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ON h-COBORDISMS OF SPHERICAL SPACE FORMS

S LAWOMIR KWASIK AND REINHARD SCHULTZ

(Communicated by Thomas Goodwillie)

Abstract. Given a manifold M of dimension at least 4 whose universal cov-
ering is homeomorphic to a sphere, the main result states that a compact
manifold W is isomorphic to a cylinder M × [0, 1] if and only if W is homo-
topy equivalent to this cylinder and the boundary is isomorphic to two copies
of M ; this holds in the smooth, PL and topological categories. The result
yields a classification of smooth, finite group actions on homotopy spheres (in
dimensions ≥ 5) with exactly two singular points.

In the topology of manifolds it is often important to recognize when a manifold
W with boundary is isomorphic to a cylinder M × [0, 1]. The s-cobordism theorem
gives the standard principle for recognizing products, but in some situations it is
useful to have other criteria involving the boundary components of W . In a series of
papers [U1]–[U3] F. Ushitaki has studied this question for equivariant h-cobordisms
between two free linear G-spheres S(V ), S(V ′) of dimension 2n − 1 ≥ 5 and has
proved that such h-cobordisms are equivariantly isomorphic to products S(V ) × I
under assumptions of an algebraic nature (e.g., the vanishing of SK1(Z[G]) ). To
be more specific, the following is the main result.

Theorem (Ushitaki). Let G be a finite group, and X a free G-homotopy sphere of
dimension 2n− 1 ≥ 5. Then the following are equivalent.

(1) Every smooth G-h-cobordism W between X and itself must be G-diffeomorphic
to X × I.

(2) The homomorphism

c̃ : H2n

(
Z2;Wh(G)trivial

) → Ls
2n(G)

in the Rothenberg exact sequence is a monomorphism.

Here one takes the standard conjugation involution on the Whitehead group
Wh(G) corresponding to the trivial homomorphism G→ Z2.

Let G be a finite group which can act freely (topologically, piecewise linearly or
smoothly) on a homotopy sphere Σn. We shall call the manifold Σn/G = Mn a
fake spherical space form (cf. [KS4]). In this note we elaborate on the techniques
and results of our paper [KS3] and obtain the following:

Theorem. Let CAT denote one of the topological, piecewise linear, or smooth cat-
egories, let G 6= {1} be a finite group, and let Mn be a CAT manifold that is a fake
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spherical spaceform Σn/G, where n ≥ 4. Then every CAT h-cobordism W with
∂W ≈Mn tMn is CAT-isomorphic to Mn × I.

We shall say that an h-cobordism W is inertial if ∂W is a disjoint union of two
copies of the same manifold.

Corollary 1. Every equivariant CAT h-cobordism between free linear G-spheres
S(V ) and S(V ′) of dimension n is equivariantly CAT isomorphic to S(V ) × I if
n ≥ 4.

The results of [CS1]–[CS2] and [KS2], [KS5] show that the theorem and corollary
do not extend to topological h-cobordisms when n = 3.

Corollary 1 settles the cases left open in [U1]–[U3], and it also yields an answer
to a question studied by M. Sebastiani [Se, Theorems on pp. 437–438] on the
classification and enumeration of smooth semifree actions of a finite group G on a
homotopy sphere Σn (where n ≥ 6) with exactly two fixed points.

Corollary 2. Every smooth, semifree action of a finite group G on a homotopy
sphere Σn, n ≥ 5, with exactly two fixed points is smoothly equivalent to a twisted
double of the form D(V ) ∪f D(V ). Here D(V ) is a disk in a free representation
V of G and f is an equivariant diffeomorphism of the boundary sphere S(V ). In
particular the number of equivariant diffeomorphism classes of such actions is finite.

Remarks. (1) This result was proved in [Se] for G ≈ Zk, where k is odd or k = 2.
(2) Corollary 2 does not extend to smooth semifree G-actions on homotopy

spheres with 1-dimensional fixed point sets; more precisely, such smooth G-mani-
folds need not have presentations as twisted doubles of the form D(W ) ∪h D(W )
for some linear representation W . The construction of examples will be outlined at
the end of this paper.

(3) Partial analogs of Corollary 2 for continuous actions are discussed in [KS1].
One way of proving the main result if n ≥ 5 (and also if n = 4 in the topological

category) would be to show the triviality of ker c̃ directly and then to use Ushitaki’s
result. Instead, we shall give an essentially self-contained account that shortens
some of the arguments in [U1]–[U3] and [KS2]–[KS3].

Proof of the Theorem. The usual case is when n ≥ 5 in the smooth or PL category,
or n ≥ 4 in the topological category. In these cases the relevant h-cobordisms are
classified by elements of the Whitehead group. The only cases not included are
those where n = 4 in the smooth or PL category (the two cases are equivalent
because every PL manifold of dimension ≤ 6 has a unique equivalence class of
smoothings). We shall first prove the result in the usual cases, and afterwards we
shall give the proof in the exceptional cases.

The usual cases. Let G be a finite group which acts freely on Σn, where the ac-
tion is topological, piecewise linear or smooth as appropriate. The action of G is
orientation preserving unless n is even and G ≈ Z2, and in the latter cases all
h-cobordisms are products because Wh(Z2) = 0. Therefore we shall assume for the
rest of the discussion of the usual case that G acts orientation preservingly and n
is odd. Since G has periodic homology, the classification of such groups in [TW]
and [DM] shows that every 2-hyperelementary subgroup H of G is either

(a) a metacyclic group given by a semi-direct product Zn ×T Z2e , or
(b) a semi-direct product Zn ×T Q(2k), where k ≥ 3 [DM, Remark 5.5, p. 273].
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When H ≈ Zn ×T Z2e , then the group SK1(Z[H ]) = 0 [O1, p.190], but for H ≈
Zn ×T Q(2k), SK1(Z[H ]) is nontrivial [O1, p.198]. If G is a finite periodic group,
then SK1(Z[G]) is an elementary abelian 2-group: i.e., SK1(Z[G]) ≈ (Z2)` for
some ` ≥ 0 (cf. [O2], Theorem 6, p. 334). Consequently Theorem 2.1 in [KS3] can
be strengthened as follows.

Claim 1. If G is a finite periodic group, then the standard conjugation involution
on Wh(G) associated to the trivial homomorphism G→ Z2 is the identity.

The point here is that in analogy with the proof of Theorem 2.1 in [KS3] it is
enough to show the triviality of the involution only when G is 2-hyperelementary.

If G is metacyclic, then Wh(G) is torsion free and the involution is trivial by the
result of C.T.C. Wall [W2, Theorem 6.1]. When G is given by Zn ×T Q(2k) then
the triviality of the involution ∗ : Wh(G) −→Wh(G) is proved in [KS3, Thm. 2.1].

Now let (Wn+1;Mn,Mn) be a topological (n ≥ 4) or smooth (n ≥ 5) inertial h-
cobordism with Mn a fake spherical space form. Let τ = τ(Wn+1, ∂0W

n+1 = Mn)
be the Whitehead torsion of this h-cobordism. It was already shown in [KS3] that
τ must be an element in SK1(Z[G]) = TorsionWh(G).

Claim 2. There is a homotopy equivalence of triads

f : (Wn+1;Mn,Mn) −→ (Mn × I;Mn × {0},Mn × {1})
such that (1) τ(f) = −τ , (2) f |∂W n+1 : (Mn tMn) −→ (Mn ×{0} tMn ×{1}) is
the identity.

Proof of Claim 2. Property (1) is already established in [KS3, Cor. 3.3]. With
respect to property (2) it will suffice to verify that, in our situation, each homotopy
self-equivalence of Mn is homotopic to the identity if π1(Mn) ≈ G 6≈ Z2. First
of all we can assume that G 6≈ Z2, for if G ≈ Z2, then each h-cobordism is an
s-cobordism (because Wh(Z2) = 0) and the conclusion follows by the s-cobordism
theorem. Given then that G 6≈ Z2, the equivariant Hopf theorem [tD, Thm. 8.4.1,
p. 213] implies that indeed each self-homotopy equivalence is homotopic to the
identity.

Consider the following commutative diagram in surgery theory:

. . . −→ Ls
2k+1(G)

γs

−→ Ss
CAT(Mn × I, ∂)

ηs

−→ [ΣMn;F/CAT] θs−→ Ls
2k(G)y`1 t

y ∥∥∥id

y`0

. . . −→ Lh
2k+1(G)

γh

−→ Sh
CAT(Mn × I, ∂)

ηh

−→ [ΣMn;F/CAT] θh−→ Lh
2k(G)

(∗)

Here CAT denotes one of TOP , PL, or O, depending upon whether CAT stands
for the TOP, PL, or DIFF category. The vertical maps in this diagram come
from the Rothenberg exact sequence (cf. [W1]).

Claim 3. The homomorphism `1 : Ls
2k+1(G) −→ Lh

2k+1(G) is onto.

Proof of Claim 3. The Dress induction theorem [Dr, Thm. 1, p. 293] implies
(a) Ls

2k+1(G) = lim←
H⊂G

Ls
2k+1(H),

(b) Lh
2k+1(G) = lim←

H⊂G

Lh
2k+1(H)

where H runs over the conjugacy classes in G of 2-hyperelementary subgroups,
and the maps are the restrictions. It follows easily that one then has to show the
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surjection Ls
2k+1(H) −→ Lh

2k+1(H) only when H is 2-hyperelementary (there are
only finitely many groups involved in these inverse limits). As is observed in the
proof of Lemma 3.4 in [KS3] it is enough to consider the case of H ≈ Zn ×T Q(2k)
(and in fact the only nontrivial considerations occur for H ≈ Zn×Q(2k)). However
this case is handled by [KS3]. Strictly speaking, [KS3, Lemma 3.4] deals only with
k even (i.e., Ls,h

4k+1-groups) but everything remains valid if k is odd.
Given the surjectivity of the homomorphism `1 : Ls

2k+1(G) −→ Lh
2k+1(G) one

proceeds as follows. Let [f ] ∈ Sh
CAT(Mn × I, ∂) be the element determined by

the map of triads f : (Wn+1;Mn,Mn) −→ (Mn × I;Mn × {0},Mn × {1}). If
[f ] ∈ Image γh, then the surjectivity of `1 : Ls

2k+1(G) −→ Lh
2k+1(G) implies that

f is h-cobordant (relative boundary) to f ′, where [f ′] ∈ Ss
CAT(Mn × I, ∂). To be

more specific, write f ′ : (W
n+1

;Mn,Mn) −→ (Mn × I;Mn,Mn), where W
n+1

is
an s-cobordism; there is an h-cobordism Xn+2 with ∂Xn+2 = W

n+1∪−Wn+1 and
∂W

n+1 ∩ −∂Wn+1 = Mn
0 tMn

1 (where Mn
0 ,M

n
1 ≈ Mn). By the duality formula

for Whitehead torsions of h-cobordisms we have

τ(Xn+2,W
n+1

) = τ(Xn+2,Wn+1)∗.

Since τ(Xn+2,Wn+1)∗ = τ(Xn+2,Wn+1), by Claim 1 it follows that τ(Xn+2,W
n+1

)
= τ(Xn+2,Wn+1). Furthermore, we also have

τ(Wn+1,Mn
0 ) = τ(Xn+2,W

n+1
) + τ(W

n1
,M0)− τ(Xn+2,Wn+1).

Since W
n+1

is an s-cobordism, the middle term vanishes so that τ(Wn+1,Mn
0 ) =

τ(Xn+2,W
n+1

)− τ(Xn+2,Wn+1) = τ(Xn+2,Wn+1)− τ(Xn+2,Wn+1) = 0.
Suppose now [f ] 6∈ im γh so that |[f ]| = ηh[f ] ∈ [ΣMn;G/CAT] is nontrivial.

Because f |∂W n+1 is the identity, it follows that

θs(|[f ]|) ∈ Ls
2k(G2) ⊂ Ls

2k(G),

where G2 is the 2-Sylow subgroup of G (cf. [W3]).

Claim 4. θs(|[f ]|) = 0.

Proof of Claim 4. From the diagram (∗) we infer that `0θs(|[f ]|) = 0; in particu-
lar θs|[f ]| ∈ ker `0 ∈ H2k+1(Z2;Wh(G)) and in fact the element θs(|[f ]|) can be
identified with the element −τ = τ(f) ∈ SK1(Z[G]). On the other hand a 2-Sylow
subgroup G2 of G is either a cyclic group Z2` or a quaternionic group Q(2k), and
in both cases SK1(Z[G2]) = 0 (cf. [O1]). Consequently θs(|[f ]|) = 0 and hence
there exists an element [f̃ ] ∈ Ss

CAT(Mn × I, ∂) such that ηs[f̃ ] = |[f ]|.
Conclusion of the proof in the usual cases. Given Claim 4, the proof of our theo-
rem in the usual cases can be completed by observing that t[f̃ ] = [f ]. Namely, this
once again means that f is h-cobordant (relative boundary) to a simple homotopy
equivalence f ′ ∈ Ss

CAT(Mn × I, ∂) which leads to the vanishing of the Whitehead
torsion τ = τ(Wn+1;Mn).

Proof of the theorem in the exceptional cases. A result of D. Barden [Ba] states
that every smooth inertial h-cobordism with boundary S4tS4 is a product (see [Sh,
Thm. 6.1, pp. 348-349] for a proof); more generally, if W 5 is a smooth, oriented,
simply connected inertial h-cobordism such that the oriented boundary of W 5 has
the form M4t−M4 for some oriented smooth homotopy sphere M4, then the same
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argument shows that W 5 is also a product. We cannot quite say whether every
inertial h-cobordism in this case is a product because of the unresolved status of the
smooth 4-dimensional Poincaré Conjecture (there might be a smooth fake 4-sphere
that is not orientation reversingly diffeomorphic to itself). On the other hand, if
n = 4, then the only possible fundamental group of a nonsimply connected fake
spherical spaceform is Z2, and thus in the exceptional case it suffices to show that
every inertial smooth h-cobordism (W 5;M4,M4) with M4 homotopy equivalent to
RP4 is a product.

The argument is very similar to that of [Sh, §6] and [KS2, §2]. Let i0, i1 : M4 →
W 5 be the inclusions of the boundary components, and let r : W 5 → M4 be a
homotopy inverse to i0. By the existence of collar neighborhoods for boundaries
we may as well assume that the composite r ◦ i0 is the identity. On the other hand,
it is well known that every homotopy self-equivalence of RP4 is homotopic to the
identity, and therefore it follows that the homotopy self-equivalence r ◦ i1 is also
homotopic to the identity; we may as well assume as before that r◦i1 is the identity.
If

µ : (W 5;M4,M4) → ([0, 1]; {0}, {1})
is a Morse function, then the map

(r, µ) : (W 5;M4,M4) → (M4 × [0, 1];M4 × {0},M4 × {1})
defines a homotopy equivalence that is a diffeomorphism on both ends; i.e., an
element of the relative structure set SDIFF(M4 × I, ∂); the s superscript is omitted
because Wh(Z2) = 0. Since this structure set involves smooth surgery problems
where the boundary is untouched, one can analyze this structure set using the
usual methods of surgery theory. Therefore consider the corresponding surgery
exact sequence of groups:

[Σ2(M4
+);F/O] σ−→ Ls

6(Z
−
2 ) ∆−→ SDIFF(M4 × I, ∂) N−→ [Σ(M4

+);F/O] −→ Ls
5(Z
−
2 ).

The groups Ls
5(Z
−
2 ) and Ls

6(Z
−
2 ) are isomorphic to 0 and Z2 respectively. Further-

more, the map σ is onto; in particular, if the relative surgery problem h : (V 2, S1) →
(D2, S1) has Kervaire invariant 1, then the product formulas for surgery obstruc-
tions imply that

h × id(M4) : (V × M4, S1 × M4) → (D2 × M4, S1 × M4)

represents a class u ∈ [Σ2(M4
+), F/O] such that σ(u) 6= 0. Therefore the map N is

bijective. Direct computation shows that [Σ(M4
+), F/O] ≈ H2(Σ(M4

+);Z2) ≈ Z2,
the isomorphism being given by the Sullivan class k2 : F/O → K(Z2, 2).

Let E(M4) be the topological monoid of homotopy self-equivalences of M4 based
at the identity. As in [KS2, §2] there is a canonical homomorphism

JM : π1(E(M4)) → Ss
DIFF(M4 × I, ∂) → [Σ(M4

+), F/O]

and the same considerations as in the proof of [KS2, Thm. 2.1, Case II, pp. 531–
532] show that W 5 must be a smooth product if JM is onto.

Suppose first that M4 ≈ RP4. In this case one can prove surjectivity as in [KS2,
Thm. 2.1, pp. 530–532]. More precisely, if ξ : S5 → S4 denotes the Hopf map, the
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argument shows that the composite

∇(ξ) : RP4 × I
pinch−→ RP4 × I ∨ S5 id∨ξ−→ RP4 × I ∨ S4

id∨proj−→ RP4 × I ∨RP4 fold−→ RP4 × I

defines a nontrivial normal invariant in [Σ(RP4), F/O]. This completes the proof
if M4 is (diffeomorphic to) RP4.

To prove the general case, we first note that π1(E(M4)) and π1(E(RP4)) are
canonically isomorphic. Specifically, if a : M4 → RP4 is a homotopy equivalence
and b is a homotopy inverse to a, then the correspondence is given by sending
ψ : I × RP4 → RP4 into the composite

ψM := b ◦ ψ ◦ (id × a).

Let Ψ and ΨM be the associated homotopy self-equivalences of I ×RP4 and I ×M4

given by (projI , ψ) and (projI , ψM ) respectively; by construction the restrictions of
both maps to the boundary are the identity, and therefore both determine relative
homotopy smoothings. We claim that the normal invariants satisfy N(ΨM ) =
(id × a)∗N(Ψ). If so, then the nontriviality of N(Ψ) for suitably chosen ψ (as
in the special case M4 ≈ RP4) will imply the nontriviality of N(ΨM ), and since
[Σ(M4

+), F/O] ≈ Z2 it will follow that JM is onto. As noted earlier, this will prove
the theorem in the exceptional case for M4.

To determine the relationship between N(ΨM ) and (id × a)∗N(Ψ), consider a
more general situation. Suppose we are given a homotopy self-equivalence f of
the manifold with boundary V such that the restriction to ∂V is the identity, and
suppose we are also given the homotopy equivalence A : (U, ∂U) → (V, ∂V ) such
that the map of boundaries is a diffeomorphism. Let B be a homotopy inverse to A
such that the induced map of boundaries is a diffeomorphism. Then the standard
formula for the normal invariant of a composite (cf. [Sh]) implies that

N(B ◦ f ◦A) = A∗N(f) +
(
A∗ ◦ ((f∗)−1 − 1)

)
N(A) ∈ [U/∂U, F/O].

In the case of interest to us here, this means that N(ΨM ) = (id × a)∗N(Ψ) if Ψ
induces the identity on [Σ(RP4

+), F/O]. But the latter is isomorphic to Z2, so the
automorphism Ψ∗ must be the identity. This completes the proof of the theorem
in the exceptional cases.

Proof of Corollary 1. Let S(V ), S(V ′) be free linear G-spheres which are equivari-
antly h-cobordant. Results of M. Atiyah and R. Bott (cf. [Mi, p. 409]) show
that S(V ) is equivariantly isometric with S(V ′). Consequently the h-cobordism is
inertial and Corollary 1 follows from the main theorem.

Proof of Corollary 2. The splitting of Σn as a twisted double D(W ) ∪f D(W ) fol-
lows directly from the main theorem. Since the equivariant diffeomorphism type of
the twisted double is uniquely determined by the pseudo-isotopy class of the equi-
variant diffeomorphism f : S(W ) −→ S(W ) and the latter is uniquely determined
by the pseudo-isotopy class of f/G : S(W )/G −→ S(W )/G, it suffices to know
that the set of all such pseudo-isotopy classes is finite. As noted in the proof of
Claim 2, the map f is equivariantly homotopic to the identity if the order of G is
≥ 3, and if G ≈ Z2, then f is equivariantly homotopic to either the identity or a
hyperplane reflection. Thus in all cases there are finitely many homotopy classes
of self-diffeomorphisms of S(W )/G that induce the identity on the fundamental
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group, and it suffices to show that there are only finitely many pseudo-isotopy
classes of self-diffeomorphisms that are homotopic to the identity. The group of all
such classes is a quotient of the structure set Ss

DIFF(S(V )/G× I, ∂), and inspection
of the surgery exact sequence shows that the latter is finite; therefore the number
of pseudo-isotopy classes is finite as required.

Remarks. (1) The assumption that the h-cobordism in our theorem be inertial is
clearly necessary, for the realization of Whitehead torsions by h-cobordisms leads to
nontrivial h-cobordisms between distinct fake spherical spaceforms. Various ques-
tions concerning inertial h-cobordisms and their Whitehead torsions were studied
in [H].

(2) One can also use the diagram (∗) in the proof of the main theorem to shorten
some arguments in [KS2]–[KS3].

Examples. To see that Corollary 2 does not extend to smooth semifree G-actions
on homotopy spheres with 1-dimensional fixed point sets, suppose that G has order
≥ 3, let W be a semifree G-representation of odd dimension ≥ 7 with 1-dimensional
fixed point set, and let α ∈ Lh

dimW+1(G) be arbitrary. By [BQ] there is a trans-
verse linear, G-isovariant normal cobordism X from the linear G-sphere S(W ⊕R)
to another G-manifold Y such that Y is transverse linearly isovariantly homotopy
equivalent to S(W ⊕R) and the relative surgery obstruction for the map of triads
X → S(W ⊕ R) × I is α. A diagram chase as in [Sc, §6] shows that the equi-
variant Whitehead torsion of the map Y → S(W ⊕ R) represents the image of α
under the homomorphism τ : Lh

dim W+1(G) → H∗(Z2;Wh(G)) in the Rothenberg
exact sequence relating Ls to Lh. On the other hand, if Y is a twisted double
D(W ) ∪f D(W ), then the Whitehead torsion vanishes [MS, proof of Thm. 3.1].
Since dimW + 1 is even, it follows that τ is nontrivial for many choices of G (e.g.,
most odd order cyclic groups), and in all such cases one has examples of the desired
type.
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