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ABSTRACT. We study the semi-invariants and weights of a group algebra K|[G]
over a field K of characteristic zero. Specifically, we show that certain basic
results which hold when G is a polycyclic-by-finite group with AT(G) = 1
need not hold in the case of group algebras of finite groups. This turns out
to be a purely group theoretic question about the existence of class preserving
automorphisms.

§1. INTRODUCTION

Throughout, K will denote a field of characteristic zero. If G is a group, then G
acts on the group algebra K[G] by inner automorphisms. Therefore, following [Sm]
for example, a nonzero element o € K[G] is said to be a semi-invariant of K[G] if
a9 = A(g)a for all g € G. Here, A € G = Hom(G, K*) is the weight of «, and we
denote the set of all such weights by A(G) = A(G, K). If A € A(G), we let (K[G])x
be the subspace of K[G] consisting of 0 and all those semi-invariants with weight
A. Furthermore, the semicentre Sz K[G] is defined to be the subalgebra of K[G]
given by Z/\EJ\(G) (K[GDrx =@ Z,\EA(G) (K[G))a-

Let A = A(G) denote the F.C.-centre of G, that is, the set of all elements
of G having only finitely many conjugates. Then A is a characteristic subgroup
of G which is known to be torsion-free abelian when K[G] is prime. If z € A,
A € Hom(G, K*) and Cg(z) C ker A, then it follows from [MP1, Lemma 3] that
a(\z) = Y,erAt)'at is a semi-invariant with weight A, when T is a right
transversal for Cg(z) in G. Conversely, if § € (K[G])x, then supp§ is a union
of G-conjugacy classes of elements x € A(G), and 8 is a K-linear combination
of the elements (A, z) as constructed above. In particular, if A € A(G), then
ker A O Cg(z) D Cg(A) and hence A(G) C Hom(G/Cg(A), K*).

Now, if G is polycyclic-by-finite and K[G] is prime, then it follows from [MP2,
Lemma 2] that Cg(A) = Cg(g) for some g € A(G). Consequently, if A\ €
Hom(G/Cg(A), K*), then ker A D Cg(A) = Cg(g) and hence A € A(G). In
other words, as was shown in [Wu|, we have A(G) = Hom(G/Cg(A), K*), and thus
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A(G) is a finite abelian group. Furthermore, if K is algebraically closed, then [Sm]
proved that Sz K[G] is equal to K[A]S', the fixed ring of K[A] under the conjuga-
tion action of the commutator subgroup G’. More generally, [Wu| showed that, for
any field K, Sz K[G] = K[A]9* where G} is defined to be the intersection of the
kernels of all weights. From the above formula for A(G), we have

Lemma 1.1. Let G be a polycyclic-by-finite group and let K be an algebraically
closed field. If K[G] is prime, then A(G) = Hom(G/G'Ca(A), K*) =2 G/G'Cg(A)
and hence Gy = G'Cg(A).

Proof. Since any A € Hom(G, K*) has G’ in its kernel, it is clear that A(G) =
Hom(G/G'Cg(A), K*). The result now follows from the fact that G/G'Cg(A) is
a finite abelian group. O

This, of course, clarifies the fact that K[A]Sr = K[A]S when K is an alge-
braically closed field.

In the present paper, we consider similar questions, but with G finite. Of course,
here G = A, so Cg(A) = Z(G), and we show that the obvious analogs of many
of the above results for prime group algebras fail in this case. Indeed, in our first
example, based on a construction of [W1], we find a group G and a linear character
A € G with AMZ(G)) = 1 such that ker A does not contain the centralizer of any
x € G. In particular, A(G) # Hom(G/G'Cg(A), K*) and we show, in fact, that
A(G) is not even a subgroup of G. Our second example is based on a construction
of [Sh] and shows that the equality Gy = G'Cg(A) = G'Z(G) need not hold in this
finite context, even when K is algebraically closed.

We close this section with some observations on the semicentre of the group
algebra of a finite group. The first part is, of course, a special case of the result of
[Sm] mentioned above.

Lemma 1.2. Let G be finite and let K be an algebraically closed field.
(i) SzK|[G] = K[G]S". In particular, this algebra has a K -basis consisting of the
sums of the G'-conjugacy classes of elements of G, and hence its K -dimension

18 equal to the number of such classes.
(ii) dimg Sz K[G] =, c» |G : G'Cq(x)| and

Gr= () G'Calz) = [) G'Cala),

reX zeG
where X is a set of representatives of the G-conjugacy classes of G.

Proof. (i) The conjugation action of G on V' = K[G] makes V into a K[G]-module.
Since K is algebraically closed, it follows that Sz K[G] is precisely the sum of all
1-dimensional submodules of V', and this is certainly the set of fixed points under
the action of G’. Finally, since V is a permutation module for G’, the structure of
the G’-fixed points of V is clear.

(ii) Tt follows from our previous discussion that Sz K[G] is the K-linear sum
of the semi-invariants a(\, z), where = runs through the set X' of representatives
of the conjugacy classes of G and where A € Hom(G, K*) with ker A D Cg(z).
Now, for fixed x, the As here correspond to all the linear characters of the abelian
group G/G'Cq(x). Hence there are |G : G'Cg(z)| such semi-invariants, and they
are K-linearly independent since they have distinct weights. On the other hand,
the semi-invariants which correspond to different G-conjugacy classes are certainly
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linearly independent in K[G] since they have disjoint supports. Thus the set of
all such a(X,x) is a basis for Sz K[G], and the dimension of the semicentre is the
number of these basis elements, namely ) ., |G : G'Cg(x)|. Similarly, the first
expression for G follows from the fact that, for each x € X, the intersection of
the kernels of all linear characters in Hom(G/G'Cg(x), K*) is the identity group.
Hence, the intersection of the kernels of all A € Hom (G, K*) with ker A D G'Cg(x)
is precisely equal to G'Cg(z). Finally, if 2 and y are conjugate in G, then it is clear
that G'Cg(x) = G'Ca(y), and this yields the second expression. |

§2. THE FIRST EXAMPLE

The finite groups we will use in both examples are constructed as semidirect
products G = H x C where C is cyclic and where the map C' — Aut(H) has rather
special properties.

Lemma 2.1. Let H be a finite group and let 8 be an automorphism of H of order
m > 1 which preserves the conjugacy classes of H. Set G = H x C where C = {c)
is cyclic of order m and where c acts on H via the automorphism 0. Then

(i) G'=H' and Z(H) C Z(G).

(ii) If A € Hom(G, K*) with ker A = H, then A ¢ A(G).

(iil) Z(G) = Z(H) if no nontrivial power of 8 is inner on H.

Proof. (i) Note that H' <G and that H/H’ is abelian. Now 6 preserves the classes
of H, so it also preserves the classes of H/H’, and hence it must act trivially on
this abelian group. It follows that G/H’ is abelian, and consequently, G’ C H'.
Similarly, since 0 preserves the classes of H, it acts trivially on Z(H), and hence
Z(H) C Z(G).

(ii) We know that A € A(G) if and only if there exists x € G with Cg(z) C
ker A = H. Consequently, it suffices to show that no such element exists. To this
end, suppose z € G with Cg(x) € H. Then x € H and, since 6 preserves the
classes of H, we have 2¢ = 2% = 2" for some h € H. Thus ch™! € Cg(z) C H and
this yields ¢ € H, a contradiction.

(iii) Finally, if z € Z(G) C H x C, then 2z = h™!¢/ for some h € H and some
j=0,1,...,m — 1. Since z centralizes H, it follows that ¢/ and h are equal in
their conjugation action on H. In particular, 6 is inner on H and the hypothesis
implies that j = 0 and hence that z = h~! € H. With this, it is clear that z is
contained in Z(H), so Z(G) C Z(H) and part (i) yields the result. O

It follows from (ii) and (iii) above that one of the problems discussed in the in-
troduction essentially comes down to finding an example of an outer automorphism
which is class preserving. This was first considered by W. Burnside in his book
[B]. Here we use a special case of a construction found in [W1]. Specifically, for the
remainder of this section, we fix the following notation.

Let H = A x B be the semidirect product of A = (a), a cyclic group of order
8, by the fours group B = (x,%), where B acts on A by a® = a® and a¥ = a°.
Note that a®¥ = a7, Cx(A4) = A, Z(H) = (a*) and H' = (a?). Furthermore,
2z = zab, y* = ya* and 29 = zat. Next, define § € Aut(H) by a’ = a, 2% = za?,
and y? = ya*. Since a* is central in H and of order 2, it follows easily that 6 is a
well-defined automorphism of H of order 2. Set G = H x C where C' = {(¢) is cyclic
of order 2 and where ¢ acts on H via the automorphism 6. Clearly, |H| = 32 and
|G| = 64. The basic properties of § given below are from [W]].



1326 D. S. PASSMAN AND P. WAUTERS

Lemma 2.2. With the above notation, 0 is an outer automorphism of H which
preserves the conjugacy classes of the group. In particular, we have G' = H' = (a?)
and Z(G) = Z(H) = {a*).

Proof. Since a* is central in H, we have (zy)? = ry. Now suppose, by way of

contradiction, that 6 is inner on H, say induced by the element h € H. Then, since
a=a’ = a", we have h € Cy(A) = A, so h = a’ for some j = 0,...,7. From
a® =o' and (zy)? = 2y, we deduce that zy = (zy)* = 2ya®. Thus j = 0 or 4
and h = a’ is central in H, a contradiction. Next, 6 preserves the conjugacy classes
of H since, for all 4, we have (a’)? = af, (za')? = (za’)*, (ya')? = (ya')® and
(rya’)? = rya’. The remainder of the result follows from the preceding lemma. O

We can now prove

Proposition 2.3. If G = H x C is as above, then A(G) is not a subgroup of
Hom(G, K*), and there exists A € Hom(G/G'Z(G), K*) with A ¢ A(G).

Proof. Since G' = H' = (a?), it follows that G/G’ is an elementary abelian 2-
group of order 16 with generators aG’, xG’, yG' and ¢G’. In particular, there
exist p,n € Hom(G, K*) with u(a) = -1, p(zx) = u(y) = plc) = 1 and with
n(a) = n(c) = =1, n(x) = n(y) = 1. Now it is easy to check that u,n € A(G).
Indeed, these characters are the weights of the semi-invariants o = z(1+a*)(1 —a?)
and 8 = y(1 —a*), respectively. On the other hand, A = un satisfies A(a) = \(x) =
Ay) =1, AM(¢) = —1, so ker A\ = H. Thus, by Lemmas 2.1(ii) and 2.2, we see that
un =X ¢ A(G), and consequently A(G) is not a subgroup of Hom(G, K*). Finally,
note that ker A\ = H D {(a?) = G'Z(G). O

Some aspects of this result can be found in [I]. We remark that, in the above
proof, a8 = 0 since otherwise a8 would be a semi-invariant with weight A = un.
Furthermore, since G’ = (a?) and Z(G) = (a*), we can use Lemma 1.2(i) to quickly
describe Sz K[G]. Indeed, let T = Co(G’) = (a,y,c) and note that G'/Z(G) has
order 2 and that |G : T| = 2. Thus since g* = a*g for all g € G\ T, it follows
easily that Sz K[G] = K[T] + (1 + a*)K[G] and that the dimension of this algebra
is |T|+ (|G| —|T|)/2 = 3|G|/4 = 48.

Finally, it follows from Lemma 1.2(ii), by considering the classes of the elements
a, x and y, that Gy = G'Z(G). As we will see in the next section, this equality
does not hold for all finite groups.

§3. THE SECOND EXAMPLE

Our goal here is to prove the existence of a finite group G such that, in the
notation of Lemma 1.2(ii), Gx = (,cq G'Cq(r) # G'Z(G). For this, we study a
particular subgroup of an example constructed in the paper [Sh]. To start with, we
need

Lemma 3.1. Let q be a power of the prime number p. Ifn > 3, then every element
of the finite field GF(q™) is a sum of (¢ + 1)st powers.

Proof. Let L be the additive span of all elements x97! with € GF(¢"). Since L
is clearly closed under addition and multiplication, it follows that L is a subfield
of GF(¢™). We first show that GF(q) C L. To this end, let € GF(¢) C GF(¢")
and note that 27 = x. Thus 22 = 29! € L. But, every element in the finite field
GF(q) is a sum of two squares, and consequently GF(q) C L. It now follows that
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L = GF(q™) for some integer m dividing n. Consider the group homomorphism
¢: GF(¢")* — L* given by z +— 297!, Since ker p = {2 € GF(¢") | 2771 = 1} has
at most ¢ + 1 elements, we have

¢" —1=|L"| = |GF(¢")"[/(¢+1) = (¢" = 1)/ (¢ +1).
In particular, if we write mt = n for some integer ¢ > 1, then
g+1>(¢" =1)/(¢" ~1)=1+¢"+--+(¢")".

Now, if ¢ = 2 in the above, then 1+ ¢ > 1+ ¢™. Hence m =1 and n = mt = 2,
contradicting our assumption that n > 3. On the other hand, if ¢ > 2, then the
preceding displayed equation yields 1+ ¢ > 1+ ¢™ + ¢?™, again a contradiction.
Thus t =1, so n = mt = m and L = GF(¢"), as required. |

For the remainder of this section, we let p, ¢ and n > 3 be as above. Furthermore,
we write F for the finite field GF(¢™), and we let ¢ denote the field automorphism of
F given by x + 7. Then ¢ has order n > 3 and the fixed field of ¢ is F'* = GF(q).
Following [Sh], we form the ring R = F[X;¢]/(X?3), where F[X;¢] is the skew
polynomial ring determined by ¢. By a slight abuse of notation, we can write
R=F@®FX @ FX? as a 3-dimensional left F-vector space with X3 = 0 and with
Xf=f’X = fiX forall f € F. Since RX = FX @ FX? is a nilpotent ideal of
R, it is clear that U = 1 + RX is a group of units of R with |U| = |F|? = ¢*".

Lemma 3.2. Using the above notation, we have
(i) Z(R) = F? = GF(q).
(i) ZU) =1+ RX%?2=1+FXZ2

(iii) U' = [U, U] =1+ RX?=1+FX2.

Proof. (i) Since n > 3, it is clear that F' is self-centralizing in R. Thus, since R is
generated by F and X, we have Z(R) = Cr(X) = F? = GF(q).

(ii) It follows from X3 = 0 that 1+ F X2 C Z(U). Conversely, using the F-linear
independence of the automorphisms 1 and ¢, it is easy to see that the centralizer
in U of 1 + FX is contained in 1+ FX?2.

(iii) Let 1 + 7,1+ s € U and note that (RX)3 = 0. Since 7, s € RX, we have

M+rld+s)=0—-r+r2)(1-s+s)1+r)(1+s)
=1+ (rs—sr) €1+ RX2
Consequently, U’ = [U,U] is a subgroup of 1 + RX? = 1+ FX?2. For the reverse
inclusion, let ¢ be a primitive element of F', so that o(t) = ¢ — 1, and let r = aX
and s = atX for some a € F. Then, the above displayed equation yields
[1+7r14s =1+a? et —1)X?

and note that t(t9~1 —1) # 0 since t # 0 and o(t) = ¢" — 1. Furthermore, if f,g € F,
then (1 + fX?)(1+gX?) =1+ (f + g)X?2. Thus, by multiplying commutators for
various elements a € F, we see that [U, U] contains 1 + Lt(t9~! — 1) X? where L is
the additive span of all a?t! with a € F. By the previous lemma, L = F and hence
[U,U] contains 1+ Ft(t7~! —1)X2 =1+ FX2 O

Again, following [Sh], we consider certain subsets of My (R) and, for convenience,
© ) by (a.h)). Set H = ((U,R)) and observe that
matrix multiplication translates to the formulas ((a,))((r, s)) = ((ar,as + b)) and

we abbreviate the matrix
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((a,0))™' = ((a=1, —a7'b)). Thus H is a group of order |U||R| = ¢°", and basic
properties of this group are listed below. As will be apparent, we really only need
to know the obvious fact that H’ contains ((U’,0)).

Lemma 3.3. If H is the group described above, then
(i) Z(H) = ((1,RX?)).
(ii) H' = [H,H] = ((1 + RX? RX)).

Proof. (i) Let z = ((a,b)) € Z(H). Then z commutes with ((1,1)) and this yields
a = 1. Furthermore, since z commutes with ((1 + X, 0)), it follows that Xb = 0, and
hence that b € RX?2. Consequently, Z(H) C ((1, RX?)), and a direct calculation
yields the reverse inclusion.

(ii) By the preceding lemma, ((1+ RX?,0)) = ((U’,0)) € H'. Furthermore, if
b € R, then the commutator of ((1+ X,0))~! and ((1,b))~! is equal to ((1, Xb)).
Thus ((1, RX)) C H' and therefore

(1+RX% RX)) = ((14+ RX?0))((1,RX)) C H'.

For the reverse inclusion, consider the maps ¢ and 7 given by o: ((a,b)) — aU’
and 7: ((a,b)) — b+ RX. Then, it follows easily from the formula for matrix mul-
tiplication that o: H — U/U’" and 7: H — (R/RX)*" are group homomorphisms
to abelian groups. Here, of course, (R/RX)™ indicates the additive group of the
ring. Consequently, H' C kero Nker = ((1 + RX?, RX)), as required. |

Now let w =1+ X2 € U and define §: H — H by 6: ((a,b)) — ((a,bu)). Then,
we have the following special case of a result of [Sh]. Note, however, that our choice
of u yields the stronger conclusion in part (ii) that k is contained in H’, and not
just in H. Furthermore, k% = k.

Lemma 3.4. Let u and 0 be as above.

(i) 0 is an outer automorphism of H of prime order p.
(ii) If h € H, then there exists k € H' with h® = h* and k% = k. In particular, 0
preserves the conjugacy classes of H.

Proof. (i) The formula for matrix multiplication implies that # is an endomorphism
of H. Furthermore, 6: ((a,b)) — ((a,bu?)) so, since u? = (1 + X?)? = 1, it follows
that 6 is an automorphism of order p.

Suppose, by way of contradiction, that 8 is the inner automorphism induced by
((c,d))™* € H. Then, for all r € R, we have

((L,rw) = ((1,1)" = (e, d))((1,7))((c;d)) " = ((L,er)).

Thus ru = cr, and r = 1 yields ¢ = u. Consequently 1+ X2 = v € Z(R), and this
contradicts Lemma 3.2(i).

(ii) Let h = ((a,b)) € H and set k = ((1+ fX?2,0))~! for some f € F. Note
that k € H’, by Lemma 3.3(ii), and clearly ¥ = k. Since 1+ fX? € Z(U),
by Lemma 3.2(ii), it follows easily that the equation h? = h* is equivalent to
b(1+ X?) =bu=(1+ fX?)b and hence to bX? = fX?b. Furthermore, if we write
b= by+ b1 X + by X2, with bg,b1,bs € F, then using X3 = 0, the latter equation
becomes by X? = fX%by = fbg)ZX 2. But, obviously, this equation can be solved for
f € F. Indeed, if by = 0, take f = 0, and if by # 0, take f = bo(b51)¢2. In other
words, we have shown that an appropriate element k exists. O
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Finally, let G = H x C be the semidirect product of H by the cyclic group
C = {c) of order p, where c acts on H via the automorphism 6. We can now quickly
obtain our main result.

Theorem 3.5. Let G = H x C be as above. Then
(i) Z(G) =Z(H) and G' = H'.
(ii) ¢ € Nyeq G'Ca(x). In particular, if K is an algebraically closed field, then
c € G\ G'Z(G).

Proof. (i) Since 6 has prime order, it follows from the preceding lemma that no
nontrivial power of this automorphism is inner on H. The equalities Z(G) = Z(H)
and G’ = H' now follow from Lemmas 2.1 and 3.4.

(ii) Let  be an arbitrary element of G = HC, and write z = hc' for some h € H
and integer i. By the preceding lemma again, there exists k € H’ with h? = h*
and k? = k. The latter equality shows that k and ¢ commute, and hence we have

(Ec = (hci)c = heci = hkci = (hci)k = xk'
Thus, ck~! € Cg(z) and, since k € H' = G’, we conclude that ¢ = (ck™1)k €
Cao(z)G" = G'Cq(x). Lemma 1.2(ii) now implies that ¢ € (), G'Cq(z) = Ga,
and certainly ¢ ¢ G'Z(G) since G’ and Z(G) are both contained in H. |

Note that |G| = p|H| = p¢°". In particular, if we take ¢ = p, then |G| = p°"T!

and the smallest such group has n = 3 and |G| = p'S.
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