is an
integer. Then there exists a number δ, 0 < δ < 1, such that Problem (1.1) has at
least one solution for any f(x) = 1 + h(x) with ‖h‖L∞(0,T ) < δ.

Remark 1.3. Notice that 0 < k(p) < 1 whenever 1 < p < 3/2 or 3 < p < ∞, in
which case the conlusion of Theorem 1.2 holds true for every λ = λ2k+1 with k ≥ 1.
For 2 6= p ∈ [3/2, 3] we have 1 ≤ k(p) <∞ with k(p) →∞ as p→ 2.

We point out that both these results, Theorems 1.1 and 1.2, provide counterex-
amples to the classical Fredholm alternative and that there are still many open
questions left. It is not clear how the number of solutions in the nonresonant case
relates to the number of eigenvalues lying below λ. It is also not clear if a conclusion
similar to that in our Theorem 1.2 holds true for all eigenvalues of the homogeneous
problem (1.1). Also the problem of sufficiency of the condition∫ T

0

f(x) sinp (kx/T ) dx = 0(1.8)

remains open.
In this article we use exclusively common techniques from the theory of ordinary

differential equations. The one-dimensional problem is easier to treat than the
corresponding multi-dimensional one for the following two reasons. First, the set
of all eigenvalues of the p-Laplacian is fully described only in dimension one, and
second, it is less technical to provide counterexamples. Besides, one can hardly
expect “better” behavior of the boundary value problem in the case of a partial
differential equation than in the case of an ordinary differential equation.

This article is organized as follows. In Section 2 we establish some standard
properties of the initial value problem associated with Eq. (1.1). We concentrate
on the existence, uniqueness, and continuous dependence of the solution upon the
parameter λ, the function f , and the initial condition. In Section 3 we give the
proofs of Theorems 1.1 and 1.2.

2. The initial value problem

Let us consider the initial value problem corresponding to Eq. (1.1),

(ψp(u′))′ = −λψp(u)− f(x) for x ∈ J ; u(x0) = u0, u
′(x0) = u′0.

(2.1)

Of course, J denotes a nondegenerate compact interval of the form

J = {x ∈ [0, T ] : |x− x0| ≤ η}
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for some x0 ∈ [0, T ] and η > 0 small enough depending upon the initial conditions
u0 and u′0. We investigate the existence, uniqueness, and continuous dependence
of the (local) solution u : J → R to Problem (2.1) upon the parameter λ, the
function f , and the initial conditions u0 and u′0. We write Λ ≡ (λ, f, u0, u

′
0) in

R× L∞(0, T )× R2 and u(x) ≡ u(x; Λ) for x ∈ J to stress the dependence of u(x)
upon all the data listed. Under a solution of Problem (2.1) in J we understand
a (real-valued) function u ∈ C1(J ) such that u(x0) = u0 and u′(x0) = u′0, the
function ψp(u′) is absolutely continuous, and Eq. (2.1) holds a.e. in J .

It is well-known that existence can be proved by standard arguments using Schau-
der’s fixed point theorem. We state the existence result rigorously proved in Reichel
and Walter [13, Theorem 1, p. 49].

Proposition 2.1 ([13]). Let 1 < p < ∞, λ ∈ R, f ∈ L∞(0, T ), x0 ∈ [0, T ], and
u0, u

′
0 ∈ R. Then the initial value problem (2.1) has a solution u in an interval J ,

for some number η > 0 small enough. Moreover, if B is any (nonempty) bounded
set in the Banach space R × L∞(0, T ) × R2, then the number η ≡ η(B) > 0 may
be chosen independent from a particular choice of the data Λ = (λ, f, u0, u

′
0) ∈ B.

Finally, η may be chosen so small that all possible solutions u(•; Λ) of Problem (2.1)
in J for any data Λ ∈ B belong to the same compact set K in C1(J ).

Notice that K is a compact set in the Banach space C1(J ) if and only if both
sets K and K ′ = {dv/dx : v ∈ K} are compact in C0(J ).

It is also well-known that uniqueness implies continuous dependence of the so-
lution upon various data entering the initial value problem; cf. Coddington and
Levinson [4, Chapt. II, §4]. This is a consequence of compactness from the proof
of Proposition 2.1 in [13]. The continuous dependence can be stated as follows.

Proposition 2.2. Let 1 < p < ∞, λ ∈ R, f ∈ L∞(0, T ), x0 ∈ [0, T ], and
u0, u

′
0 ∈ R. Assume that the data Λ = (λ, f, u0, u

′
0) from R × L∞(0, T ) × R2

are given such that the solution u ≡ u(•; Λ) of Problem (2.1) in J is unique. Let
Λ(n) = (λ(n), f (n), u

(n)
0 , u′0

(n)), n = 1, 2, . . . , be any sequence converging to Λ in
R × L∞(0, T ) × R2, and let u(n) be any (possibly nonunique) solution of Prob-
lem (2.1) in J with the data Λ(n) in place of Λ, for each n = 1, 2, . . . . Then
u(n) → u in C1(J ) as n→∞, where η > 0 is small enough.

Proof. We omit the proof because it requires only few minor changes in Coddington
and Levinson [4, Chapt. II, Theorem 4.3].

The uniqueness of the solution is essentially proved in McKenna, Reichel and
Walter [9, Appendix], del Pino, Manásevich and Murúa [12, Appendix], and Reichel
and Walter [13, Theorem 4, p. 57].

Proposition 2.3 ([9], [13]). Let 1 < p < ∞, 0 < λ < ∞, 0 ≤ f ∈ L∞(0, T ),
x0 ∈ [0, T ], and u0, u

′
0 ∈ R. In addition, if u′0 = 0, u0 < 0 and p > 2, then assume

ess sup|x−x0|≤η0
f(x) < λψp(−u0) for some η0 > 0,(2.2)

and if u′0 = u0 = 0, then assume 1 < p ≤ 2 and also

ess inf|x−x0|≤η0 f(x) > 0 for some η0 > 0.(2.3)

Then the initial value problem (2.1) has a unique solution u in an interval J , for
some η small enough with 0 < η ≤ η0.
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Proof. We will distinguish among the following possibilities.
Case u′0 6= 0. This is Part (α)(ii) for 2 ≤ p <∞ and Part (α)(iii) for 1 < p ≤ 2

of Theorem 4 in [13, p. 57].
Case u′0 = 0 and u0 6= 0. Then Problem (2.1) is equivalent to the fixed point

equation

u(x) = u0 −
∫ x

x0

ψp′

(∫ s

x0

[λψp(u(t)) + f(t)] dt
)
ds for x ∈ J .

(2.4)

Notice that ψp′ is the inverse function of ψp(v) = |v|p−2v where p′ = p
p−1 denotes

the conjugate exponent to p. Since u0 6= 0, the function ψp is locally Lipschitz
continuous near u0.

For 1 < p ≤ 2 the function ψp′ is locally Lipschitz continuous. Therefore, the
desired uniqueness follows by a fixed point argument using the contraction mapping
principle; cf. Part (β)(iii) of Theorem 4 in [13, p. 57] or [9, Appendix, p. 1224] or
[12, Appendix, p. 92].

For 2 ≤ p < ∞ we need to distinguish between the cases u0 > 0 and u0 < 0.
If u0 > 0, then the uniqueness for Problem (2.1) follows from Part (β)(vi) of
Theorem 4 in [13, p. 57] which is actually proved in [9, Appendix, p. 1224]. If
u0 < 0, then we need to apply Part (β)(v) of Theorem 4 in [13, p. 57] which
requires the inequality (2.2). Again, the proofs employ fixed point arguments using
the contraction mapping principle.

Case u′0 = u0 = 0. Since also 1 < p ≤ 2 and the inequality (2.3) is satisfied, we
may apply Part (α)(iv) of Theorem 4 in [13, p. 57]. Proposition 2.3 is proved.

Remark 2.4. Strictly speaking, in all the references [9, Appendix, p. 1224], [12,
Appendix, p. 92] and [13, Theorem 4, p. 57] the right-hand side of Eq. (2.1), that is
g(x, u) ≡ −λψp(u) − f(x), is assumed to be continuous in both variables x and u.
Nevertheless, from the proofs of the existence and uniqueness results quoted above
it is clear that they hold true also for f ∈ L∞(0, T ). Only in the proof of Part
(β)(v) of Theorem 4 in [13, p. 57] few minor technical adjustments are needed.

For f ≡ 1 + h, Ineq. (2.3) holds, provided ‖h‖L∞(0,T ) < 1, whereas Ineq. (2.2)
is satisfied if ‖h‖L∞(0,T ) <

p−1
p+1 and u is a “global” solution of Problem (2.1) in

[0, T ] satisfying u(x1) = 0 for some x1 ∈ [0, T ], and (x1 − x0)u′(x) ≥ 0 for every x
between x0 and x1. More precisely, we have the following result:

Lemma 2.5. Let 1 < p < ∞, λ ∈ R, f ∈ L∞(0, T ), x0 ∈ [0, T ], and u0 < 0 =
u′0. Assume that u is a solution of Problem (2.1) in some nondegenerate compact
interval J containing x0, J ⊂ [0, T ], and there exists a point x1 ∈ J such that
u(x1) = 0 and (x1 − x0)u′(x) ≥ 0 for all x ∈ [a, b], where a = min{x0, x1} and
b = max{x0, x1}. Then we have

f(x)− 1 ≥ −δ (f(x)− 1 ≤ δ, respectively) for a.e. x ∈ J

=⇒ λψp(u0) + 1− (p− 1)
( |u′(x1)|p

u0
− 1

)
≤ pδ (≥ −pδ)(2.5)

for every number δ ≥ 0. In particular, if

ess sup
x∈J

|f(x)− 1| ≤ δ <
p− 1
p+ 1

,
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then

λψp(u0) + ess sup
x∈J

f(x) ≤ λψp(u0) + 1 + δ < 0.(2.6)

Proof. Following [13, p. 60] we first multiply Eq. (2.1) by u′ and then integrate the
product over the interval [a, b], thus arriving at

p− 1
p

|u′(x1)|p +
∫ x1

x0

f(t)u′(t) dt =
λ

p
|u0|p.(2.7)

From now on, let us assume f − 1 ≥ −δ a.e. in J ; the other case f − 1 ≤ δ a.e. in
J is analogous. Since u0 < 0 = u(x1) and u′ does not change sign in [a, b], we get

−
∫ x1

x0

(f(t)− 1)u′(t) dt = −
∫ b

a

(f(t)− 1)|u′(t)| dt ≤ δ

∫ b

a

|u′(t)| dt = −δu0.

We add this inequality to Eq. (2.7) to obtain

p− 1
p

(|u′(x1)|p − u0)− 1
p
(λ|u0|p−2u0 + 1)u0 ≤ −δu0.

Multiplying the last inequality by −p/u0 we arrive at (2.5). Finally, from (2.5) with
ess supJ |f − 1| ≤ δ < p−1

p+1 we deduce

λψp(u0) + 1 + δ ≤ (p− 1)
( |u′(x1)|p

u0
− 1

)
+ (p+ 1)δ ≤ −(p− 1) + (p+ 1)δ

which yields (2.6). Lemma 2.5 is proved.

3. Proofs of the theorems

3.1. Proof of Theorem 1.1. The case 0 < λ < λ1 is treated in Fleckinger et
al. [7, Example 2] for 1 < p < 2 and in del Pino, Elgueta and Manásevich [10,
Eq. (5.26), p. 12] for 2 < p < ∞. Therefore, from now on, we restrict ourselves to
the case 0 < λ < λk for k ≥ 2.

In this proof we first decompose the interval [0, T ] into k subintervals Jj =
[(j − 1)T/k, jT/k] for j = 1, 2, . . . , k. We then “paste together” f and u from the
available examples [7, Example 2] and [10, Eq. (5.26), p. 12]. This pasting together
is done by extending both functions f and u, rescaled to the subinterval [0, T/k], as
odd functions first to [T/k, 2T/k], then to [2T/k, 3T/k] and so on. Unfortunately,
in neither of these two examples is it guaranteed that f(0) = f(T ) = 0, and
consequently, only a piecewise continuous L∞-function f with f ∈ C(Jj) can thus
be obtained. However, the particular behavior of f and u near x = 0 or x = T
in [7, Example 2] and [10, Eq. (5.26), p. 12] plays no essential role as long as the
solution u of Problem (1.1) satisfies u ∈ C2([0, T ]), ψp(u′) ∈ C1([0, T ]), together
with u(0) = u(T ) = 0, u′(0) = −u′(T ) > 0 and u′′(0) = u′′(T ) = 0. It is easy
to modify the two examples in this way. Then also f(0) = f(T ) = 0. As we
wish to construct a continuous function f over [0, T ] for which Problem (1.1) has
at least two distinct solutions, it is necessary to carry out this modification of f
and u. Notice that for every k = 1, 2, . . . , λ1;k ≡ λk is the first eigenvalue of the
homogeneous problem{−(ψp(u′))′ − λψp(u) = 0 for jT

k < x < (j+1)T
k ;

u
(

jT
k

)
= u

(
(j+1)T

k

)
= 0,

(3.1)
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for each j = 0, 1, . . . , k − 1. Now fix λ such that 0 < λ < λk where k ≥ 2 is an
integer. We need to distinguish between the cases 1 < p < 2 and 2 < p <∞.

(i) Case p > 2. Given any ε, 0 < ε < T
2k , consider a function v0 ∈ C2 ([0, T/k])

such that

v0(x) =

{
0 for x ∈ [

0, ε
2

] ∪ [
T
k − ε

2 ,
T
k

]
;

1 for x ∈ [
ε, T

k − ε
]
,

and define h0
def= −(ψp(v′0))

′ − λψp(v0) in [0, T/k], cf. [10, Eq. (5.26), p. 12] or [7,
Example 1]. Obviously, we have h0 ∈ C ([0, T/k]) and h0(x) = 0 for x ∈ [

0, ε
2

]∪[
T
k − ε

2 ,
T
k

]
. We extend the functions v0 and h0 to the interval [T/k, 2T/k] by

v1(x) = −v0
(

2T
k − x

)
and h1(x) = −h0

(
2T
k − x

)
for T/k ≤ x ≤ 2T/k. It follows

that

v1(x) =

{
0 for x ∈ [

T
k ,

T
k + ε

2

] ∪ [
2T
k − ε

2 ,
2T
k

]
;

−1 for x ∈ [
T
k + ε, 2T

k − ε
]
,

and h1 = −(ψp(v′1))
′ − λψp(v1) in [T/k, 2T/k]. Let now j ∈ {0, 1, . . . , k − 1} and

jT/k ≤ x ≤ (j + 1)T/k. We define vj(x) = v0

(
x− jT

k

)
and hj(x) = h0

(
x− jT

k

)
if j is even, and vj(x) = v1

(
x− jT

k

)
and hj(x) = h1

(
x− jT

k

)
if j is odd. Finally,

setting u1(x)
def= vj(x) and f(x) def= hj(x) for jT/k ≤ x ≤ (j + 1)T/k and j =

0, 1, . . . , k − 1, we have constructed functions u1 ∈ C2([0, T ]) and f ∈ C([0, T ])
satisfying

−(ψp(u′1))
′ − λψp(u1) = f(x) for 0 < x < T ; u1(0) = u1(T ) = 0.

Furthermore, repeating the argument from [10, p. 12] or [7, Example 1] applied
to Eq. (3.1), we can construct a C1-function w0 in the interval [0, T/k] such that
w0 6≡ v0, −(ψp(w′0))

′ − λψp(w0) = h0, and w0(0) = w0 (T/k) = 0. More precisely,
the function w0 is a global energy minimizer for the nonhomogeneous Dirichlet
boundary value problem corresponding to Eq. (3.1). Analogously as we did for v0
and vj above, we extend w0 to a function wj defined in jT/k ≤ x ≤ (j + 1)T/k for

each j = 0, 1, . . . , k − 1. Thus, setting u2(x)
def= wj(x) for jT/k ≤ x ≤ (j + 1)T/k

and j = 0, 1, . . . , k − 1, we have constructed another function u2 ∈ C1([0, T ]),
u2 6≡ u1, satisfying ψp(u′2) ∈ C1([0, T ]) and

−(ψp(u′2))
′ − λψp(u2) = f(x) for 0 < x < T ; u2(0) = u2(T ) = 0.

We conclude that u1 and u2 are two distinct solutions of Problem (1.1).
(ii) Case 1 < p < 2. Here we modify an example from [7, Example 2]. Let m

be a number satisfying max
{

p
p−1 ,

1
2−p

}
≤ m <∞. Given any ε, 0 < ε < T

8k , take

a function v0 ∈ C2 ([0, T/k]) such that

v0(x) =
∣∣x− T

2k

∣∣m for
∣∣x− T

2k

∣∣ ≤ ε;

v0(x) =
(

T
k

)m −
∣∣∣x− jT

4k

∣∣∣m for
∣∣∣x− jT

4k

∣∣∣ ≤ ε, j = 1, 3;

v′0(x) 6= 0 for all x 6= jT
4k , j = 1, 2, 3,

together with v0(0) = v0 (T/k) = 0 and v′′0 (0) = v′′0 (T/k) = 0. Clearly, we have
ψp(v′0) ∈ C1 ([0, T/k]) with (ψp(v′0))

′(x) = 0 for x = 0 and x = T/k. Let us define
vj and hj for j = 0, 1, . . . , k − 1, and u1 and f as in Case (i) above. Then the
existence of another solution u2 to Problem (1.1), which is different from u1, now
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follows by the same arguments as in [7, Example 2]. Again, u2 is constructed from
a global energy minimizer w0 for the nonhomogeneous Dirichlet boundary value
problem corresponding to Eq. (3.1). Thus, we have shown nonuniqueness also for
1 < p < 2.

The proof of Theorem 1.1 is finished.

3.2. Proof of Theorem 1.2. Let us define the sequence {µk}∞k=1 by µk =
(kp′πp/T )p for k = 1, 2, . . . , where πp is defined by Eq. (1.3). The proof of our
assertion follows from the proof of Theorem 2.1 in del Pino and Manásevich [11]
combined with our Proposition 2.2. Indeed, let us investigate the following two
cases.

(i) Case λ = λ2k with some k ≥ 1. Then λ2k ∈ (λ2k−1, µk) if 1 < p < 2, and
λ2k ∈ (µk, λ2k+1) if p > 2. In either case, the Dirichlet problem

−(ψp(u′))′ − λ2kψp(u) = 1 for 0 < x < T ; u(0) = u(T ) = 0,(3.2)

has at least one solution, by Theorem 2.1(c) and (d) in [11]. But inspecting the
proof of Theorem 2.1(c,d) in [11, p. 137] and combining it with the continuous
dependence stated in our Proposition 2.2, we obtain immediately that the Dirichlet
problem {

−(ψp(u′))′ − λ2kψp(u) = 1 + h(x) for 0 < x < T ;
u(0) = u(T ) = 0,

(3.3)

has at least one solution for any h ∈ L∞(0, T ) such that ‖h‖L∞(0,T ) < δ with
δ > 0 small enough. The continuous dependence of the solution u to the initial
value problem corresponding to Eq. (3.3) is used essentially in the shooting method
employed in [11]. The details of the proof are the same as there.

(ii) Case λ = λ2k+1 with k > k(p) where k(p) is defined in (1.7). Then λ2k+1 ∈
(λ2k, µk) if 1 < p < 2, and λ2k+1 ∈ (µk+1, λ2(k+1)) if p > 2. In either case, the
Dirichlet problem

−(ψp(u′))′ − λ2k+1ψp(u) = 1 for 0 < x < T ; u(0) = u(T ) = 0,
(3.4)

has at least one solution, by Theorem 2.1(f) in [11]. Again, inspecting the proof
of Theorem 2.1(f) in [11, p. 137] and combining it with the continuous dependence
stated in our Proposition 2.2, we obtain analogously as before that the Dirichlet
problem {

−(ψp(u′))′ − λ2k+1ψp(u) = 1 + h(x) for 0 < x < T ;
u(0) = u(T ) = 0,

(3.5)

has at least one solution for any h ∈ L∞(0, T ) such that ‖h‖L∞(0,T ) < δ with δ > 0
small enough.

We have finished our proof of Theorem 1.2.

Remark 3.1. Notice that for δ > 0 small enough, the solutions of the nonau-
tonomous problems (3.3) and (3.5) have the same number of interior zeros in (0, T )
as the corresponding solutions of the autonomous problems (3.2) and (3.4), respec-
tively. Of course, the corresponding solution of (3.3) (or (3.5)) has to lie sufficiently
close to that of (3.2) (or (3.4), respectively) with respect to the C1([0, T ])-norm.
This is a direct consequence of the proof of Theorem 2.1(c,d) and (f) in [11] com-
bined with the continuous dependence from our Proposition 2.2. Hence, Eq. (3.3)
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has a solution with 2k − 2 zeros in (0, T ) if 1 < p < 2, and with 2k zeros in (0, T )
if p > 2. Similarly, Eq. (3.5) has a solution with 2k− 1 zeros in (0, T ) if 1 < p < 2,
and with 2k + 1 zeros in (0, T ) if p > 2.
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