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Abstract. Let p(z) be a complex polynomial of degree n having k zeros in
a disk D. We deal with the problem of finding the smallest concentric disk

containing k − l zeros of p(l)(z). We obtain some estimates on the radius of
this disk in general as well as in the special case, where k zeros in D are isolated
from the other zeros of p(z). We indicate an application to the root-finding
algorithms.

1. Introduction

Let us consider the following problem: If k zeros of a polynomial p(z) of degree
n (2 ≤ k ≤ n) lie in a disk D of radius r, what is the smallest concentric disk
that contains k − l zeros of p(l)(z) (1 ≤ l ≤ k − 1)? Since the problem is scaling
and translation invariant, we can assume that the disk D is the closed unit disk
∆ := {z ∈ C : |z| ≤ 1}. Let Pn,k denote the class of complex polynomials of degree
n having exactly k zeros in ∆. We define the function ρ(n, k, l), n ≥ k > l, as
follows:

ρ(n, k, l) = sup
p∈Pn,k

min
{

R > 0 : D(0, R) contains at least k − l zeros of p(l)(z)
}

.

(1.1)

Because of scaling and translation invariance we can conclude that if D(c, r) con-
tains k zeros of the polynomial p(z), then D(c, rρ(n, k, l)) contains k − l zeros of
p(l)(z).

The problem of estimating ρ(n, k, l) has a long history in the case l = 1. The
results listed below can be found in Marden’s book ([2]). The Gauss-Lucas Theorem
states that ρ(n, n, 1) = 1. Result ρ(n, 2, 1) = cot(π/n) is due to Alexander, Kakeya
and Szegő. Biernacki proved that

ρ(n, n− 1, 1) ≤ (1 + 1/n)1/2 and ρ(n, k, 1) ≤
n−k∏
i=1

[(n + i)/(n− i),(1.2)

and Marden showed that

ρ(n, k, 1) ≤ csc
π

2(n− k + 1)
.(1.3)

Received by the editors February 5, 1997 and, in revised form, September 3, 1997.
1991 Mathematics Subject Classification. Primary 30C15; Secondary 65E05.

c©1999 American Mathematical Society

1493



1494 PIOTR PAWLOWSKI

More recently, Coppersmith and Neff ([1]) proved that, under the condition that k
zeros in ∆ are centered at 0,

ρ(n, k, l) ≤ 10.477
(n− k + 1)(k − l)√

k
(1.4)

and

ρ(n, k, k − 1) ≤ C max
{
(n− k + 1)1/2k−1/4, (n− k + 1)k−2/3

}
.(1.5)

One can also impose an additional condition on p ∈ Pn,k to have zeros in ∆ iso-
lated from the other zeros. Following Pan ([3]), we define the isolation ratio of a
polynomial p with respect to a disk D, I(p, D), as:

(1.6) I(p, D(c, r)) := sup{µ > 0 : D(c, µr) contains exactly

the same zeros of p as D(c, r)}.
We say that a disk D is f-isolated if I(p, D) ≥ f . The isolation ratio is also scaling
and translation invariant. We define the isolation ratio of p as I(p) := I(p, ∆).
Renegar ([5]) proved the following result:

If I(p) ≥ 15n3, then ρ(n, k, k − 1) ≤ 3n

2
and I

(
p(k−1), D(0, 3n/2)

)
≥ I(p)

10n2
.

(1.7)

In other words, if k zeros of a polynomial p are well-isolated in some disk, then p(k−1)

has an isolated single zero in a larger concentric disk. Using Walsh’s Coincidence
Theorem ([2]) we improve the bound in (1.7). We also generalize Biernacki’s proof
of (1.2) and obtain an upper bound for ρ(n, k, l) which is smaller than (1.4) for
some special choices of n, k and l.

Results of this type have found applications in constructing low complexity al-
gorithms for finding zeros of polynomials. Smale and Renegar ([7], [5]) derived
quantitative criteria for a point to be in the domain of quadratic convergence of
Newton’s algorithm. The basic idea is that if a zero is isolated from other zeros,
then we need only crude approximation to obtain fast convergence. However, if we
have an isolated cluster of k zeros, then p(k−1) should have a single zero nearby. In
this case, the result like (1.7) allows us to apply Newton’s algorithm to p(k−1) with
quadratic convergence. To establish initial isolation of clusters of zeros, various
global search algorithms are used ([4], [5])

2. Main results

First we prove the following proposition:

Proposition 2.1.

(2.1) If I(p) ≥ 1 + 2
l(n− k)
k − l + 1

, then ρ(n, k, l) ≤ 1 and

I
(
p(l)

)
≥ (k − l + 1)I(p)− l(n− k)

k − l + 1 + l(n− k)
.

Proof. Let I(p) = R and let p(z) = f(z)g(z) where f(z) is a polynomial of degree
k whose zeros lie in ∆ and g(z) is a polynomial of degree n− k whose zeros lie in
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{z : |z| > R}. Let m = min(n− k, l). If z is a solution of the equation

p(l)(z) =
m∑

i=0

(
l

i

)
g(i)(z)f (l−i)(z) = 0,(2.2)

then the Walsh Coincidence Theorem implies that there exist x1, |x1| ≤ 1 and
x2, |x2| ≥ R such that

m∑
i=0

(
l

i

) (
(z − x2)n−k

)(i) (
(z − x1)k

)(l−i)
= 0,(2.3)

i.e.
m∑

i=0

(
l

i

)
(n− k)!

(n− k − i)!
(z − x2)n−k−i k!

(k − l + i)!
(z − x1)k−l+i = 0,(2.4)

i.e.

(z − x1)k−l(z − x2)n−k−m
m∑

i=0

(
l

i

)(
n− l

n− k − i

)
(z − x2)m−i(z − x1)i = 0.(2.5)

Also z must lie in the interval [x1, x2] and either z = x1 or z = x2 or z is a zero of
the polynomial

q(z) =
m∑

i=0

(
l

i

)(
n− l

n− k − i

)
(z − x2)m−i(z − x1)i.(2.6)

Let w =
z − x1

z − x2
and let

h(w) =
m∑

i=0

(
l

i

)(
n− l

n− k − i

)
wi =

m∑
i=0

aiw
i.(2.7)

All zeros of h(w) lie on the negative real axis and by the Enestrőm-Kakeya Theorem
they satisfy the inequality

min
0≤i≤m−1

ai

ai+1
≤ |w| ≤ max

0≤i≤m−1

ai

ai+1
.(2.8)

We have that

ai

ai+1
=

(i + 1)(k − l + i + 1)
(l − i)(n− k − i)

;(2.9)

therefore

ζ := min
0≤i≤m−1

ai

ai+1
=

k − l + 1
l(n− k)

(2.10)

and

ξ := max
0≤i≤m−1

ai

ai+1
=

m(m + k − l)
(l −m + 1)(n− k −m + 1)

.(2.11)

Since all zeros of h(w) lie in the interval [−ξ,−ζ], all zeros of q(z) lie in the interval[
ζx2+x1

ζ+1 , ξx2+x1
ξ+1

]
. By continuity, p(l)(z) has k − l zeros in ∆ if

∣∣∣ ζx2+x1
ζ+1

∣∣∣ ≥ 1. Since
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ζ+1

∣∣∣ ≤ ζR−1
ζ+1 , the above inequality holds if ζR−1

ζ+1 ≥ 1, i.e. if R ≥
(
1 + 2

ζ

)
=(

1 + 2 l(n−k)
k−l+1

)
. These are the only zeros of p(l)(z) in the disk

D

(
0,

ζR − 1
ζ + 1

)
= D

(
0,

(k − l + 1)R− l(n− k)
k − l + 1 + l(n− k)

)
.(2.12)

We use Proposition 2.1 to prove the following result analogous to (1.7).

Theorem 2.2.

If I(p) ≥ n2

4
, then ρ(n, k, k − 1) ≤ 1 and I

(
p(k−1)

)
≥ 4I(p)

n2
.(2.13)

Proof. If l = k − 1 and I(p) ≥ 1 + (k − 1)(n− k), then, by Proposition 2.1, ∆ con-
tains a zero of p(k−1). Since 1 + (k − 1)(n− k) ≤ k(n− k) ≤ n2/4, the same is true
if I(p) ≥ n2/4. Also,

I
(
p(k−1)

)
≥ 2I(p)− (k − 1)(n− k)

2 + (k − 1)(n− k)
>

I(p)
1 + (k − 1)(n− k)

≥ I(p)
k(n− k)

≥ 4I(p)
n2

.

(2.14)

Remark 2.3. We don’t know of any estimates for ρ(n, k, k− 1) if the isolation ratio
of p is smaller than n2/4. In applications to zero-finding we can use the classi-
cal Graeffe process of root-squaring to control the isolation ratio of a polynomial
([3],[6]). If p0 has zeros z1, . . . , zn and isolation ratio C > 1, then the polynomial

p1(z) := p0(
√

z)p0(−
√

z)(2.15)

has zeros z2
1 , . . . , z2

n and isolation ratio C2. By iterating this process we obtain
polynomial pm with zeros z2m

1 , . . . , z2m
n and isolation ratio C2m

.

We can also apply Proposition 2.1 to obtain an upper bound for ρ(n, k, l).

Theorem 2.4.

ρ(n, k, l) ≤ n + l

n− l

n−2∏
i=k

(
1 +

2l(n− i)
i− l + 1

)
.(2.16)

Proof. Let us assume that the zeros of p(z) are ordered by their moduli, |z1| ≤ |z2| ≤
. . . ≤ |zn|. If k = n− 1, then p(z) = f(z)(z − zn), where f(z) is a polynomial with
zeros zi, |zi| ≤ 1, 1 ≤ i ≤ n− 1. We have

p(l)(z) = f (l)(z)(z − zn) + lf (l−1)(z).(2.17)

By the Walsh Coincidence Theorem, if z is a zero of p(l)(z) it is also a zero of the
equation:

((z − γ)n−1)(l)(z)(z − zn) + l((z − γ)n−1)(l−1)(z) = 0(2.18)

where |γ| ≤ 1, i.e.,

(z − γ)n−1−l((n− l)(z − zn) + l(z − γ)) = 0.(2.19)
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Therefore z = γ or z = ((n− l)zn + lγ)/n. Also if |((n− l)zn + lγ)/n| > 1, then
there are exactly k − 1− l zeros of p(l)(z) in ∆. This is the case if |zn| > n+l

n−l . Oth-

erwise, by the Gauss-Lucas Theorem, all zeros of p(l)(z) are in the disk D
(
0, n+l

n−l

)
.

Now let’s fix K and suppose that (2.16) holds for k = n− 1 . . .K − 1. By Propo-
sition 2.1, if |zK+1| > 1 + 2 l(n−K)

K−l+1 , then there are exactly K − l zeros of p(l)(z) in

∆. Otherwise there are K + 1 zeros of p(z) in the disk D
(
0, 1 + 2 l(n−K)

K−l+1

)
and by

induction there are at least K − l zeros of p(l)(z) in D(0, R), where

R ≤ n + l

n− l

n−2∏
i=K

(
1 +

2l(n− i)
i− l + 1

)
.(2.20)

Inequality (2.16) can be better in some cases than (1.4), namely if k and l are
close to n. In the most interesting case l = k − 1, Coppersmith and Neff gave a
lower bound on ρ(n, k, k−1) and also conjectured that if k > n/2, then ρ(n, k, k−1)
is bounded by a constant.
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