THE MOD 2 HOMOLOGY OF BSO

CLAUDINA IZEPE RODRIGUES

(Communicated by Ralph Cohen)

Abstract

This note is about a set of generators to the mod 2 homology of

 BSO.
1. Introduction

It is well known that $H_{*}\left(B O ; \mathbb{Z}_{2}\right)$ is a polynomial ring, $\mathbb{Z}_{2}\left[x_{i} \mid i \geq 1\right]$, where $x_{i} \in H_{i}\left(B O ; \mathbb{Z}_{2}\right)$. The generators x_{i} may be chosen to come from the nonzero classes in $H_{i}\left(B O_{1} ; \mathbb{Z}_{2}\right)$ under the stabilization map, and in particular, $x_{i}=f_{*}\left[R P^{i}\right]$, where $f: R P^{i} \rightarrow B O$ classifies the usual line bundle over projective space.

The corresponding dual basis of $H^{*}\left(B O ; \mathbb{Z}_{2}\right)$ is usually denoted by s_{w}, where $w=$ $\left(i_{1}, \ldots, i_{r}\right)$. If the splitting principle is used to write universal Stiefel-Whitney classes w_{i} formally as the i-th elementary symmetric function in 1-dimensional classes t_{1}, t_{2}, \ldots, then $s_{w}=\sum t_{1}^{i_{1}} t_{2}^{i_{2}} \ldots t_{r}^{i_{r}}$ is the smallest symmetric function containing the given monomial. In particular, if $y=\sum a_{j_{1} \ldots j_{s}} x_{1}^{j_{1}} \ldots x_{s}^{j_{s}} \in H_{*}\left(B O ; \mathbb{Z}_{2}\right)$, the coefficients are $a_{j_{1} \ldots j_{s}}=s_{\left(j_{1}, \ldots, j_{s}\right)}[y]$.
S. Papastavridis [1] has shown that $H_{*}\left(B S O ; \mathbb{Z}_{2}\right)$ is also a polynomial ring, $\mathbb{Z}_{2}\left[y_{i} \mid i>1\right]$, which is described as a subring of $H_{*}\left(B O ; \mathbb{Z}_{2}\right)$ by choosing classes y_{i} as polynomials in the x_{j}. (Note: It is well known that $H^{*}\left(B S O ; \mathbb{Z}_{2}\right)$ is the quotient of $H^{*}\left(B O ; \mathbb{Z}_{2}\right)$ by the ideal generated by w_{1}. Dually, $H_{*}\left(B S O ; \mathbb{Z}_{2}\right)$ can be identified with a subring of $H_{*}\left(B O ; \mathbb{Z}_{2}\right)$.) Papastavridis' choices of the classes y_{i} are clearly algebraically independent and hence give a subring of $H_{*}\left(B O ; \mathbb{Z}_{2}\right)$ which has precisely the same dimension as $H_{*}\left(B S O ; \mathbb{Z}_{2}\right)$. The hard part of his argument is to see that the classes y_{i} lie in $H_{*}\left(B S O ; \mathbb{Z}_{2}\right)$.

The purpose of this paper is to simplify Papastavridis' argument. For any integer $n>1$, one chooses a pair of integers (j, k) with $j+k=n$ by

$$
\begin{cases}(j, k)=(0, n) & \text { if } \quad n=2^{r}, \\ (j, k)=\left(2^{r}, 2^{r+1} s\right) & \text { if } \quad n=2^{r}(2 s+1), s>0 .\end{cases}
$$

Then, let $z_{n} \in H_{n}\left(B O ; \mathbb{Z}_{2}\right)$ be the classes $f_{*}\left[R P^{j} \times R P^{k}\right]$ where $f: R P^{j} \times R P^{k} \rightarrow$ $B O$ classifies the bundle $\xi_{1} \oplus \xi_{2} \oplus\left(\xi_{1} \otimes \xi_{2}\right)$ with ξ_{i} being the usual line bundle over the i-th factor. Because the given bundle is orientable, it is clear that $z_{n} \in$ image $\left(H_{n}\left(B S O ; \mathbb{Z}_{2}\right) \rightarrow H_{n}\left(B O ; \mathbb{Z}_{2}\right)\right)$, and our main result is

Theorem. $H_{*}\left(B S O ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[z_{n} \mid n>1\right]$.

[^0]Additionally, one has:
Fact. The classes $z_{n}=f_{*}\left[R P^{j} \times R P^{k}\right]$ coincide with Papastavridis' classes y_{n}.
I wish to express my thanks to Professor R. E. Stong for suggesting this problem.

2. Proof of the Theorem

It is clear that one has a homomorphism

$$
\varphi: \mathbb{Z}_{2}\left[u_{n} \mid n>1\right] \rightarrow H_{*}\left(B S O ; \mathbb{Z}_{2}\right) \subset H_{*}\left(B O ; \mathbb{Z}_{2}\right)
$$

defined by $\varphi\left(u_{n}\right)=z_{n}=f_{*}\left[R P^{j} \times R P^{k}\right]$, and in every dimension, $H_{*}\left(B S O ; \mathbb{Z}_{2}\right)$ and the polynomial ring have the same dimension as the \mathbb{Z}_{2} vector space. To prove the theorem, it suffices to see that the classes z_{n} are algebraically independent. This is immediate from:

Lemma.

$$
z_{n}=\left\{\begin{array}{lr}
x_{n}+\text { decomposables } & \text { if } \quad n=2^{r}(2 s+1), \\
x_{n / 2}^{2} & \text { if } \quad n=2^{r} .
\end{array}\right.
$$

Proof. Let $H^{*}\left(R P^{j} \times R P^{k} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}[\alpha, \beta] /\left(\alpha^{j+1}=0, \beta^{k+1}=0\right)$, where $\operatorname{dim} \alpha=$ $\operatorname{dim} \beta=1$. The Stiefel-Whitney class of $\xi_{1} \oplus \xi_{2} \oplus\left(\xi_{1} \otimes \xi_{2}\right)$ is $(1+\alpha)(1+\beta)(1+\alpha+\beta)$. Then for $n=2^{r}(2 s+1)$,

$$
\begin{aligned}
s_{n} & =\alpha^{n}+\beta^{n}+(\alpha+\beta)^{n} \\
& =\binom{2^{r}(2 s+1)}{2^{r}} \alpha^{2^{r}} \beta^{2^{r+1} s}
\end{aligned}
$$

which is nonzero. For $n=2^{r}, \alpha=0$, and $H^{*}\left(R P^{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}[\beta] /\left(\beta^{n+1}=0\right)$, with the Stiefel-Whitney class of the bundle being $(1+\beta)^{2}$. Then

$$
s_{w}\left((1+\beta)^{2}\right)= \begin{cases}0 & \text { if } w \neq\left(w^{\prime}, w^{\prime}\right) \\ s_{w^{\prime}}\left((1+\beta)^{2}\right) & \text { if } w=\left(w^{\prime}, w^{\prime}\right)\end{cases}
$$

giving $z_{n}=x_{n / 2}^{2}$.

3. Papastavridis' Classes

To verify that $z_{n}=y_{n}$, as defined by Papastavridis, requires a lot of unpleasant calculation. Not only is one showing that y_{n} belongs to $H_{n}\left(B S O ; \mathbb{Z}_{2}\right)$, but one is identifying the given class. Since this is obvious for $n=2^{r}$, one need only consider $n=2^{r}(2 s+1)$. The goal is to verify that $s_{(a, b, c)}\left[z_{n}\right]$, with $0 \leq a \leq b \leq c$, is given by Papastavridis' formula,

$$
\begin{cases}\binom{b-1}{2^{r}-a-1} & \text { if } \quad 2^{r} \leq b \text { and } 0 \leq a<2^{r} \\ \binom{b-1}{r\left(2^{r}-a\right)} \\ 0 & \text { if } \quad 0<b<2^{r}, 0 \leq a<2^{r} \text { and } a+r\left(2^{r}-a\right) \leq b \\ \text { otherwise. }\end{cases}
$$

It is, of course, clear that $s_{w}\left[z_{n}\right]=0$ if $w=\left(i_{1}, \ldots, i_{r}\right)$ with $r>3$, since the defining bundle has dimension 3 .

Here we are going to verify that $s_{(a, b, c)}\left[z_{n}\right]$ is given by the above formula only in case $0<a<b<2^{r}, c<2^{r+1} s$. In this case we have

$$
\begin{aligned}
s_{(a, b, c)}\left[z_{n}\right] & =\left\{\alpha^{a} \beta^{b}(\alpha+\beta)^{c}+\alpha^{a} \beta^{c}(\alpha+\beta)^{b}+\alpha^{b} \beta^{c}(\alpha+\beta)^{a}\right. \\
& \left.+\alpha^{b} \beta^{a}(\alpha+\beta)^{c}\right\}\left[R P^{2^{r}} \times R P^{2^{r+1} s}\right], \text { since } \alpha^{c}=0 \\
& =\left[\binom{c}{2^{r}-a}+\binom{b}{2^{r}-a}+\binom{a}{2^{r}-b}+\binom{c}{2^{r}-b}\right] \bmod 2 .
\end{aligned}
$$

Next, observe that

$$
\binom{a}{2^{r}-b}
$$

is the coefficient of $x^{2^{r}-b}$ in the binomial expansion of $(1+x)^{a}$, and $(1+x)^{a}=$ $\frac{(1+x)^{2^{r+1} s}}{(1+x)^{b+c-2^{r}}}$, with $b+c-2^{r}-1>0$. Recall that $\frac{1}{(1+y)^{t+1}}=\sum_{j=0}^{\infty}\binom{t+j}{j} y^{j}$.
Then

$$
\binom{a}{2^{r}-b} \equiv\binom{b+c-2^{r}-1+2^{r}-b}{2^{r}-b} \equiv\binom{c-1}{2^{r}-b} \quad \bmod 2
$$

So, it is clear that

$$
\begin{aligned}
\binom{c}{2^{r}-b}+\binom{a}{2^{r}-b} & \equiv\binom{c}{2^{r}-b}+\binom{c-1}{2^{r}-b} \\
& \equiv\binom{c-1}{2^{r}-b-1}=\binom{2^{r+1} s+2^{r}-a-b-1}{2^{r+1} s-a}
\end{aligned}
$$

and this is the coefficient of $x^{2^{r+1} s-a}$ in the binomial expansion of $(1+x)^{c-1}$, where

$$
\begin{align*}
&(1+x)^{c-1}=\frac{(1+x)^{2^{r+1} s}(1+x)^{2^{r}}}{(1+x)^{a+b+1}} \\
&=\left\{\sum_{m=0}^{s}\binom{s}{m} x^{2^{r+1} s-2^{r+1} m}+\sum_{m=0}^{s}\binom{s}{m} x^{2^{r+1} s-2^{r+1} m+2^{r}}\right\} \\
&(\mathrm{A}) \\
& \times\left\{\sum_{l=0}^{\infty}\binom{a+b+l}{l} x^{l}\right\} \tag{C}
\end{align*}
$$

Now, if we take the product of any term in (A) by the complementary term in (C), the coefficient is

$$
\binom{s}{m}\binom{2^{r+1} m+b}{2^{r+1} m-a} \equiv 0 \quad \bmod 2
$$

since $b<2^{r}$. (Obs: if $m=0$ in (A), $2^{r+1} s>2^{r+1}-a$.) Next, observe that all the powers in the expansion (B) for $m>0$ are between $2^{r+1}(s-1)+2^{r}$ and $2^{r+1} s$, moreover, we have $2^{r+1}(s-1)+2^{r}<2^{r+1} s-a<2^{r+1} s$, since $2^{r}>a>0$. For
$m=0$, the power is $2^{r+1} s+2^{r}$, so it is bigger than $2^{r+1} s$. Therefore,

$$
\begin{gathered}
\binom{c}{2^{r}-b}+\binom{a}{2^{r}-b}=\left\{\sum_{m=1}^{s}\binom{s}{m}\binom{2^{r+1} m-2^{r}+b}{2^{r+1} m-2^{r}-a}\right\} \\
\quad=\left\{\sum_{m=1}^{s}\binom{s}{m}\right\}\binom{b}{2^{r}-a} \equiv\binom{b}{2^{r}-a} \bmod 2
\end{gathered}
$$

Thus, we can see immediately that

$$
s_{(a, b, c)}\left[z_{n}\right]=\binom{c}{2^{r}-a} \quad \bmod 2
$$

Now, writing $2^{r}-a=2^{j}+t, 0 \leq t<2^{j}$, with $r\left(2^{r}-a\right)=t$ as in Papastavridis [1], we have $c=2^{r+1} s+2^{j}+t-b$. So, we can look at $\binom{c}{2^{r}-a}$ as the coefficient of $x^{2^{r}-a}$ in the binomial expansion of

$$
(1+x)^{c}=\frac{(1+x)^{2^{r+1} s}(1+x)^{2^{j}}}{(1+x)^{b-t}}
$$

Hence, it follows that

$$
s_{(a, b, c)}\left[z_{n}\right]=\left\{\binom{2^{j}+b-1}{2^{j}+t}+\binom{b-1}{t}\right\} \quad \bmod 2 .
$$

Next, we can write $b=a+b^{\prime}$ with $0<b^{\prime}<2^{r}-a=2^{j}+t$, since $a<b<2^{r}$. Thus, we get

$$
\begin{aligned}
& \binom{2^{j}+b-1}{2^{j}+t}=\binom{2^{j}+2^{j}\left(2^{r-j}-1\right)-t+b^{\prime}-1}{2^{j}+t}
\end{aligned}
$$

and

$$
\binom{b-1}{t}=\binom{2^{j}\left(2^{r-j}-1\right)-t+b^{\prime}-1}{t} \equiv 0 \quad \bmod 2 \quad \text { if } t<b^{\prime}<2 t
$$

Finally, since

$$
0<b^{\prime}<2 t \Longleftrightarrow a+2 r\left(2^{r}-a\right)>b
$$

and

$$
2 t \leq b^{\prime}<2^{j}+t \Longleftrightarrow a+2 r\left(2^{r}-a\right) \leq b
$$

we conclude that

$$
s_{(a, b, c)}\left[z_{n}\right]=\left\{\begin{array}{cl}
0 & \text { if } a+2 r\left(2^{r}-a\right)>b \\
\binom{b-1}{r\left(2^{r}-a\right)} & \bmod 2 \\
\text { if } a+2 r\left(2^{r}-a\right) \leq b
\end{array}\right.
$$

as in [1].
Since we have checked one of the more difficult cases, one now can write down the other possibilities for (a, b, c) using similar calculations.

References

[1] S. Papastavridis, The image of $H_{*}\left(B S O ; \mathbb{Z}_{2}\right)$ in $H_{*}\left(B O ; \mathbb{Z}_{2}\right)$, Proc. Amer. Math. Soc., Vol. 107, No. 4, 1989, pp. 1071-1073. MR 90m:55017
imecc - Departamento de Matemática, Universidade Estadual de Campinas, Caixa Postal - 6065, 13081-970 - Campinas - S.P., Brasil

E-mail address: claudina@ime.unicamp.br

[^0]: Received by the editors June 17, 1997.
 1991 Mathematics Subject Classification. Primary 55R40.

