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ASYMPTOTICS OF THE D’ALEMBERTIAN
WITH POTENTIAL ON A PSEUDO-RIEMANNIAN MANIFOLD

THOMAS BRANSON AND GESTUR ÓLAFSSON

(Communicated by Palle E. T. Jorgensen)

Abstract. Let � be the Laplace-d’Alembert operator on a pseudo-Riemann-
ian manifold (M, g). We derive a series expansion for the fundamental solution
G(x, y) of � + H, H ∈ C∞(M), which behaves well under various symmetric
space dualities. The qualitative properties of this expansion were used in
our paper in Invent. Math. 129 (1997), 63–74, to show that the property of
vanishing logarithmic term for G(x, y) is preserved under these dualities.

1. Introduction

Let (M, g) be a pseudo-Riemannian manifold of dimension n, with Laplace-
d’Alembert operator �. Let H be a smooth function on M , and consider the prob-
lem of constructing a fundamental solution for the d’Alembertian with potential
� +H .

A classical construction of Hadamard formally develops the fundamental solution
of � +H in the form

G(x, y,� +H) =

{
U(x, y)σ(2−n)/2 + V (x, y) log |σ|, n even,

U(x, y)|σ|(2−n)/2, n odd,
(1)

for (x, y) in a neighborhood O of the diagonal in M ×M , where σ = σ(x, y) is the
geodesic distance-squared, and U and V are smooth functions on O. Of course,
the distance-squared may be negative, since the metric may be indefinite. The true
fundamental solution is a version of the formal expression (1) which is regularized,
either in a classical sense [H], or in a distributional sense [C], [F].

The precise analytic considerations needed to produce the fundamental solution
vary according to the metric signature. This subject of this paper is a classical devel-
opment of the series (1) which, for certain purposes, is a valuable alternative to the
Hadamard development. In particular, we used the existence of this development
in an essential way in [BO]. There we proved that the vanishing of the logarithmic
term V is preserved under various symmetric space dualities. This, in turn, allowed
us to construct many new locally symmetric spaces on which V vanishes, taking the
potential H to be a constant multiple of the scalar curvature. The property of van-
ishing logarithmic term has been studied by many authors; for metrics of Lorentz

Received by the editors July 8, 1997 and, in revised form, August 6, 1997.
1991 Mathematics Subject Classification. Primary 47F05.
Research of both authors partially supported by NSF grants.
Research of the second author partially supported by a LEQSF grant.

c©1999 American Mathematical Society

1339



1340 THOMAS BRANSON AND GESTUR ÓLAFSSON

signature, it is equivalent to Huygens’ principle; for Riemannian signature, there
are interpretations with consequences for classical gravitation and electrostatics. In
this paper, we limit ourselves to signature-independent considerations and develop
the required expansion algebraically, without treating convergence questions. In
particular, all computations take place off {σ = 0}.

Note that in this generality, the construction also produces formal asymptotic
expansions of the resolvent kernels of the same operators � +H ; i.e., of the kernel
functions for the (� +H − λ)−1, where λ ∈ C.

In normal coordinates with origin at y, let (xα) be the coordinates of the moving
point x. The coefficients Vk of the Taylor series for V ,

V (x, y) ∼ V0(y) + (V1)α(y)xα + (V2)αβ(y)xαxβ + . . .

+ (Vk)α1...αk
(y)xα1 . . . xαk + . . . ,

are universal local invariants of the metric g and the potential H , valued in the
symmetric k-tensor fields on M . (Here and below, the summation convention is in
force.) Similar considerations hold for the function U . In fact, the Taylor coeffi-
cients for U and V may be calculated inductively and algebraically from the Taylor
expansions of the metric g and the potential H .

Choose normal coordinates for g in which y = 0 and x = (xα). It will be
convenient to introduce an artificial flat reference metric: Let η be the standard
flat metric of the same signature as g. Then g has a normal coordinate expansion

gαβ(x) = ηαβ + gαβ,γδ(y)xγxδ + . . .+ gαβ,γ1...γk
(y)xγ1 . . . xγk +O(|x|k+1),

gαβ(x) = ηαβ + gαβ
,γδ(y)xγxδ + . . .+ gαβ

,γ1...γk
(y)xγ1 . . . xγk +O(|x|k+1),

(2)

where the | · | in O(|x|k+1) refers to any positive definite metric. The tensors
gαβ,γ1...γk

and gαβ
,γ1...γk

are local invariants; that is, they are linear combinations
of monomials

C(g ⊗ . . .⊗ g ⊗ g] ⊗ . . .⊗ g] ⊗ (∇ . . .∇R)⊗ . . .⊗ (∇ . . .∇R)),(3)

where g] = (gαβ) is the inverse of the metric g = (gαβ), ∇ is the metric connection,
R is the Riemann curvature tensor of ∇, and C is a contraction operator. As a
consequence of the metric expansion (2), the normal coordinate metric determinant
g has a similar expansion:

g(x) = ±1 + g,αβ(y)xαxβ + . . .+ g,α1...αk
(y)xα1 . . . xαk +O(|x|k+1),

where the tensors g,α1...αk
are linear combinations of monomials of the form (3).

By Weyl’s invariant theory [W], the local invariants Vk are linear combinations
of monomials of the form

C(g ⊗ . . .⊗ g ⊗ g] ⊗ . . .⊗ g] ⊗ (∇ . . .∇R)⊗ . . .⊗ (∇ . . .∇R)

⊗ (∇ . . .∇H)⊗ . . .⊗ (∇ . . .∇H)).
(4)

By taking note of the behavior of all terms under uniform dilation g′ = sg, 0 <
s ∈ R, it is easy to compute that each monomial (4) in Vk (resp. Uj) enjoys a
homogeneity property:

p∇ + 2(pR + pH) = n− 2 + k (resp. p∇ + 2(pR + pH) = j),

where p∇ (resp. pR, pH) is the number of ∇ (resp. R, H) appearing. Note that im-
plementation of the Ricci identities may convert occurrences of ∇ into occurrences
of R, but does not disturb the quantity p∇ + 2(pR + pH).
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2. The expansion

Thus far, it has not been necessary to fix sign conventions on � and R; we do
so now. �Mf is the total contraction of −g] ⊗∇∇f . In a local frame (Xα),

Rα
βγδXα = R(Xγ , Xδ)Xβ .

In local coordinates, the d’Alembertian is

� = −|g|−1/2∂β(gαβ |g|1/2∂α) =: −ηαβ∂α∂β + qαβ(x)∂α∂β + bα(x)∂α .(5)

In normal coordinates, the vanishing of the first order terms in the metric expansions
gives

qαβ(x) = O(|x|2), bα(x) = O(|x|).(6)

Let D = −ηαβ∂α∂β . Our strategy will be to explicitly compute the effect of D
on homogeneous terms of the expansion (1), and to qualitatively observe the effect
of � +H −D. We break up a homogeneous term according to

(Vk)α1...αk
xα1 . . . xαk = Vk(x(k)) =

[k/2]∑
`=0

σ`Vk,`(x(k−2`)),(7)

where x(k) is the k-tuple (of n-tuples) (x, . . . , x), and the Vk,` are trace free tensors.
(That is, any contraction of Vk,` with η] vanishes.) In representation theoretic
terms, we can accomplish this by taking the symmetric tensor representation of
GL(n,R) and decomposing into irreducible representations of the subgroup O(p, q),
where (p, q) is the signature of η. We similarly decompose each homogeneous term
in the expansion of U .

For simplicity, we restrict to {σ > 0} for purposes of this calculation. After
insertion of appropriate minus signs, it is clear that the situation on {σ < 0} is also
described.
D obeys the second order Leibniz rule D(ϕψ) = ϕDψ+ψDϕ−2η](dϕ, dψ). But

if Ω is an arbitrary trace free symmetric p tensor and ψ = Ω(x(p)),

Dψ = 0, η](dσ, dψ) = 2pψ.(8)

Furthermore, Dσ = −2n and η](dσ, dσ) = 4σ, so that for s ∈ C,

D(σs) = −2s(n+ 2s− 2)σs−1,

D(σs log σ) = −2σs−1{s(n+ 2s− 2)(log σ) + n+ 4s− 2}.(9)

Putting all this together, we get (for ψ as above)

D(σsψ) = −2s(n+ 2s+ 2p− 2)σs−1ψ,

D(σs(log σ)ψ) = −2s(n+ 2s+ 2p− 2)σs−1(log σ)ψ − 2(n+ 4s+ 2p− 2)σs−1ψ.

Thus for any t ∈ C, we have

D(σ`−tUj,`(x(j−2`))) = −2(`− t)(n− 2`− 2t+ 2j − 2)σ`−t−1Uj,`(x(j−2`)),

D(σ`(log σ)Vk,`(x(k−2`)))

= {−2`(n− 2`+ 2k − 2)σ`−1 log σ − 2(n+ 2k − 2)σ`−1}Vk,`(x(k−2`)).
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In particular, setting t = m := (n− 2)/2, we have

D(σ`−mUj,`(x(j−2`))) = −4(`−m)(j − `)σ`−m−1Uj,`(x(j−2`)),

D(σ`(log σ)Vk,`(x(k−2`))) = −4σ`−1{`(k − `+m)(log σ) + k +m}Vk,`(x(k−2`)).

The important qualitative point about � +H −D is (6). We have:

Lemma 1. On {σ > 0}, for formal power series U and V as in (7),

(� +H)(σ−mU + (log σ)V ) = 2n(n− 2)σ−m−1U0

+ σ−m−1
∞∑

j=1

Wj −
[j/2]∑
`=0

4(`−m)(j − `)σ`Uj,`(x(j−2`))


− σ−1

∞∑
k=0

[k/2]∑
`=0

4(k +m)σ`Vk,`(x(k−2`))

+ σ−1(log σ)
∞∑

k=0

W̃k −
[k/2]∑
`=0

4`(k − ` +m)σ`Vk,`(x(k−2`))


where Wj (resp. W̃k) is a homogeneous polynomial of degree j (resp. k). Wj,`

depends on {Uu} and {Vv} only through {Uu,L | u < j, L ≤ `} and {Vv,L | v <
j−m, L ≤ `}. W̃k,` depends on {Uu} and {Vv} only through {Vv,L | v < k, L ≤ `}.
Theorem 2. If n is odd, given a constant U0 , the formula of Lemma 1, with
V = 0, inductively computes a unique formal power series solution to the equation
(� + H)(U |σ|−m) = 0 on {σ 6= 0}. The coefficients Uj,l(y) are universal local
invariants as in (4). If n is even, the formula of Lemma 1(b) inductively computes
a formal power series solution to (� + H)(Uσ−m + V log |σ|) = 0 on {σ 6= 0}.
This solution is unique modulo solutions without singularity at σ = 0. With the
side conditions Uj,m = 0 for all j, the even-dimensional solution is unique, and all
coefficients Uj,l(y) and Vk,l(y) are universal local invariants as in (4).

Proof. First restrict to {σ > 0}. Proceeding inductively, we find by examining the
logarithm free terms that the Uj,` are uniquely determined for n odd. If n is even,

1. The Uj,` are uniquely determined for ` < m and all j;
2. The Uj,m may be prescribed arbitrarily, but the Vk,0 are uniquely determined

for all k.

Switching attention to the terms with a log σ factor, we get no additional condition
on the Vk,0 , and

3. The Vk,` are uniquely determined for ` > 0 and all k.

Going back to the logarithm free terms,

4. The Uj,` for ` > m are uniquely determined, given our prescription of the
Uj,m .

If E and F are two power series constructed as above, differing in the prescription
of the Uj,m (and its effects on the computation of the Uj,` for ` > m), then E − F
is a power series (without singularity at σ = 0) satisfying (� + H)(E − F ) = 0.
Thus the power series construction is unique up to the addition of such harmonics.
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It is straightforward to insert signs as appropriate to extend the conclusion to
{σ < 0}. The local invariance properties follow inductively from those of the metric,
through (5).

The first term on the right in Lemma 1(a) regularizes to a constant multiple of
the delta function when we take account of behavior through {σ = 0}, and compute
in the sense of distributions. Thus we are computing the fundamental solution of
� + H by implementing the above procedure. Since � + H − λ is an operator of
the same type, our results also cover the resolvent kernel, i.e., the kernel function
of (� +H − λ)−1.

3. Comparison with the Hadamard expansion

Some remarks on the relation of the above results to the Hadamard expansion
are in order. In Hadamard’s original treatment, U(x, y) and V (x, y) are expanded
in series of two point functions:

U(x, y) ∼
∞∑

j=0

Kj(x, y)σj , V (x, y) ∼
∞∑

k=0

Lk(x, y)σk.

The Kj and Lk are determined, in a neighborhood of the diagonal in M×M , by re-
cursive solution of the transport equations; these are ordinary differential equations
in which the geodesic parameter is the independent variable.

With x as the moving point and y the fixed point, the definition of � gives the
following variants of (9). Let G := log |g| and r = σ1/2, and let a prime denote
d/dr. Then

�σs = −4s(m+ s+ 1
4rG

′)σs−1,

�(σs log σ) = −2σs−1{s(n+ 2s− 2 + 1
2rG

′)(log σ) + n+ 4s− 2 + 1
2rG

′}.
This gives

(� +H)(Kjσ
j−m) = ((� +H)Kj)σj−m

− 4(j −m)σj−m−1(rK ′
j + {j + 1

4rG
′}Kj),

(� +H)(Lkσ
k log σ) = ((� +H)Lk)σk log σ

− 2kσk−1 log σ(2rL′k + {n+ 2k − 2 + 1
2rG

′}Lk)

− 2σk−1(2rL′k + {n+ 4k − 2 + 1
2rG

′}Lk).

The analysis of, e.g., [C], [F] shows that, after suitable regularization and nor-
malization of U0 ,

(� +H)(σ−mU + (log σ)V ) = δy(x) + (smooth).

We need to make sure that (� + H)(σ−mU + (log σ)V ) vanishes to infinite order
for x 6= y. The bottom (σ−m−1) coefficient gives the condition

rK ′
0 + 1

4rG
′K0 = 0;

this shows that up to normalization,

K0(x, y) =
(

g(y)
g(x)

)1/4

.
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Proceeding inductively, we then get the conditions

4(j −m)(rK ′
j + {j + 1

4rG
′}Kj) = (� +H)Kj−1 , 0 < j < m .

When we reach the σ−1 coefficient in (�+H)(σ−mU+(logσ)V ), we get no condition
on Km , but rather

2(2rL′0 + {n− 2 + 1
2G

′}L0) = (� +H)Km−1 .

Treating the coefficients in the logσ series inductively, we get

2k(2rL′k + {n+ 2k − 2 + 1
2G

′}Lk) = (� +H)Lk−1 , k ≥ 1.

Treating the Lk as known and prescribing Km arbitrarily, we then “clean up” by
solving the equations

4k(rK ′
k+m + {k +m+ 1

4rG
′}Kk+m)

= (� +H)Kk+m−1 − 2(2rL′k + {n+ 4k − 2 + 1
2rG

′}Lk).

Through this, the ambiguity in Km propagates to the expansion of an arbitrary
harmonic summand; this is of course the expected non-uniqueness.

Several ordinary differential equations of the form ru′+bu = f , b(r) = b0+O(r2),
appeared in the above discussion. If b0 > 0, solutions of the homogeneous equation
ru′+ bu = 0 are singular at r = 0, so a nonsingular solution of ru′+ bu = f , if any,
will be unique. Setting u = r−b0y, we get

y′ + βy = rb0−1f, β := r−1(b− b0) = O(r).

To avoid a singularity in u at r = 0, we must take y(0) = 0, so that

y(r) = exp
(
−

∫ r

0

β(s)ds
) ∫ r

0

exp
(∫ s

0

β(z)dz
)
sb0−1f(s)ds.

If f is nonsingular at r = 0 and b0 is a positive integer, then y(r) = O(rb0 ). Thus u
is nonsingular at r = 0. Since n is even, inspection of the process which produces
the functions Kj and Lk shows that they are uniquely determined and nonsingular
at r = 0.

When one actually tries to calculate the local invariants in the Hadamard expan-
sion, attention quickly turns to the Taylor expansions of the Hadamard coefficients.
The Kj and Lk do not have trace free Taylor coefficients; thus these coefficients do
not just come from the list of Uj,` and Vk,` produced by our power series construc-
tion. However, the Taylor coefficients Lk,p of the Lk can be computed from the list
Vk,` and vice versa; similarly for the lists Kj,p and Uj,` . The computation of any
given entry from one list involves only finitely many entries from the counterpart
list. The separation of Vk into the various Vk,` can be carried out effectively using
(8,9); that is, by taking the eigenresolution of σD on the space of k homogeneous
polynomials. The ambiguity in the definition of the Uj,m (resp. Km ,p) affects only
the Uj,q (resp. the Kq,p) for q ≥ m , and has no effect on the logarithmic terms.
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