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Abstract. We study the semi-invariants and weights of a group algebra K[G]
over a field K of characteristic zero. Specifically, we show that certain basic
results which hold when G is a polycyclic-by-finite group with ∆+(G) = 1
need not hold in the case of group algebras of finite groups. This turns out
to be a purely group theoretic question about the existence of class preserving
automorphisms.

§1. Introduction

Throughout, K will denote a field of characteristic zero. If G is a group, then G
acts on the group algebra K[G] by inner automorphisms. Therefore, following [Sm]
for example, a nonzero element α ∈ K[G] is said to be a semi-invariant of K[G] if
αg = λ(g)α for all g ∈ G. Here, λ ∈ Ĝ = Hom(G, K∗) is the weight of α, and we
denote the set of all such weights by Λ(G) = Λ(G, K). If λ ∈ Λ(G), we let (K[G])λ

be the subspace of K[G] consisting of 0 and all those semi-invariants with weight
λ. Furthermore, the semicentre Sz K[G] is defined to be the subalgebra of K[G]
given by

∑
λ∈Λ(G)(K[G])λ = ⊕∑

λ∈Λ(G)(K[G])λ.
Let ∆ = ∆(G) denote the F.C.-centre of G, that is, the set of all elements

of G having only finitely many conjugates. Then ∆ is a characteristic subgroup
of G which is known to be torsion-free abelian when K[G] is prime. If x ∈ ∆,
λ ∈ Hom(G, K∗) and CG(x) ⊆ kerλ, then it follows from [MP1, Lemma 3] that
α(λ, x) =

∑
t∈T λ(t)−1xt is a semi-invariant with weight λ, when T is a right

transversal for CG(x) in G. Conversely, if β ∈ (K[G])λ, then supp β is a union
of G-conjugacy classes of elements x ∈ ∆(G), and β is a K-linear combination
of the elements α(λ, x) as constructed above. In particular, if λ ∈ Λ(G), then
kerλ ⊇ CG(x) ⊇ CG(∆) and hence Λ(G) ⊆ Hom(G/CG(∆), K∗).

Now, if G is polycyclic-by-finite and K[G] is prime, then it follows from [MP2,
Lemma 2] that CG(∆) = CG(g) for some g ∈ ∆(G). Consequently, if λ ∈
Hom(G/CG(∆), K∗), then kerλ ⊇ CG(∆) = CG(g) and hence λ ∈ Λ(G). In
other words, as was shown in [Wu], we have Λ(G) = Hom(G/CG(∆), K∗), and thus
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Λ(G) is a finite abelian group. Furthermore, if K is algebraically closed, then [Sm]
proved that Sz K[G] is equal to K[∆]G

′
, the fixed ring of K[∆] under the conjuga-

tion action of the commutator subgroup G′. More generally, [Wu] showed that, for
any field K, Sz K[G] = K[∆]GΛ where GΛ is defined to be the intersection of the
kernels of all weights. From the above formula for Λ(G), we have

Lemma 1.1. Let G be a polycyclic-by-finite group and let K be an algebraically
closed field. If K[G] is prime, then Λ(G) = Hom(G/G′CG(∆), K∗) ∼= G/G′CG(∆)
and hence GΛ = G′CG(∆).

Proof. Since any λ ∈ Hom(G, K∗) has G′ in its kernel, it is clear that Λ(G) =
Hom(G/G′CG(∆), K∗). The result now follows from the fact that G/G′CG(∆) is
a finite abelian group.

This, of course, clarifies the fact that K[∆]GΛ = K[∆]G
′

when K is an alge-
braically closed field.

In the present paper, we consider similar questions, but with G finite. Of course,
here G = ∆, so CG(∆) = Z(G), and we show that the obvious analogs of many
of the above results for prime group algebras fail in this case. Indeed, in our first
example, based on a construction of [Wl], we find a group G and a linear character
λ ∈ Ĝ with λ(Z(G)) = 1 such that kerλ does not contain the centralizer of any
x ∈ G. In particular, Λ(G) 6= Hom(G/G′CG(∆), K∗) and we show, in fact, that
Λ(G) is not even a subgroup of Ĝ. Our second example is based on a construction
of [Sh] and shows that the equality GΛ = G′CG(∆) = G′Z(G) need not hold in this
finite context, even when K is algebraically closed.

We close this section with some observations on the semicentre of the group
algebra of a finite group. The first part is, of course, a special case of the result of
[Sm] mentioned above.

Lemma 1.2. Let G be finite and let K be an algebraically closed field.
(i) Sz K[G] = K[G]G

′
. In particular, this algebra has a K-basis consisting of the

sums of the G′-conjugacy classes of elements of G, and hence its K-dimension
is equal to the number of such classes.

(ii) dimK SzK[G] =
∑

x∈X |G : G′CG(x)| and

GΛ =
⋂

x∈X
G′CG(x) =

⋂
x∈G

G′CG(x),

where X is a set of representatives of the G-conjugacy classes of G.

Proof. (i) The conjugation action of G on V = K[G] makes V into a K[G]-module.
Since K is algebraically closed, it follows that Sz K[G] is precisely the sum of all
1-dimensional submodules of V , and this is certainly the set of fixed points under
the action of G′. Finally, since V is a permutation module for G′, the structure of
the G′-fixed points of V is clear.

(ii) It follows from our previous discussion that Sz K[G] is the K-linear sum
of the semi-invariants α(λ, x), where x runs through the set X of representatives
of the conjugacy classes of G and where λ ∈ Hom(G, K∗) with kerλ ⊇ CG(x).
Now, for fixed x, the λs here correspond to all the linear characters of the abelian
group G/G′CG(x). Hence there are |G : G′CG(x)| such semi-invariants, and they
are K-linearly independent since they have distinct weights. On the other hand,
the semi-invariants which correspond to different G-conjugacy classes are certainly
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linearly independent in K[G] since they have disjoint supports. Thus the set of
all such α(λ, x) is a basis for SzK[G], and the dimension of the semicentre is the
number of these basis elements, namely

∑
x∈X |G : G′CG(x)|. Similarly, the first

expression for GΛ follows from the fact that, for each x ∈ X , the intersection of
the kernels of all linear characters in Hom(G/G′CG(x), K∗) is the identity group.
Hence, the intersection of the kernels of all λ ∈ Hom(G, K∗) with kerλ ⊇ G′CG(x)
is precisely equal to G′CG(x). Finally, if x and y are conjugate in G, then it is clear
that G′CG(x) = G′CG(y), and this yields the second expression.

§2. The first example

The finite groups we will use in both examples are constructed as semidirect
products G = H oC where C is cyclic and where the map C → Aut(H) has rather
special properties.

Lemma 2.1. Let H be a finite group and let θ be an automorphism of H of order
m > 1 which preserves the conjugacy classes of H. Set G = H o C where C = 〈c〉
is cyclic of order m and where c acts on H via the automorphism θ. Then

(i) G′ = H ′ and Z(H) ⊆ Z(G).
(ii) If λ ∈ Hom(G, K∗) with kerλ = H, then λ /∈ Λ(G).
(iii) Z(G) = Z(H) if no nontrivial power of θ is inner on H.

Proof. (i) Note that H ′ / G and that H/H ′ is abelian. Now θ preserves the classes
of H , so it also preserves the classes of H/H ′, and hence it must act trivially on
this abelian group. It follows that G/H ′ is abelian, and consequently, G′ ⊆ H ′.
Similarly, since θ preserves the classes of H , it acts trivially on Z(H), and hence
Z(H) ⊆ Z(G).

(ii) We know that λ ∈ Λ(G) if and only if there exists x ∈ G with CG(x) ⊆
kerλ = H . Consequently, it suffices to show that no such element exists. To this
end, suppose x ∈ G with CG(x) ⊆ H . Then x ∈ H and, since θ preserves the
classes of H , we have xc = xθ = xh for some h ∈ H . Thus ch−1 ∈ CG(x) ⊆ H and
this yields c ∈ H , a contradiction.

(iii) Finally, if z ∈ Z(G) ⊆ H o C, then z = h−1cj for some h ∈ H and some
j = 0, 1, . . . , m − 1. Since z centralizes H , it follows that cj and h are equal in
their conjugation action on H . In particular, θj is inner on H and the hypothesis
implies that j = 0 and hence that z = h−1 ∈ H . With this, it is clear that z is
contained in Z(H), so Z(G) ⊆ Z(H) and part (i) yields the result.

It follows from (ii) and (iii) above that one of the problems discussed in the in-
troduction essentially comes down to finding an example of an outer automorphism
which is class preserving. This was first considered by W. Burnside in his book
[B]. Here we use a special case of a construction found in [Wl]. Specifically, for the
remainder of this section, we fix the following notation.

Let H = A o B be the semidirect product of A = 〈a〉, a cyclic group of order
8, by the fours group B = 〈x, y〉, where B acts on A by ax = a3 and ay = a5.
Note that axy = a−1, CH(A) = A, Z(H) = 〈a4〉 and H ′ = 〈a2〉. Furthermore,
xa = xa6, ya = ya4 and xa2

= xa4. Next, define θ ∈ Aut(H) by aθ = a, xθ = xa4,
and yθ = ya4. Since a4 is central in H and of order 2, it follows easily that θ is a
well-defined automorphism of H of order 2. Set G = H o C where C = 〈c〉 is cyclic
of order 2 and where c acts on H via the automorphism θ. Clearly, |H | = 32 and
|G| = 64. The basic properties of θ given below are from [Wl].
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Lemma 2.2. With the above notation, θ is an outer automorphism of H which
preserves the conjugacy classes of the group. In particular, we have G′ = H ′ = 〈a2〉
and Z(G) = Z(H) = 〈a4〉.
Proof. Since a4 is central in H , we have (xy)θ = xy. Now suppose, by way of
contradiction, that θ is inner on H , say induced by the element h ∈ H . Then, since
a = aθ = ah, we have h ∈ CH(A) = A, so h = aj for some j = 0, . . . , 7. From
axy = a−1 and (xy)θ = xy, we deduce that xy = (xy)aj

= xya2j . Thus j = 0 or 4
and h = aj is central in H , a contradiction. Next, θ preserves the conjugacy classes
of H since, for all i, we have (ai)θ = ai, (xai)θ = (xai)a2

, (yai)θ = (yai)a and
(xyai)θ = xyai. The remainder of the result follows from the preceding lemma.

We can now prove

Proposition 2.3. If G = H o C is as above, then Λ(G) is not a subgroup of
Hom(G, K∗), and there exists λ ∈ Hom(G/G′Z(G), K∗) with λ /∈ Λ(G).

Proof. Since G′ = H ′ = 〈a2〉, it follows that G/G′ is an elementary abelian 2-
group of order 16 with generators aG′, xG′, yG′ and cG′. In particular, there
exist µ, η ∈ Hom(G, K∗) with µ(a) = −1, µ(x) = µ(y) = µ(c) = 1 and with
η(a) = η(c) = −1, η(x) = η(y) = 1. Now it is easy to check that µ, η ∈ Λ(G).
Indeed, these characters are the weights of the semi-invariants α = x(1+a4)(1−a2)
and β = y(1− a4), respectively. On the other hand, λ = µη satisfies λ(a) = λ(x) =
λ(y) = 1, λ(c) = −1, so kerλ = H . Thus, by Lemmas 2.1(ii) and 2.2, we see that
µη = λ /∈ Λ(G), and consequently Λ(G) is not a subgroup of Hom(G, K∗). Finally,
note that kerλ = H ⊇ 〈a2〉 = G′Z(G).

Some aspects of this result can be found in [I]. We remark that, in the above
proof, αβ = 0 since otherwise αβ would be a semi-invariant with weight λ = µη.
Furthermore, since G′ = 〈a2〉 and Z(G) = 〈a4〉, we can use Lemma 1.2(i) to quickly
describe Sz K[G]. Indeed, let T = CG(G′) = 〈a, y, c〉 and note that G′/Z(G) has
order 2 and that |G : T | = 2. Thus since ga2

= a4g for all g ∈ G \ T , it follows
easily that Sz K[G] = K[T ] + (1 + a4)K[G] and that the dimension of this algebra
is |T |+ (|G| − |T |)/2 = 3|G|/4 = 48.

Finally, it follows from Lemma 1.2(ii), by considering the classes of the elements
a, x and y, that GΛ = G′Z(G). As we will see in the next section, this equality
does not hold for all finite groups.

§3. The second example

Our goal here is to prove the existence of a finite group G such that, in the
notation of Lemma 1.2(ii), GΛ =

⋂
x∈G G′CG(x) 6= G′Z(G). For this, we study a

particular subgroup of an example constructed in the paper [Sh]. To start with, we
need

Lemma 3.1. Let q be a power of the prime number p. If n ≥ 3, then every element
of the finite field GF(qn) is a sum of (q + 1)st powers.

Proof. Let L be the additive span of all elements xq+1 with x ∈ GF(qn). Since L
is clearly closed under addition and multiplication, it follows that L is a subfield
of GF(qn). We first show that GF(q) ⊆ L. To this end, let x ∈ GF(q) ⊆ GF(qn)
and note that xq = x. Thus x2 = xq+1 ∈ L. But, every element in the finite field
GF(q) is a sum of two squares, and consequently GF(q) ⊆ L. It now follows that
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L = GF(qm) for some integer m dividing n. Consider the group homomorphism
ϕ : GF(qn)∗ → L∗ given by x 7→ xq+1. Since kerϕ = { x ∈ GF(qn) | xq+1 = 1 } has
at most q + 1 elements, we have

qm − 1 = |L∗| ≥ |GF(qn)∗|/(q + 1) = (qn − 1)/(q + 1).

In particular, if we write mt = n for some integer t ≥ 1, then

q + 1 ≥ (qmt − 1)/(qm − 1) = 1 + qm + · · ·+ (qm)t−1.

Now, if t = 2 in the above, then 1 + q ≥ 1 + qm. Hence m = 1 and n = mt = 2,
contradicting our assumption that n ≥ 3. On the other hand, if t > 2, then the
preceding displayed equation yields 1 + q ≥ 1 + qm + q2m, again a contradiction.
Thus t = 1, so n = mt = m and L = GF(qn), as required.

For the remainder of this section, we let p, q and n ≥ 3 be as above. Furthermore,
we write F for the finite field GF(qn), and we let φ denote the field automorphism of
F given by x 7→ xq. Then φ has order n ≥ 3 and the fixed field of φ is Fφ = GF(q).
Following [Sh], we form the ring R = F [X ; φ]/(X3), where F [X ; φ] is the skew
polynomial ring determined by φ. By a slight abuse of notation, we can write
R = F ⊕ FX ⊕ FX2 as a 3-dimensional left F -vector space with X3 = 0 and with
Xf = fφX = f qX for all f ∈ F . Since RX = FX ⊕ FX2 is a nilpotent ideal of
R, it is clear that U = 1 + RX is a group of units of R with |U | = |F |2 = q2n.

Lemma 3.2. Using the above notation, we have
(i) Z(R) = Fφ = GF(q).
(ii) Z(U) = 1 + RX2 = 1 + FX2.
(iii) U ′ = [U, U ] = 1 + RX2 = 1 + FX2.

Proof. (i) Since n ≥ 3, it is clear that F is self-centralizing in R. Thus, since R is
generated by F and X , we have Z(R) = CF (X) = Fφ = GF(q).

(ii) It follows from X3 = 0 that 1+FX2 ⊆ Z(U). Conversely, using the F -linear
independence of the automorphisms 1 and φ, it is easy to see that the centralizer
in U of 1 + FX is contained in 1 + FX2.

(iii) Let 1 + r, 1 + s ∈ U and note that (RX)3 = 0. Since r, s ∈ RX , we have

[1 + r, 1 + s] = (1− r + r2)(1− s + s2)(1 + r)(1 + s)

= 1 + (rs− sr) ∈ 1 + RX2.

Consequently, U ′ = [U, U ] is a subgroup of 1 + RX2 = 1 + FX2. For the reverse
inclusion, let t be a primitive element of F , so that o(t) = qn − 1, and let r = aX
and s = atX for some a ∈ F . Then, the above displayed equation yields

[1 + r, 1 + s] = 1 + aq+1t(tq−1 − 1)X2,

and note that t(tq−1−1) 6= 0 since t 6= 0 and o(t) = qn−1. Furthermore, if f, g ∈ F ,
then (1 + fX2)(1 + gX2) = 1 + (f + g)X2. Thus, by multiplying commutators for
various elements a ∈ F , we see that [U, U ] contains 1 + Lt(tq−1 − 1)X2 where L is
the additive span of all aq+1 with a ∈ F . By the previous lemma, L = F and hence
[U, U ] contains 1 + Ft(tq−1 − 1)X2 = 1 + FX2.

Again, following [Sh], we consider certain subsets of M2(R) and, for convenience,

we abbreviate the matrix
(

a b
0 1

)
by ((a, b)). Set H = ((U, R)) and observe that

matrix multiplication translates to the formulas ((a, b))((r, s)) = ((ar, as + b)) and
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((a, b))−1 = ((a−1,−a−1b)). Thus H is a group of order |U | |R| = q5n, and basic
properties of this group are listed below. As will be apparent, we really only need
to know the obvious fact that H ′ contains ((U ′, 0)).

Lemma 3.3. If H is the group described above, then
(i) Z(H) = ((1, RX2)).
(ii) H ′ = [H, H ] = ((1 + RX2, RX)).

Proof. (i) Let z = ((a, b)) ∈ Z(H). Then z commutes with ((1, 1)) and this yields
a = 1. Furthermore, since z commutes with ((1 + X, 0)), it follows that Xb = 0, and
hence that b ∈ RX2. Consequently, Z(H) ⊆ ((1, RX2)), and a direct calculation
yields the reverse inclusion.

(ii) By the preceding lemma, ((1 + RX2, 0)) = ((U ′, 0)) ⊆ H ′. Furthermore, if
b ∈ R, then the commutator of ((1 + X, 0))−1 and ((1, b))−1 is equal to ((1, Xb)).
Thus ((1, RX)) ⊆ H ′ and therefore

((1 + RX2, RX)) = ((1 + RX2, 0))((1, RX)) ⊆ H ′.

For the reverse inclusion, consider the maps σ and τ given by σ : ((a, b)) 7→ aU ′

and τ : ((a, b)) 7→ b + RX . Then, it follows easily from the formula for matrix mul-
tiplication that σ : H → U/U ′ and τ : H → (R/RX)+ are group homomorphisms
to abelian groups. Here, of course, (R/RX)+ indicates the additive group of the
ring. Consequently, H ′ ⊆ kerσ ∩ ker τ = ((1 + RX2, RX)), as required.

Now let u = 1 + X2 ∈ U and define θ : H → H by θ : ((a, b)) 7→ ((a, bu)). Then,
we have the following special case of a result of [Sh]. Note, however, that our choice
of u yields the stronger conclusion in part (ii) that k is contained in H ′, and not
just in H . Furthermore, kθ = k.

Lemma 3.4. Let u and θ be as above.
(i) θ is an outer automorphism of H of prime order p.
(ii) If h ∈ H, then there exists k ∈ H ′ with hθ = hk and kθ = k. In particular, θ

preserves the conjugacy classes of H.

Proof. (i) The formula for matrix multiplication implies that θ is an endomorphism
of H . Furthermore, θi : ((a, b)) 7→ ((a, bui)) so, since up = (1 + X2)p = 1, it follows
that θ is an automorphism of order p.

Suppose, by way of contradiction, that θ is the inner automorphism induced by
((c, d))−1 ∈ H . Then, for all r ∈ R, we have

((1, ru)) = ((1, r))θ = ((c, d))((1, r))((c, d))−1 = ((1, cr)).

Thus ru = cr, and r = 1 yields c = u. Consequently 1 + X2 = u ∈ Z(R), and this
contradicts Lemma 3.2(i).

(ii) Let h = ((a, b)) ∈ H and set k = ((1 + fX2, 0))−1 for some f ∈ F . Note
that k ∈ H ′, by Lemma 3.3(ii), and clearly kθ = k. Since 1 + fX2 ∈ Z(U),
by Lemma 3.2(ii), it follows easily that the equation hθ = hk is equivalent to
b(1 + X2) = bu = (1 + fX2)b and hence to bX2 = fX2b. Furthermore, if we write
b = b0 + b1X + b2X

2, with b0, b1, b2 ∈ F , then using X3 = 0, the latter equation
becomes b0X

2 = fX2b0 = fbφ2

0 X2. But, obviously, this equation can be solved for
f ∈ F . Indeed, if b0 = 0, take f = 0, and if b0 6= 0, take f = b0(b−1

0 )φ2
. In other

words, we have shown that an appropriate element k exists.
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Finally, let G = H o C be the semidirect product of H by the cyclic group
C = 〈c〉 of order p, where c acts on H via the automorphism θ. We can now quickly
obtain our main result.

Theorem 3.5. Let G = H o C be as above. Then
(i) Z(G) = Z(H) and G′ = H ′.
(ii) c ∈ ⋂

x∈G G′CG(x). In particular, if K is an algebraically closed field, then
c ∈ GΛ \G′Z(G).

Proof. (i) Since θ has prime order, it follows from the preceding lemma that no
nontrivial power of this automorphism is inner on H . The equalities Z(G) = Z(H)
and G′ = H ′ now follow from Lemmas 2.1 and 3.4.

(ii) Let x be an arbitrary element of G = HC, and write x = hci for some h ∈ H
and integer i. By the preceding lemma again, there exists k ∈ H ′ with hθ = hk

and kθ = k. The latter equality shows that k and c commute, and hence we have

xc = (hci)c = hθci = hkci = (hci)k = xk.

Thus, ck−1 ∈ CG(x) and, since k ∈ H ′ = G′, we conclude that c = (ck−1)k ∈
CG(x)G′ = G′CG(x). Lemma 1.2(ii) now implies that c ∈ ⋂

x∈G G′CG(x) = GΛ,
and certainly c /∈ G′Z(G) since G′ and Z(G) are both contained in H .

Note that |G| = p |H | = p q5n. In particular, if we take q = p, then |G| = p5n+1

and the smallest such group has n = 3 and |G| = p16.
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