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INTEGRABILITY OF SUPERHARMONIC FUNCTIONS,
UNIFORM DOMAINS, AND HÖLDER DOMAINS

YASUHIRO GOTOH

(Communicated by Albert Baernstein II)

Abstract. Let S+(D) denote the space of all positive superharmonic func-
tions on a domain D ⊂ Rn. Lindqvist showed that log S+(D) is a bounded
subset of BMO(D). Using this, we give a characterization of finitely connected
2-dimensional uniform domains and remarks on Hölder domains.

1. Notation and main result

Let S+(D) and H+(D) denote the spaces of all positive superharmonic and
positive harmonic functions on a domain D ⊂ Rn, n ≥ 2, respectively. The quasi-
hyperbolic metric kD on D is defined by

kD(x, y) = inf
γ

∫
γ

ds

d(·, ∂D)
,

where d denotes the Euclidean distance, and the infimum is taken over all rectifiable
curves γ ⊂ D joining x to y (cf. [2]). We say that D is a Hölder domain if

kD(x, x0) ≤ 1
α

log
(

2 +
1

d(x, ∂D)

)
+ C, x ∈ D,

for some α, C > 0. Note that D is a Hölder domain iff supx∈D

∫
Bx

epkD(·,x0)dm < ∞
for some p > 0, where Bx denotes the ball with center x and radius d(x, ∂D)/2,
and m denotes the n-dimensional Lebesgue measure. Smith-Stegenga showed the
following remarkable characterization of Hölder domains, which asserts that the
local exponential integrability of the quasihyperbolic metric implies the global one:

Proposition 1.1 ([9]). If D is a Hölder domain in Rn, then
∫

D
epkD(·,x0)dm < ∞

for some p > 0.

Using this or a similar BMO argument, Smith-Stegenga, Masumoto, and
Stegenga-Ullrich investigated the Lp integrability of S+(D) functions:

Proposition 1.2 ([10], [7], [11], cf. [12]). If D is a Hölder domain in Rn, then
S+(D) ⊂ Lp(D) for some p > 0. Conversely, if D is a finitely connected sub-
domain of R2 and S+(D) ⊂ Lp(D) for some p > 0, then D is a Hölder domain.
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Lindqvist clarified the argument of Stegenga-Ullrich by showing the following.
Let BMO(D) be the space of all locally integrable functions f on D satisfying

‖f‖∗,D = sup |B|−1

∫
B

|f − fB|dm < ∞,

where the supremum is taken over all balls B in D, |B| = m(B), and fB denotes
the integral mean of f over B.

Proposition 1.3 ([4]). For an arbitrary subdomain D of Rn, we have

‖ logu‖∗,D ≤ C(n), u ∈ S+(D).

In our former paper [3], we obtained various estimations for the integrability of
BMO(D) functions. So, Lindqvist’s theorem immediately provides the correspond-
ing results for S+(D). Now we state one of them.

We say that a proper subdomain D of Rn is a uniform domain if

kD(x, y) ≤ C log
(

2 +
d(x, ∂D) + d(y, ∂D) + |x− y|

min{d(x, ∂D), d(y, ∂D)}
)

, x, y ∈ D,

for some C > 0. Each bounded uniform domain is Hölder. For p > 0 and a
measurable subset E of Rn, we set

Np(E) = |E|−1 inf
y∈Rn

(∫
E

|x− y|pdm(x)
) n

n+p

.

Np(E) is invariant under similarities of Rn, and a kind of distance between E and
balls. Then from [3], Theorem 5.3, we have

Theorem 1.1. If D is a uniform domain in Rn, then there exist constants p0, p,
C > 0 such that for each u ∈ S+(D) and each measurable subset E of D, we have(

|E|−1

∫
E

updm

)(
|E|−1

∫
E

u−pdm

)
≤ CNp0(E)2.

Our main aim of the present paper is to show that the converse holds if D is a
finitely connected subdomain of R2:

Theorem 1.2 (Main Theorem). Let D be a finitely connected proper subdomain of
R2. Assume that there exist constants p0, p, C > 0 such that for each u ∈ S+(D)
and each measurable subset E of D, we have(

|E|−1

∫
E

updm

)(
|E|−1

∫
E

u−pdm

)
≤ CNp0(E)2.

Then D is a uniform domain.

The proof of the Main Theorem is given in §2. In §3, we list some other immediate
consequences of Lindqvist’s theorem and of the author [3]. Using these results, we
investigate the integrability of S+(D) functions on Hölder domains (§4) and the
boundedness of domains with some integrability condition for S+(D) (§5).

The author would like to thank the referee for his helpful comments and sugges-
tions.
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2. Proof of the Main Theorem

To prove the Main Theorem, we need a lemma, which also plays a fundamental
role in §§4 and 5. From the Harnack inequality, | log u(x) − log u(y)| ≤ CkD(x, y),
x, y ∈ D, holds for each u ∈ H+(D), where C = C(n) > 0. Conversely,

Lemma 2.1. Let D be a finitely connected proper subdomain of R2. Assume that
each boundary component contains more than two points. Then there exist constants
C1, C2 > 0 such that for each pair of points x1, x2 on D, we can find a pair of an
arc γ joining x1 to x2 and a H+(D) function u satisfying∫

γyz

ds

d(·, ∂D)
≤ C1(log u(y)− log u(z)) + C2, y, z ∈ γ,

where γyz denotes the portion of γ joining y to z and y is between z and x2.

Proof. Since kD is conformally invariant modulo constant factors, we may assume
that D is a bounded domain surrounded by a finite number of circles, and that x1

and x2 are sufficiently close to some boundary components F1 and F2, respectively.
We may assume F1 6= F2. A similar argument holds when F1 = F2. We may
also assume that F1 = {|x| = 1}; the outer boundary of D, and F2 = {|x| = a},
0 < a < 1. Take b > 0 so that {a < |x| < a+2b} ⊂ D, {1− 2b < |x| < 1} ⊂ D. Let
xj = rje

iθj , j = 1, 2. Let γ1 and γ2 be the segments joining x1 to x′1 = (1 − b)eiθ1

and x′2 = (a + b)eiθ2 to x2, respectively. We can take an arc γ′ ⊂ D joining
x′1 to x′2 so that

∫
γ′ d(·, ∂D)−1ds ≤ C. Let u be the Martin kernel function for

x′′2 = aeiθ2 ∈ ∂D, i.e.

u(x) = lim
D3y→x′′2

(gD(x, y)/gD(x0, y)),

where gD is the Green function on D and x0 is a fixed point on D. Then it is easy
to check that u(x) ≈ (|x| − a)−1, x ∈ γ2, u(x) ≈ 1 − |x|, x ∈ γ1, and u(x) ≈ 1,
x ∈ γ′. So γ = γ1 ∪ γ′ ∪ γ2 and u satisfy the required condition.

Proof of the Main Theorem. Assume that D satisfies the condition of the Main
Theorem. In general, if D is uniform, then D \ {x}, x ∈ D, is also uniform. Thus
we may assume that D has no punctures. Let x, y ∈ D and set l = |x − y|. We
may assume that d(x, ∂D) ≤ d(y, ∂D) ≤ l. Let r = d(x, ∂D)/2 and Bx (resp.By)
denote the ball with center x (y) and radius r. Let E = Bx ∪ By. From Lemma
2.1, there exists a H+(D) function u, u(y) = 1, satisfying

kD(x, y) ≤ C1 log u(x) + C.

Then

∫
E

updm ≥ CrnepC−1
1 kD(x,y),

∫
E

u−pdm ≥ Crn, |E|Np0(E) ≤ C(lp0rn)
n

n+p0 .

Hence

epC−1
1 kD(x,y) ≤ C

(
l

r

) 2np0
n+p0

,

and so D is a uniform domain.
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3. Some other direct consequences of Lindqvist’s theorem

In the present section, we list some other consequences of Lindqvist’s theorem
and of the author [3]. For a weight w on a ball B, we set

Mp(w, B) =



ess supBw, p = ∞,(
|B|−1

∫
B

wpdm

) 1
p

, p 6= 0, p 6= ±∞,

exp
(
|B|−1

∫
B

log w dm

)
, p = 0,

ess infBw, p = −∞.

Mp(w, B) is a non-decreasing function of p. Let A(D) denote the space of all balls
B on D satisfying d(B, ∂D) ≥ rad(B), where rad(B) denotes the radius of B.
We say that a weight w on a domain D satisfies the A∞ condition locally on D
(w ∈ Aloc

∞ (D)) if 0 < M1(w, B) ≤ KM0(w, B) < ∞, B ∈ A(D), for some K > 0.
The typical example of Aloc∞ (D) weights are given by

w = d(·, ∂D)α(kD(·, x0) + 1)βuγ , α, β ∈ R, −∞ < γ < n
n−2 , u ∈ S+(D).

Lemma 3.1. Let u ∈ S+(D), −∞ ≤ p < n
n−2 ( n

n−2 = ∞ if n = 2), and B ∈ A(D).
Then 0 < Mp(u, B) ≤ CM−∞(u, B) < ∞, where C = C(n, p) > 0.

Proof. Let gD(·, y) be the Green function on D with pole y. We may assume 1 ≤
p < n

n−2 . From the Harnack inequality, it is easy to check that Mp(gD(·, y), B) ≤
CM−∞(gD(·, y), B), B ∈ A(D). Since each S+(D) function can be approximated
by an increasing sequence of Green potentials, we may assume that u is a Green
potential of a positive measure ν on D. Then

Mp(u, B) ≤
∫

D

Mp(gD(·, y), B)dν(y) ≤ C

∫
D

M−∞(gD(·, y), B)dν(y) ≤ CM−∞(u, B).

If w ∈ Aloc∞ (D), then log w ∈ BMO(D). So Lemma 3.1 gives another proof of
Lindqvist’s theorem. Let φ be a non-negative, non-decreasing, continuous function
on [0,∞) such that φ(t) > 0, t > 0. We say that φ is tame if φ(t+1) ≤ Cφ(t), t ≥ 1.
Let x0 ∈ D, and let B0 be the ball in D with center x0 and radius d(x0, ∂D)/2.
Then from [3], Theorem 2.3, we have

Theorem 3.1. Let φ be tame, D a proper subdomain of Rn, w a Aloc
∞ (D) weight

with constant factor K, and E a measurable subset of D. Assume that∫
E

φ(p0kD(·, x0))wdm < ∞

for some p0 > 0. Then for each p, 0 < p < C1 min{p0, 1}, and each u ∈ S+(D),
we have∫

E

φ(p| log u− (log u)B0 |)wdm ≤ C2

(∫
B0

wdm +
∫

E

φ(p0kD(·, x0))wdm

)
,

where C1 = C1(n, K, φ) > 0 and C2 = C2(n, K, φ, p0) > 0.
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This result has an advantage in that it gives an estimation of S+(D) functions
not only from above but also from below. It is to be noted that from Lemma 3.1, we
may replace the constant (log u)B0 (= log M0(u, B0)) with log Mp(u, B0), −∞ ≤
p < n

n−2 , in particular, with log(minB0 u) or log(uB0). As to H+(D) functions,
Theorem 3.1 is rather trivial, because the pointwise version | log u(x)− log u(x0)| ≤
CkD(x, x0) holds by the Harnack inequality. In the case of φ(t) = et, tp, we have

Corollary 3.1. Let D, w and E be as above. Assume that
∫

E ep0kD(·,x0)wdm < ∞
for some p0 > 0. Then for each p, 0 < p < C1 min{p0, 1}, we have∫

E

u±pwdm ≤ C2(uB0)
±p

(∫
B0

wdm +
∫

E

ep0kD(·,x0)wdm

)
, u ∈ S+(D),

where C1 = C1(n, K) > 0 and C2 = C2(n, K, p0) > 0.

Corollary 3.2. Let D, w and E be as above. Let 0 < p < ∞. Assume that∫
E kp

D(·, x0)wdm < ∞. Then∫
E

| log u|pwdm ≤ C

(∫
B0

wdm +
∫

E

kD(·, x0)pwdm

)
, u ∈ S+(D), uB0 = 1,

where C = C(n, K, p) > 0.

As to the non-weighted case, from [3], Corollary 5.2, we have

Theorem 3.2. Let D be a proper subdomain of Rn and E a measurable subset of
D. Assume that

∫
E ep0kD(·,x0)dm < ∞ for some p0 > 0. Then Np0(E) < ∞ and

for each p, 0 < p < C1 min{p0, 1}, and each u ∈ S+(D), we have

(∫
E

updm

)(∫
E

u−pdm

)
≤ C2

(
(|E|Np0(E))2 +

(
inf

x0∈D

∫
E

ep0kD(·,x0)dm

)2
)

,

where C1 = C1(n) > 0, and C2 = C2(n, p0) > 0.

Note that, in general, we can omit neither the first term nor the second term on
the right side of the inequality (cf. the Main Theorem).

4. Remarks on the Hölder domain

In the present section, we give some characterizations of finitely connected Hölder
domains in R2. First, we show the following analogy of Proposition 1.2. Recall
that B0 is the disk with center x0 and radius d(x0, ∂D)/2.

Theorem 4.1. If D is a Hölder domain in Rn, then
∫

D u−pdm ≤ C(uB0)−p,
u ∈ S+(D), for some p, C > 0. Conversely, if D is a finitely connected subdomain
of R2 and

∫
D

u−pdm ≤ C(uB0)−p, u ∈ S+(D), for some p, C > 0, then D is a
Hölder domain.

Proof. Assume that D ⊂ R2 is finitely connected and that
∫

D u−pdm ≤ C(uB0)−p,
u ∈ S+(D), for some p, C > 0. Since positive constants are in S+(D), D must
have finite area. In general, if D is Hölder, then D \ {x}, x ∈ D, is also Hölder. So
we may assume that D has no punctures. Let x ∈ D. From Lemma 2.1, we can
take u ∈ H+(D), u(x0) = 1, so that kD(x, x0) ≤ −C1 log u(x) + C. Then

d(x, ∂D)2 exp(pC−1
1 kD(x, x0)) ≤ C

∫
B0

u−pdm ≤ C,
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so D is Hölder. The remaining implication follows from Corollary 3.1 and Propo-
sition 1.1.

Next, we consider another class of harmonic functions. Let QLH(D) be the
space of all harmonic, Lipschitz continuous functions h on D with respect to the
quasihyperbolic metric endowed with the norm

‖h‖L = sup
x∈D

|∇h(x)|d(x, ∂D).

Then QLH(D) agrees with the space of all harmonic BMO(D) functions, and the
norms ‖ · ‖∗,D and ‖ · ‖L are comparable with constant factors depending only on
n. Smith-Stegenga [9] showed that a domain D is a Hölder domain iff we can take
p > 0 so that

∫
D

ep|f |dm < ∞ holds for each f ∈ BMO(D), ‖f‖∗,D ≤ 1. We show
that we may replace BMO(D) with its subspace QLH(D) under some additive
condition:

Theorem 4.2. Let D be a proper subdomain of R2 which is conformally equivalent
to some Hölder domain. Assume that there exist constants p, C > 0 such that∫

D

ep|h−h(x0)|dm ≤ C, h ∈ QLH(D), ‖h‖L ≤ 1.

Then D is a Hölder domain.

Lemma 4.1. Let D be as above. Then there exist constants C1, C2 > 0 depending
only on D and x0 such that for each x ∈ D we can find a real QLH(D) function
h, ‖h‖L ≤ 1, h(x0) = 0, so that kD(x, x0) ≤ C1h(x) + C2.

Proof. Since kD (and so QLH(D)) is conformally invariant, we may assume that
D is a Hölder domain from the beginning. Let x ∈ D. Take x′ ∈ ∂D so that
d(x, ∂D) = |x− x′|. Let h(y) = log |y − x′|. Then ‖h‖L ≤ C and

|h(x) − h(x0)| ≥ log
1

d(x, ∂D)
− C ≥ CkD(x, x0)− C.

Proof of Theorem 4.2. Assume that D satisfies the condition of Theorem 4.2 with
p = p0. Let x ∈ D. Take a real QLH(D) function h satisfying the condition of the
lemma above. Let B = {y | |y − x| ≤ d(x, ∂D)/2}. Then kD(x, x0) ≤ C1h(y) + C,
y ∈ B, and so for p = p0C

−1
1 , we have

d(x, ∂D)2epkD(x,x0) ≤ C

∫
B

ep0hdm ≤ C.

Thus D is a Hölder domain.

Combining Proposition 1.2, and Theorems 4.1, 4.2, we have

Corollary 4.1. For a finitely connected proper subdomain D of R2, the following
conditions are equivalent:
(1) D is a Hölder domain;
(2)

∫
D

updm ≤ Cu(x0)p, u ∈ S+(D), holds for some p, C > 0;
(3)

∫
D u−pdm ≤ Cu−p

B0
, u ∈ S+(D), holds for some p, C > 0;

(4)
∫

D ep|h−h(x0)|/‖h‖Ldm ≤ C, h ∈ QLH(D), holds for some p, C > 0.
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Note that since log |x − x1|, x1 ∈ ∂D, belongs to QLH(D), if D satisfies the
condition (4), then D has finite area, and so is conformally equivalent to some
Hölder domain.

Finally in the present section, we give a remark on Lipschitz domains. We
say that a bounded domain D in Rn is k-Lipschitz (k > 0) if D and ∂D are
given locally by a Lipschitz function whose Lipschitz constant is at most k. Each
Lipschitz domain is a uniform domain. For various estimations of S+(D) functions
on Lipschitz domains, see Maeda-Suzuki [5], Masumoto [6], and Aikawa [1]. Let
α = αn(tan−1(1/k)), where αn denotes the maximal order of barriers (cf. [5]). Let
D be a k-Lipschitz domain. Then it is known that if

0 < p < min{n/(n + α− 2), 1/(α− 1)},
then

∫
D

updm ≤ Cu(x0)p, u ∈ S+(D), holds ([6], [1]). Moreover, from the estima-
tion u(x) ≥ Cd(x, ∂D)αu(x0), u ∈ H+(D), it is easy to see that if 0 < p < 1/α,
then

∫
D u−pdm ≤ Cu(x0)−p, u ∈ H+(D), holds.

5. Boundedness of domains with some integrability condition

In the present section, we give another application of Lindqvist’s theorem and [3].
We investigate integrability conditions for H+(D) which ensure the boundedness
of D. Proposition 1.2 shows that if D is a finitely connected plane domain, then
the Lp integrability of H+(D) is one such condition. Recall that B0 is a ball with
center x0 and radius d(x0, ∂D)/2.

Theorem 5.1. Let φ be tame.
(1) Let

∫∞
1

φ(t)−1dt < ∞. Let D be a finitely connected proper subdomain of R2

and at least one boundary component contain more than two points. Assume
that ∫

D

φ(p log+ u)dm ≤ C1, u ∈ H+(D), u(x0) = 1,

holds for some p, C1 > 0. Then for each x ∈ D we can take an arc γ on D
joining x0 to x so that |γ| ≤ C2, where C2 = C2(D, x0, φ, p) > 0. In particular,
D is bounded.

(1)′ In (1), we may replace log+ u with log+ 1
u .

(2) Conversely, let
∫∞
1

φ(t)
−1

n−1 dt = ∞. Then there exists an unbounded proper
subdomain D of Rn which is homeomorphic to an open ball satisfying∫

D

φ(p| log u|)dm ≤ C, u ∈ S+(D), uB0 = 1,

for some p, C > 0.

Proof of Theorem 5.1. (2) follows from Theorem 3.1, Lindqvist’s theorem, and [3],
Theorem 6.1. Next, assume that φ and D satisfy the condition in (1) with p = p0.
We may assume that D has no punctures. Let x ∈ D. From Lemma 2.1, we can
take a pair of an arc γ : x = x(t), 0 ≤ t ≤ a, joining x0 to x and a H+(D)
function u, u(x0) = 1, satisfying

∫
γy

ds
d(·,∂D) ≤ C log u(y) + C, y ∈ γ. Let t0 = 0

and set t1 = max{t > t0 | |x(t) − x(t0)| ≤ d(x(t0), ∂D)/2}. If t1 < a, then set
t2 = max{t > t1 | |x(t) − x(t1)| ≤ d(x(t1), ∂D)/2}. Repeating this process, we
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obtain a sequence 0 = t0 < t1 < · · · < tk−1 < tk = a. We may assume k ≥ 4. Set
xj = x(tj). Since

∫ tj+1

tj
d(x(t), ∂D)−1|dx(t)| ≥ C, 0 ≤ j ≤ k − 2, we have

j ≤ C

∫ tj

0

|dx(t)|
d(x(t), ∂D)

≤ C1 log u(xj) + C, 0 ≤ j ≤ k − 1.

Let Bj , j ≥ 2, be the ball with center xj and radius rj = d(xj , ∂D)/10. Then Bj ,
0 ≤ j ≤ k − 1, are disjoint. Thus, for p = p0C

−1
1 , we have

k−1∑
j=2

rj ≤
( k−1∑

j=2

φ(pj)−1

)1/2( k−1∑
j=2

φ(pj)r2
j

)1/2

≤ C

(∫ ∞

p

φ(t)−1dt

)1/2(∫
D

φ(p0 log+ u)dm

)1/2

.

Let γ′ be the associated polygon joining x0, x1,...,xk. Then |γ′| ≤ C
∑k−1

j=2 rj ,
hence (1) follows. Finally, if we take u ∈ H+(D), u(x0) = 1, so that

∫
γy

ds
d(·,∂D) ≤

−C log u(y) + C, y ∈ γ, and repeating the argument above, we get (1)′.

Corollary 5.1.
(1) Let 1 < p < ∞. Let D be a finitely connected proper subdomain of R2 and at

least one boundary component contain more than two points. Assume that∫
D

(log+ u)pdm ≤ C, u ∈ H+(D), uB0 = 1,

for some C > 0. Then D is bounded.
(1)′ In (1), we may replace log+ u with log+ 1

u .
(2) Let 0 < p ≤ n − 1. Then, there exists an unbounded proper subdomain D of

Rn which is homeomorphic to an open ball satisfying∫
D

| log u|pdm ≤ C, u ∈ S+(D), uB0 = 1,

for some C > 0.
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