PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 5, Pages 1397–1398 S 0002-9939(99)04687-0 Article electronically published on January 28, 1999

AN ELEMENTARY PROOF OF THE PRINCIPLE OF LOCAL REFLEXIVITY

ANTONIO MARTÍNEZ-ABEJÓN

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. We give an elementary proof of the principle of local reflexivity.

We use only elementary functional analysis to give a simple and short proof of the version of the "principle of local reflexivity" proved in [2], which is an improvement of the original version given in [3]. Other short proofs can be found in [1] and [4]. We use standard notation for Banach spaces. By X, X^* and X^{**} , we denote a real or complex Banach space, its first dual and its second dual respectively; we identify X with the canonical copy of X contained in X^{**} ; given a Banach space Y, we write $B_Y := \{y : ||y|| \le 1\}$ and $S_Y := \{y : ||y|| = 1\}$; given a subset A of X, $\overline{A}^{\sigma(X^{**}, X^*)}$ stands for the weak*-closure of A in X^{**} and intA is the norm interior of A; an operator is a continuous linear function; given $\varepsilon > 0$, an ε -isometry $T : E \longrightarrow Y$ is an operator for which $1 - \varepsilon \le ||Tx|| \le 1 + \varepsilon$ for all $x \in S_E$.

We only require the following Lemma 1. We omit its proof, which is an easy exercise based on the separation Hahn-Banach theorem.

Lemma 1. Let $T: X \longrightarrow Y$ be an operator, $z \in int B_{X^{**}}$ and $y \in Y$ such that $\|T^{**}z - y\| < \varepsilon$. Then we have that $z \in \overline{L}^{\sigma(X^{**},X^{*})}$, where $L := \{x \in B_X : \|Tx - y\| < \varepsilon\}$.

Theorem 2 (Principle of local reflexivity). Let $E \subset X^{**}$ and $F \subset X^{*}$ be finite dimensional subspaces. Given $\varepsilon > 0$ there exists an ε -isometry $T : E \longrightarrow X$ such that $T \mid_{E \cap X} = id \mid_{E \cap X}$, and f(Te) = e(f) for all $f \in F$ and all $e \in E$.

Proof. Let dim E=n and dim $E\cap X=n-k$. Let $(y_j,h_j)_{j=1}^n$ be a biorthogonal system in $E\times E^*$ such that $\|y_j\|=1-\varepsilon$ and $\operatorname{span}\{y_j\}_{j=k+1}^n=E\cap X$. The identity $id:E\longrightarrow X^{**}$ can be given as $id(e)=\sum_{j=1}^n h_j(e)y_j$. We shall find v_1,\ldots,v_k in X so that the operator $T:E\longrightarrow X$ defined by $T(e):=\sum_{j=1}^k h_j(e)v_j+\sum_{j=k+1}^n h_j(e)y_j$ is an ε -isometry. Hence, the condition $T\mid_{E\cap X}=id\mid_{E\cap X}$ will be satisfied automatically.

Let $W := X^k$ endowed with the norm $\|(x_j)_{j=1}^k\| = \sup_j \|x_j\|$, and select $0 < \alpha < \min\{2/5, (1-\varepsilon)^{-1} - 1, \varepsilon(\sum_{j=1}^n \|h_j\|)^{-1}\}$. Fix $\{f_j\}_{j=1}^M$ a basis in F, $\{e_j\}_{j=1}^N$

Received by the editors September 27, 1996 and, in revised form, August 18, 1997.

 $^{1991\} Mathematics\ Subject\ Classification.\ Primary\ 46B20,\ 46B10.$

Key words and phrases. Local reflexivity, weak*-topology, ε -isometry.

The author's research was supported by a postdoctoral Grant of the Ministry of Spain for Education and Science and DGYCIT Grant PB 94–1052 (Spain).

an $\alpha/4$ -net in $int B_E$, and $\{u_j\}_{j=1}^N$ in B_{X^*} so that $||e|| \leq (1+\alpha) \sup_{1 \leq j \leq N} |e(u_j)|$ for all $e \in E$. We have that

$$e_j = \sum_{r=1}^n \lambda_r^j y_r, j = 1, \dots, N.$$

Let us write $P := \max_{1 \le j \le N} \sum_{r=1}^{k} |\lambda_r^j|$ and define the set

$$C := \left\{ (x_s)_{s=1}^k \in B_W : \left\| \sum_{s=1}^k \lambda_s^j x_s + \sum_{s=k+1}^n \lambda_s^j y_s \right\| < 1, j = 1, \dots, N \right\}.$$

By the above lemma, we have that $(y_j)_{j=1}^k \in \overline{C}^{\sigma(W^{**},W^*)}$. Now we set the operator $S: W \longrightarrow \mathbf{R}^{M \cdot k + N \cdot k}$ (or into $\mathbf{C}^{M \cdot k + N \cdot k}$) given by $S((x_s)_{s=1}^k) := (f_i(x_r), u_j(x_s))$ for $1 \le i \le M$, $1 \le r \le k$, $1 \le j \le N$, $1 \le s \le k$.

for $1 \le i \le M$, $1 \le r \le k$, $1 \le j \le N$, $1 \le s \le k$. Thus $S^{**}((y_j)_{j=1}^k) \in \overline{S(C)}$. Now, since $\overline{W}^{\sigma(W^{**},W^*)} = W^{**}$ and R(S) is closed, we have that $R(S) = R(S^{**})$, and then, for $0 < \beta < \min\{1, \varepsilon(2P)^{-1}\}$, we can find $(c_j)_{j=1}^k \in C$ and $(b_j)_{j=1}^k \in \beta B_W$ so that

$$S^{**}((y_j)_{j=1}^k) = S((c_j)_{j=1}^k) + S((b_j)_{j=1}^k).$$

We take $v_j := c_j + b_j$ for j = 1, ..., k in the definition of T. Thus, we already have the condition f(Te) = e(f) for all $f \in F$ and all $e \in E$. Now, since $||Te_j|| \le 1 + ||\sum_{r=1}^k \lambda_j^r b_r|| \le 1 + \beta P$ for j = 1, ..., N, it is completely straightforward to check that T is an ε -isometry.

ACKNOWLEDGMENTS

The author thanks the Department of Mathematics of the University of Texas at Austin for the hospitality during his visit.

References

- 1. D.W. Dean, The equation $L(E,X^{**})=L(E,X)^{**}$ and the principle of local reflexivity. Proc. of Amer. Math. Soc. **40** (1973), 146–148. MR **48:**2735
- W.B. Johnson, H. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces. Israel J. Math. 9 (1971), 488–506. MR 43:6702
- J. Lindenstrauss and H. Rosenthal, The L_p spaces. Israel J. Math. 7 (1969), 325–349.
- 4. C. Stegall, A proof of the principle of local reflexivity. Proc. of Amer. Math. Soc. **78** (1980) 154–156. MR **81e**:46012

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TEXAS 78712 Current address: Facultad de Ciencias, c/ Calvo Sotelo s.n., Universidad de Oviedo, Spain E-mail address: ama@pinon.cu.uniovi.es