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Abstract. The aim of this paper is to determine the existence condition of

the moduli space of SU(3)-flat connections on 3-holed 2-sphere D, the so-

called pair of pants, and to study its relationship to the ŝl(3; C) fusion rules.
The existence condition can be expressed by a system of inequalities with the
entries of highest weights with respect to the fundamental weights. This gives
a necessary condition for the fusion coefficents to be nontrivial. We also find
that the fusion coefficient of a triplet of extremal highest weights equals one.
This can be considered a quantum counterpart of the PRV-conjecture.

1. Introduction

Let G = SU(3). Then the set of conjugacy classes of G can be identified with a
triangular domain ∆ in t, the Lie algebra of a fixed maximal torus T of G. Fixing
a triplet Θ = (α, β, γ) ∈ ∆3, we consider the moduli space MD,Θ of SU(3)-flat
connections on D associated to Θ. Our main result is the following; the moduli
space MD,Θ is not empty if and only if the entries of α, β and γ satisfy all the
following 18 inequalities:{

ασ(1) + βσ(1) + γσ(3) ≥ 0, ασ(1) + βσ(2) + γσ(2) ≥ 0,
ασ(1) + βσ(3) + γσ(3) ≤ 0, ασ(2) + βσ(2) + γσ(3) ≤ 0,

(1.1)

ασ(1) + βσ(1) + γσ(2) ≤ 2π, ασ(2) + βσ(3) + γσ(3) ≥ −2π.(1.2)

Here σ ∈ Z/3Z acts on the index set
{
i, j, k

}
of the left hand side αi + βj + γk of

each inequality as cyclic renumbering (Theorem 3.3).
This condition is obtained by studying the map Fαβ : T \G/T → ∆ which is

defined from the equation specifying MD,Θ. This map is closely related to the
moment map, and has a polygonal image denoted by Q = Q(α, β). The above
condition (1.1), (1.2) is equivalent to the one that γ∗ = (−γ3, −γ2, −γ1) ∈ ∆ is
included in Q ⊂ ∆. By investigating the inverse image F

−1

αβ(γ∗), we also determine
the topological type of MD,Θ : this moduli space is homeomorphic to S2 if γ∗ is
located in the interior of Q, or one point if γ∗ on the boundary of Q (Theorem
3.4). It was already shown by [B] that this moduli space is either empty, a point
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or S2 under the assumption that the space of stable bundles coincides with that of
semistable bundles, whereas our result does not require this assumption.

Let P+(3; K) be the set of level K dominant integral weights of affine Lie alge-
bra ŝl(3; C) for a fixed positive integer K called the level, and ∆∗ be the triangular
region, the so-called alcove, defined as the convex hull spanned by P+(3; K). Con-
structing a natural isomorphism f : ∆

∼=−→ ∆∗, we set λ = f(α), µ = f(β) and
ν = f(γ) and denote the image of Q = Q(α, β) by Q∗ = Q∗(λ, µ) under f .
Then the condition given in Theorem 3.3 is translated into the analogous results
in terms of λ, µ and ν. On the other hand, according to [KMSW], the ŝl(3; C)
fusion rules are completely determined by the Berenstein-Zelevinsky triangles (see
(4.1)). Using this description, it is proved that the fusion coefficient Nν∗

λµ = 0
unless λ, µ and ν satisfy the condition This means that, if the fusion coefficient
Nλµν = Nν∗

λµ does not vanish, then the moduli space MD,Θ associated to the triplet
Θ =

(
f−1(λ), f−1(µ), f−1(ν)

) ∈ ∆3 is not empty. It confirms the correspondence
between the space of conformal blocks and the space of generalized theta functions
(in case of G = SU(3)), which was suggested by Witten ([W]) and was proved by
[F], [BL] and [KNR]. We, furthermore, show that the non-zero fusion coefficient
Nν

λµ corresponding to ν on the boundary of Q∗(λ, µ) must be exactly one, which
is known as the PRV-conjecture in the classical case ([PRV], [Ku]).

2. The moduli space MD,Θ and the map Φαβ

2.1. The definition of MD,Θ and Φαβ. For the standard maximal torus T of
G = SU(3) as diagonal matrices, we set

∆ =
{
(η1, η2, η3)

∣∣ η1 + η2 + η3 = 0, η1 ≥ η2 ≥ η3, η1 − η3 ≤ 2π
}
,

which is naturally regarded as a subset of t = Lie(T ). Then ∆ is identified with the
space of conjugacy classes G/AdG of G. Fixing a triplet Θ = (α, β, γ) ∈ ∆3, we
assign these conjugacy classes to each component of the boundary of an oriented
3-holed 2-sphere D and denote them by Cα, Cβ and Cγ respectively. We may
also denote by Cη (η = α, β, γ) the elements of the fundamental group π1(D, ∗)
represented by simple closed curves freely homotopic to Cη based at a fixed point
∗ on D. Then the moduli space treated in this paper is defined by

MD,Θ =
{
ρ ∈ Hom

(
π1(D, ∗), G) ∣∣ ρ(Cη) ∼ eη (η = α, β, γ)

}
/AdG

=
{
(gα, gβ , gγ) ∈ G3

∣∣ gαgβgγ = 1, gη ∼ eη (η = α, β, γ)
}/

AdG.
(2.1)

Here gη = ρ(Cη) for ρ ∈ Hom
(
π1(D, ∗), G)

and gη ∼ eη means that gη is conjugate
to eη = exp(η) ∈ T for η ∈ ∆. It is well known that MD,Θ can be identified with
the moduli space of smooth flat G-connections on D the conjugacy classes of whose
holonomies along the oriented loops Cη are equal to η (η = α, β, γ). So we call it
the moduli space of SU(3)-flat connections on D associated to Θ.

The equation gαgβgγ = 1 in (2.1) can be rewritten as eαheβh−1 = h′e−1
γ h′−1

for some elements h, h′ ∈ G. For SU(3), the conjugacy class of an element is
completely determined by the value of its trace and hence the equation above holds
if and only if there exists h ∈ G satisfying tr

(
eαheβh−1

)
= tr

(
e−1

γ

)
. So, for two

fixed conjugacy classes α, β ∈ ∆, we define a map Φ̃αβ : G → C by

Φ̃αβ(h) = tr
(
eαheβh−1

)
.(2.2)
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Let ∆′ = tr
(
exp(∆)

) ⊂ C, then ∆′ is the target space of Φ̃αβ a priori and a
connected and simply connected region enclosed by the cycloid ∂∆′ =

{
2e

√−1θ +

e−2
√−1θ ∈ C | 0 ≤ θ ≤ 2π

}
. The composition ∆

exp−→ T
tr−→ ∆′ is a homeomorphism

and we introduce the map F̃αβ : G
Φ̃αβ−→ ∆′ ∼=−→ ∆.

To determine the existence condition of MD,Θ, we shall investigate the image
of this map and describe it in terms of α, β. Because the map (2.2) is invariant
under the action of T on G from both sides, it descends to Φαβ : T \G/T −→ ∆′,
as does the map F̃αβ to Fαβ : T \G/T → ∆. Of course, the image of Fαβ (resp.
Φαβ) coincides with that of F̃αβ (resp. Φ̃αβ).

2.2. The description of T \G/T via the Bruhat decomposition. The main
purpose of section 2 is to describe the image ImΦαβ and to determine the inverse
image of a point in ImΦαβ . To carry this out, the topological type of the set of
quotient singularities of T \G/T plays an important role because it almost coincides
with the quotient image of the critical point set of Φαβ : G/T → ∆′. We describe
it by making use of the Bruhat decomposition of GC (see [S] for a full accoount).

Let GC, H = TC be the complexification of G, T respectively and B be a
Borel subgroup containing H . The Bruhat decomposition of GC gives rise to a cell
decomposition of the flag manifold G/T ≈ GC/B = qw∈W BẇB/B. Here W is
the Weyl group with respect to H , and ẇ is a representative of w ∈ W in N , the
normalizer of H in GC. We denote the set of positive roots by R+, the set of simple
roots by Σ, and the set of generators of W corresponding to Σ by S. Noticing
that Bruhat cells depend on the choice of S (or Σ), we denote each Bruhat cell
BẇB/B = NẇB/B by XS(w).

The left action of T on GC/B is not free. In order to describe all the sets
of singularities, we consider the left action of W on T \GC/B descending from the
natural left action of W on GC/B. In particular, the natural projection π : GC/B →
T \GC/B is equivariant with respect to the action of W . By this action, w1 ∈ W
translates each Bruhat cell XS(w) to

w1X
S(w) = exp

( ⊕
α∈R−(w)

gw1(α)

) ˙(w1w)B
/

B,(2.3)

where R−(w) = {α ∈ R+ | − w(α) ∈ R+}. We denote (2.3) by XS
w1

(w) and call it
a w1-shifted Bruhat cell centered at ˙w1w ∈ GC/B. Using the shifted Bruhat cells,
we define the singular 1-cell connecting w and ws in T \G/T ≈ T \GC/B by

e1
(
w, ws) = T \XS

w(s)

for w ∈ W and s ∈ S. Here w = T ẇB ∈ T \GC/B. Regardless of the choice of
S, s ∈ S and w ∈ W , XS

w(s) is isomorphic to the complex plane C and T acts on
it as the ordinary action of S1 = {z ∈ C

∣∣ |z| = 1}. Hence each singular 1-cell is
homeomorphic to the closed interval [0, 1]. We can show that the union of singular
1-cells coincides with the quotient image of the part on which the action of T is not
free. We denote it by S ⊂ T \G/T and call it the singular locus of T \G/T .

Consider the graph Γ(S3) with a vertex for each element of S3(∼= W ) and an
edge connecting the vertices corresponding to w, w′ ∈ S3 whenever w and w′

satisfy

w′ = ws(2.4)
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for a transposition s ∈ S3. It is also proved from the description (2.3) that any two
singular 1-cells intersect only at their end points and therefore S is homeomorphic
to Γ(S3).

We also define a higher dimensional analogue of a singular 1-cell. For w ∈
W and S =

{
si, sj

}
, the singular 2-cell determined by the ordered quadruplet{

w, wsi, wsj , wsisj

}
is defined as

e2(w, wsi, wsj , wsisj) = T \XS
w(sisj).

The following properties hold for these singular 2-cells.

Lemma 2.1. For each cycle consisting of four singular 1-cells in S, there exists a
singular 2-cell whose boundary is a union of the four singular 1-cells. In particular,
each singular 2-cell is homeomorphic to the product of two closed intervals. In this
correspondence, points in the singular locus S are mapped to vertices of cones.

Proof. The four vertices in such a cycle can always be written as
{
w, wsi, wsj ,

wsisj

}
with an appropriate choice of S =

{
si, sj

}
and w ∈ W . Owing to the

W -equivariance of π : GC/B → T \GC/B, we have only to check the case for the
quadruplet

{
1, si, sj , sisj

}
. It is easy to see that XS

1 (sisj) ≈ C2 and T \XS
1 (sisj) ≈

[0, 1)2 whose boundary is a union of e1
(
si, sisj) \ {si} and e1

(
sj , sisj) \ {sj} con-

nected at sisj. On the other hand, according to the closure relation for the Bruhat
decomposition,

T \
(
XS

1 (sisj) \XS
1 (sisj)

)
= T \

(
XS

1 (si) ∪ XS
1 (1) XS

1 (sj)
)

= e1
(
1, si) ∪ 1 e1

(
1, sj).

So ∂e2(1, si, sj , sisj) is the cycle chosen at the beginning and e2(1, si, sj , sisj) ≈
[0, 1]× [0, 1].

We conclude this subsection with a description of the local topology around the
singular locus S in T \G/T . This is a key lemma in determining the image of the
map Φαβ : T \G/T → ∆′ and the fiber Φ

−1

αβ(z) above z in its image.

Lemma 2.2. For an arbitrary point x ∈ S which does not coincide with w ∈
S (w ∈ W ), there is a neighborhood NT\G/T (x) which is homeomorphic to the
product of an open interval and a cone on the 2-dimensional sphere S2. In this
correspondence, points in the singular locus S are mapped to vertices of cones.

Proof. Note that any shifted 1-dimensional Bruhat cell is included in a shifted big
cell. Again, due to the W -equivariance of the natural projection π, it suffices to show
the assertion for the special case such as XS

1 (s3) and XS′
1 (s3) where S = {s1, s2}

and S′ = {s2, s3}. Then we can choose as a coordinate for these cells

U =


1 z1 z3

1 z2

1

 ∼= XS
1 (s3), V =


1 z3

1
1

 ∼= XS′
1 (s3),

on which T acts by the adjoint action. Choosing a point in V such that z3 = x ∈
R>0 as a lift x̃ ∈ XS′

1 (s3) of x ∈ T \XS′
1 (s3), we take a neighborhood Ux̃ of x̃ as

follows:

Ux̃ =


1 z1 z3

1 z2

1

 ∈ U

∣∣∣∣∣ |z1|2 + |z2|2 < r2

x− ε < |z3| < x + ε

 ,
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where r and ε are sufficiently small positive constants. The quotient space T \Ux̃

gives the neighborhood NT\G/T (x). Other cases are proved similarly.

2.3. The image of the map Φαβ. It is an easy exercise to deduce the next lemma
from the explicit description (2.2) of Φ̃αβ(h) with matrices because it depends only
on the absolute values of the entries of h. For w ∈ W , set zw = tr

(
exp(α+w(β))

)
=

Φαβ(w).

Lemma 2.3. Let P̃ be the convex hull in C spanned by
{
zw

}
w∈W

. Then the image

of the map Φαβ is contained in the intersection of P̃ and ∆′.

Let lww′ (w, w′ ∈ W ) be the image of e1(w, w′) under the map Φαβ . It is easy
to see that lww′ is a segment connecting zw and zw′ in ∆′ ⊂ C and that e1(w, w′)
is homeomorphically projected onto lww′ by Φαβ if zw and zw′ are distinct. We
denote by P the connected and simply connected region enclosed by Φαβ(S) =⋃
{w, w′} lww′, where

{
w, w′} ranges over all the pairs of the elements of W ∼= S3

satisfying (2.4). By virtue of Lemma 2.1, P is contained in ImΦαβ . In short,
P ⊂ ImΦαβ ⊂ P̃ ∩∆′. It is obvious that ImΦαβ = P = P̃ if P is convex. If P is
not convex, namely P has a vertex where the corresponding internal angle of P is
greater than π, P and P̃ do not coincide and ImΦαβ cannot be determined from
this information alone. We say that such a vertex is located at the concavity of P .

The image ImΦαβ depends on the choice of α, β ∈ ∆. There are six zw’s and
ImΦαβ = P = P̃ is generally (but not always) a hexagon. Especially α and β

located on the boundary ∂∆ strongly affect ImΦαβ . Since the expected existence
condition of MD,Θ must be symmetric in α, β and γ, we have only to study the
case where both α and β are located on ∂∆ and the one where neither of them is
on ∂∆. In the former case, we can easily show that ImΦαβ forms a segment one
of whose ends is on ∂∆′, which is included in the case ImΦαβ = P = P̃ . In the
following, we assume that neither α nor β is on the boundary ∂∆ and call α, β
generic for this case. The next lemma specifies the boundary of ImΦαβ .

Lemma 2.4. Let α, β be generic. The set of critical values of the map Φαβ :
G/T → ∆′ consists of

⋃
{w, w′} lww′ where

{
w, w′} ranges over all the pairs of the

elements of W ∼= S3 satisfying (2.4), and a part of ∂∆′ if the image ImΦαβ has
an intersection with ∂∆′. In particular, S is just the quotient image of the critical
point set corresponding to

⋃
{w, w′} lww′.

Proof. For h ∈ G and the vector field X on G/T determined by X ∈ g,

(dΦαβ)[h] (X) = tr
(
eβh−1eαh

(
id−Ad(eβ)

)
(X)

)
= 2

√−1
(
(Im

∑
i<j

yij ḡi1gj1)(e
√−1θ1 − e

√−1θ3)

+ (Im
∑
i<j

yij ḡi2gj2)(e
√−1θ2 − e

√−1θ3)
)
,

where g = (gij) is a certain element of G such that eβh−1eαh = geθg
−1 for θ ∈ ∆

and
(
id−Ad(eβ)

)
(X) = (yij). There are two cases where rankR (dΦαβ)[h] < 2. An

easy calculation shows that either Im
∑

yij ḡi1gj1 or Im
∑

yij ḡi2gj2 vanish if and
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only if the quotient image of h is contained in a singular 1-cell, whereas (e
√−1θ1 −

e
√−1θ3)(e

√−1θ2 − e
√−1θ3) is a real number if and only if treθ = Φαβ([h]) ∈ ∂∆′.

Finally, we conclude with the following proposition concerning the image ImΦαβ .

Proposition 2.5. If P is convex, then the image ImΦαβ coincides with P . If P
is not convex, ∂∆′ comes into contact with the two boundary edges of P emanating
from the vertex at the concavity of P and the image ImΦαβ coincides with the union
of P and the domain enclosed by the boundary of P at the concavity and ∂∆′.

Proof. In the following, the quotient image of the critical points (resp. regular
points) of Φαβ : G/T → ∆′ are also called the critical points (resp. regular points).

First, it is easy to show from (2.2) that the inverse image Φ
−1

αβ(z) of a point z

on the boundary ∂
(
ImΦαβ

)
is always one point in T \G/T . The restriction of Φαβ

to a sufficiently small neighborhood N = NT\G/T (x) of Lemma 2.2 is a projection
to a neighborhood of lww′ because it maps the only critical point set e1(w, w′)
homeomorphically onto lww′. If we take x from e1(w, w′) corresponding to lww′ in
the intersection ∂P ∩ ∂P̃ which is a part of ∂

(
ImΦαβ

)
, N is projected into P so

that the vertices of cones are mapped to the boundary. So the inverse image of a
point z ∈ P near the boundary ∂P ∩ ∂P̃ = lww′ is homeomorphic to S2.

The interior of P is separated into some regions by lww′’s. If a neighborhood
N = NT\G/T (x) of Lemma 2.2 corresponding to lww′ lying in the interior of P were
mapped to the one side of lww′ , there had to exist other critical points than S in
the interior of P because T \G/T is connected, which is a contradiction to Lemma
2.4. Hence the restriction Φαβ

∣∣
N

is a natural projection locally and Φ
−1

αβ(z) ∩N is
always homeomorphic to 2-disk D2 for z near lww′. Therefore the topological type
of Φ

−1

αβ(z) does not change when z ∈ ImΦαβ goes across such lww′ ’s and is always
homeomorphic to S2 for interior points z of ImΦαβ , in particular it is connected.

There are two different types for the vertex z at the concavity of P . If it is a
crossing point of lww′ ’s, there exists a regular point in Φ

−1

αβ(z) because the critical
point set is discrete in it (recall S ≈ Γ(S3)) and the fiber is connected. If z = zw

for some w ∈ W , we can choose a point in T \G/T which is not contained in S
and is mapped to z by using an explicit expression (2.2) with matrices. In any
case, we have a regular point in Φ

−1

αβ(z) for the vertex z at the concavity. By the
inverse function theorem, the vertex at the concavity can not be a boundary point
and, with the help of Lemma 2.4, ∂∆′ must come into contact with boundary edges
emanating from z, and Proposition 2.5 is concluded.

As a corollary of the proof above, we also obtain the following.

Lemma 2.6. Let α, β be generic. If z ∈ ∆′ is a point on the boundary of ImΦαβ,
then the inverse image Φ

−1

αβ(z) is one point in T \G/T . The inverse image of an
interior point of ImΦαβ is homeomorphic to S2.

3. The existence condition and the topological type of MD,Θ

In order to describe the image of the map Fαβ , we study the homeomorphism
j : ∆′ → ∆ which is given by the inverse of the composition ∆

exp−→ T
tr−→ ∆′. Since

ImΦαβ is a connected and simply connected region in ∆′, we have only to study
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the image of its boundary. To describe concretely the image of treη = e
√−1η1

′
+

e
√−1η2

′
+ e

√−1η3
′ ∈ ∆′ where η1

′ + η2
′ + η3

′ = 0 under the map j, we consider an
action on t (⊃ ∆) of a group isomorphic to the affine Weyl group Ŵ of the affine
Lie algebra ŝl(3; C). Since ∆ is thought to be a fundamental region with respect
to the action of this group (also denoted by Ŵ ), we have the natural projection
p̂ : t −→ t/Ŵ ∼= ∆. Then j(η′) = p̂(η′) ∈ ∆ where η′ = (η1

′, η2
′, η3

′) ∈ t. So we
can describe the image of w ∈ T \G/T (w ∈ W ) under the map Fαβ as

Fαβ(w) = p̂
(
α + w(β)

)
.(3.1)

The image of lww′ ’s under the map j is described by the following lemma.

Lemma 3.1. The image of lww′ via the map j is a possibly broken segment con-
necting Fαβ(w) and Fαβ(w′), each piece of which is vertical to one of the edges of
∂∆. Moreover, j(lww′) is broken only at the intersection point with ∂∆.

Proof. For simplicity, we consider the case w = 1, w′ = (12) ∈ W ∼= S3. The locus
drawn by η =

(
η1, η2, η3

) ∈ ∆ satisfying η1 + η2 + (α3 + β3) ≡ 0 (mod 2π) is a
segment connecting p̂ (α + w(β)) and p̂ (α + w′(β)), each piece of which is vertical
to one of the edges of ∂∆ and is possibly broken at the intersection points with
∂∆. On the other hand, from the expression

j−1(η) = treη = 2e−
√−1

2 (α3+β3) cos
η1 − η2

2
+ e

√−1(α3+β3),

we see that the image of the locus drawn by η is also a segment connecting Φαβ(w)
and Φαβ(w′), which is just lww′ . Since j is a homeomorphism, the assertion follows.

Owing to Proposition 2.5 and Lemma 3.1, we can determine ImFαβ .

Proposition 3.2. Let V = V (α, β) be the set of points given by (3.1), then the
image ImFαβ is the convex polygon whose points η = (η1, η2, η3) ∈ ∆ satisfy

min
{
ζi

∣∣ (ζ1, ζ2, ζ3) ∈ V
} ≤ ηi ≤ max

{
ζi

∣∣ (ζ1, ζ2, ζ3) ∈ V
}

(i = 1, 2, 3).
(3.2)

For fixed α, β, we denote by Q = Q(α, β) the convex polygon in ∆ defined
by the inequalities (3.2). Following the procedure described before Lemma 3.1,
we rewrite this result with the entries of α, β. Since the condition that MD,Θ is
non-empty is equivalent to the one that γ∗ = j−1

(
tr e−1

γ

)
=

(− γ3, −γ2, −γ1

) ∈ ∆
is included in Q, we arrive at the first main result of this paper.

Theorem 3.3. For Θ =
(
α, β, γ

) ∈ ∆3, we write α = (α1, α2, α3), β = (β1, β2, β3)
and γ = (γ1, γ2, γ3). Then MD,Θ is not empty if and only if α, β and γ satisfy all
the following 18 inequalities :{

ασ(1) + βσ(1) + γσ(3) ≥ 0, ασ(1) + βσ(2) + γσ(2) ≥ 0,
ασ(1) + βσ(3) + γσ(3) ≤ 0, ασ(2) + βσ(2) + γσ(3) ≤ 0,

(3.3)

ασ(1) + βσ(1) + γσ(2) ≤ 2π, ασ(2) + βσ(3) + γσ(3) ≥ −2π.(3.4)

Here σ ∈ Z/3Z acts on the index set
{
i, j, k

}
of the left-hand side αi + βj + γk of

each inequality as cyclic renumbering.
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Let α, β be generic. From the definition (2.1), we can choose as a complete
representative system of MD,Θ

T \{h ∈ G
∣∣ tr

(
eαheβh−1

)
= tr

(
e−1

γ

)}
/T,

which is nothing but F
−1

αβ(γ∗) ⊂ T \G/T . For the case neither α nor β is generic,

it is easy to see that F
−1

αβ(γ∗) is always one point. By adding the result of Lemma
2.6 to this consequence, we obtain the second theorem of this paper.

Theorem 3.4. Let a triplet Θ = (α, β, γ) ∈ ∆3 satisfy all the inequalities in
Theorem 3.3, then the moduli space MD,Θ is homeomorphic to S2 or one point:

MD,Θ ≈
{

S2 (if none of the equalities in (3.3), (3.4) holds),
one point (otherwise).

4. The existence condition of MD,Θ and the fusion rules

4.1. The relation between the existence condition of MD,Θ and the fusion
rules. First we make a quick digression to the fusion algebras and the explicit
description of the ŝl(3; C) fusion rules due to [KMSW]. For more details about the
fusion algebras, the reader is referred to [K], [Fu], [GN]. For the sake of simplicity,
we shall restrict our subject to the A

(1)
n−1 (n ≥ 2) affine Lie algebras in what follows.

Let P+(n) be the set of the dominant integral weights of g = sl(n; C). For a
fixed positive integer K called the level, we define P+(n; K) as the set of λ =
[λ1, · · · , λn−1] ∈ P+(n) satisfying

∑
λi ≤ K. The fusion algebra Rn,K is a free

Z-module with basis λ ∈ P+(n; K). For the decomposition of its product

λ · µ =
∑

ν

Nν
λµν,

it is known that the fusion coefficient Nν
λµ is a non-negative integer. Denoting by ν∗

the highest weight of the dual representation of Vν , we set Nλµν = Nν∗
λµ. If Nλµν 6= 0,

then we say that λ, µ and ν satisfy the fusion rules. In case of G = SU(2),
they are well-known as the quantum Clebsch-Gordan conditions ([TK]). In case of
G = SU(3), they are described by [KMSW] in a completely combinatorial way.

Berenstein and Zelevinsky show that the (classical) Littlewood-Richardson co-

efficient N
ν∗

λµ = Nλµν in the representation ring R3 of sl(3; C) coincides with the
number of triangles which one can construct according to the following rules:

a1

a2 a9

a3 a8

a4 a5 a6 a7

such that

a1 + a2 = λ1,

a3 + a4 = λ2,

a4 + a5 = µ1,

a6 + a7 = µ2,

a7 + a8 = ν1,

a9 + a1 = ν2,

a2 + a3 = a6 + a8,

a3 + a5 = a9 + a8,

a5 + a6 = a2 + a9,

(4.1)

with non-negative integer ai (i = 1, · · · , 9). They are called the Berenstein-
Zelevinsky (BZ) triangles. In [KMSW] the threshold level k0(X) of a BZ triangle X is
defined by k0(X) = max

{
a1+µ1+µ2, a4+ν1+ν2, a7+λ1+λ2

}
and it is shown that

the fusion coefficient Nλµν is obtained as the number of BZ triangles whose thresh-
old level is not greater than the level K : Nλµν = ]

{
X ∈ BZ(λ, µ, ν)

∣∣ k0(X) ≤ K
}
.
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Now we establish the correspondence between the existence condition of MD,Θ

and the fusion rules by identifying ∆ ⊂ t with the alcove ∆∗ ⊂ h∗ which is the
convex hull spanned by P+(3; K). This identification is given by a Ŵ -equivariant
natural linear map f : t → h∗, where h∗ is a dual Cartan subalgebra of g. Let us
denote the image of Q = Q(α, β) ⊂ ∆ by Q∗ = Q∗(λ, µ) ⊂ ∆∗ for λ = f(α), µ =
f(β) under the isomorphism f . We can rewrite (3.3), (3.4) in terms of the entries
of λ, µ and ν with this correspondence. If the fusion coefficient Nλµν is non-zero,
there exists a BZ triangle X satisfying k0(X) ≤ K. With the aid of this fact, we can
show that all the 18 inequalities rewritten in the entries of λ, µ and ν hold, e.g.

2λ1 + λ2 + µ1 + µ2 − ν1 − 2ν2 = 3(a2 + a4) ≥ 0,

2λ1 + λ2 + µ1 + µ2 − ν1 + ν2 = 3(a1 + a4 + a5 + a6) ≤ 3K,
(4.2)

etc. As a consequence, we see that if the fusion coefficient Nλµν 6= 0, then
the moduli space MD,Θ 6= ∅ where Θ =

(
f−1(λ), f−1(µ), f−1(ν)

) ∈ ∆3. For
ξ = [ξ1, ξ2] ∈ h∗ with (not necessarily non-negative) integer ξi (i = 1, 2) in the
weight lattice of g, we use the notation ξ̂ = p̂(ξ) (see (3.1)). Let V ∗ = V ∗(λ, µ) ={ ̂λ + w(µ)

∣∣ w ∈ W
}
. We state this consequence in a more representation theoret-

ical style.

Theorem 4.1. The fusion coefficient Nν
λµ = 0 unless ν = [ν1, ν2] satisfies one of

the inequalities

min
{
2ξ1 + ξ2

∣∣ [ξ1, ξ2] ∈ V ∗} ≤ 2ν1 + ν2 ≤ max
{
2ξ1 + ξ2

∣∣ [ξ1, ξ2] ∈ V ∗},

min
{− ξ1 + ξ2

∣∣ [ξ1, ξ2] ∈ V ∗} ≤ −ν1 + ν2 ≤ max
{− ξ1 + ξ2

∣∣ [ξ1, ξ2] ∈ V ∗},

min
{
ξ1 + 2ξ2

∣∣ [ξ1, ξ2] ∈ V ∗} ≤ ν1 + 2ν2 ≤ max
{
ξ1 + 2ξ2

∣∣ [ξ1, ξ2] ∈ V ∗}.

4.2. Some comments on the ŝl(3; C) fusion rules. Theorem 4.1 only gives a
necessary condition for the fusion coefficients to be nontrivial, and the converse is
not true. However, it seems to give the best possible condition in the following
sense. In all the examples that we have checked, the extremal highest weights (i.e.
those located at the vertices of Q∗) always occure as a factor of the product λ · µ
in the fusion algebra. Let us cite an example.

Example 4.2. Let λ = [2, 1], µ = [1, 2] and K = 5, then

[2, 1]⊗̂[1, 2] = [4, 1]⊕ [1, 4]⊕ 2[2, 2]⊕ [3, 0]⊕ [0, 3]⊕ 2[1, 1]⊕ [0, 0]

(see Figure 1). On the one hand, Q∗ = Q∗(λ, µ) is given by

Q∗ =

[ξ1, ξ2] ∈ P+(3; K)

∣∣∣∣∣
0 ≤ 2ξ1 + ξ2 ≤ 9
−3 ≤ −ξ1 + ξ2 ≤ 3
0 ≤ ξ1 + 2ξ2 ≤ 9

 ,

which is a pentagon with its vertices [4, 1], [1, 4], [3, 0], [0, 3] and [0, 0].

As Witten suggested via a path integral argument ([W]), the fusion coeffi-
cient Nλµν coincides with the dimension of the space of the holomorphic sec-
tions of a certain line bundle on the moduli space MD,Θ associated to Θ =(
f−1(λ), f−1(µ), f−1(ν)

)
(the Verlinde formula). This is proved by [F], [BL],

[KNR], and Theorem 4.1 can be regarded as an elementary confirmation of this
correspondence in case of SU(3). If we apply their results to the moduli space of
semistable parabolic bundles on CP 1 \ {

0, 1, ∞}
with weights α, β, γ at 0, 1, ∞
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[0,0] [3,0]

[4,1]

[1,4]
[0,3]

[2,2]

[1,1]

Figure 1. The components in the decomposition of [2, 1]⊗̂[1, 2]

respectively —–this moduli space is identified with our moduli space MD,Θ ([MS]),
we obtain the following result since MD,Θ is just a point.

Theorem 4.3. The non-zero fusion coefficient Nν
λµ corresponding to the highest

weight ν located on the boundary of Q∗(λ, µ) (i.e. ν satisfying one of equalities in
the inequalities in Theorem 4.1) must be exactly one.

For the classical case of a finite dimensional Lie algebra g, the analogous result
is known as the PRV-conjecture ([PRV]), which was established by [Ku]. It states
that, in the tensor product Vλ ⊗ Vµ of two finite dimensional irreducible highest
weight g-module, the irreducible highest weight module Vλ+w(µ) corresponding to

extremal highest weight λ + w(µ) (w ∈ W ) occurs with multiplicity exactly one.
We therefore pose the following problem which, given Theorem 4.3, is the quantum
counterpart of the PRV-conjecture.

Problem 4.4. The extremal highest weight ν at each vertex of Q∗(λ, µ) will always
appear in the decomposition of the product λ ·µ in the fusion algebra. Furthermore,
ν satisfies the condition of Theorem 4.1, then Nν

λµ 6= 0 if and only if the left-hand
side of (4.2) for λ, µ and ν∗ is divisible by 3.
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