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ABSTRACT. Let p(z) be a complex polynomial of degree n having k zeros in
a disk D. We deal with the problem of finding the smallest concentric disk
containing k — [ zeros of p)(z). We obtain some estimates on the radius of
this disk in general as well as in the special case, where k zeros in D are isolated
from the other zeros of p(z). We indicate an application to the root-finding
algorithms.

1. INTRODUCTION

Let us consider the following problem: If k zeros of a polynomial p(z) of degree
n (2<k<n) lie in a disk D of radius r, what is the smallest concentric disk
that contains k — [ zeros of pt(z) (1 <1<k —1)? Since the problem is scaling
and translation invariant, we can assume that the disk D is the closed unit disk
A:={z€C:|z| <1}. Let P, denote the class of complex polynomials of degree
n having exactly k zeros in A. We define the function p(n,k, 1), n >k > 1, as
follows:

(1.1)
p(n,k,l) = sup min {R > 0: D(0, R) contains at least k — [ zeros of p(l)(z)} .
pepn,k

Because of scaling and translation invariance we can conclude that if D(c,r) con-
tains k zeros of the polynomial p(z), then D(c,7p(n,k, 1)) contains k — [ zeros of
P (2).

The problem of estimating p(n, k,1) has a long history in the case [ = 1. The
results listed below can be found in Marden’s book ([2]). The Gauss-Lucas Theorem
states that p(n,n,1) = 1. Result p(n,2,1) = cot(w/n) is due to Alexander, Kakeya
and Szegd. Biernacki proved that

n—k
(1.2) pn,n—1,1)< A +1/n)"?  and  p(n,k,1) < H[(n+i)/(n—i),

and Marden showed that

™
1. k1)< _—
(13) pln, k1) < ese ey

Received by the editors February 5, 1997 and, in revised form, September 3, 1997.
1991 Mathematics Subject Classification. Primary 30C15; Secondary 65E05.

©1999 American Mathematical Society

1493



1494 PIOTR PAWLOWSKI

More recently, Coppersmith and Neff ([1]) proved that, under the condition that k
zeros in A are centered at 0,

(n—k+1)(k 1)

1.4 n, k1) < 10.477

(1.4) ol ) 7

and

(1.5) p(n,k, k — 1) < Cmax {(n AN (R 1)k‘2/3} .

One can also impose an additional condition on p € P, ; to have zeros in A iso-
lated from the other zeros. Following Pan ([3]), we define the isolation ratio of a
polynomial p with respect to a disk D, I(p, D), as:

(1.6) I(p,D(c,r)):=sup{p > 0: D(c,ur) contains exactly

the same zeros of p as D(c,r)}.

We say that a disk D is f-isolated if I(p, D) > f. The isolation ratio is also scaling

and translation invariant. We define the isolation ratio of p as I(p) := I(p, A).
Renegar ([5]) proved the following result:

(1.7)
3n R I(p)
> 3 _ < (k—1) > .
If I(p) > 15n°, then p(n,k,k—1) < 5 and I (p ,D(O,3n/2)) Z Ton2
k—1)

In other words, if k zeros of a polynomial p are well-isolated in some disk, then p
has an isolated single zero in a larger concentric disk. Using Walsh’s Coincidence
Theorem ([2]) we improve the bound in (1.7). We also generalize Biernacki’s proof
of (1.2) and obtain an upper bound for p(n,k,l) which is smaller than (1.4) for
some special choices of n, k and .

Results of this type have found applications in constructing low complexity al-
gorithms for finding zeros of polynomials. Smale and Renegar ([7], [5]) derived
quantitative criteria for a point to be in the domain of quadratic convergence of
Newton’s algorithm. The basic idea is that if a zero is isolated from other zeros,
then we need only crude approximation to obtain fast convergence. However, if we
have an isolated cluster of k zeros, then p*~) should have a single zero nearby. In
this case, the result like (1.7) allows us to apply Newton’s algorithm to p(k_l) with
quadratic convergence. To establish initial isolation of clusters of zeros, various
global search algorithms are used ([4], [5])

2. MAIN RESULTS

First we prove the following proposition:

Proposition 2.1.

(2.1) IfI(p)>1+2 , then p(n,k,1) <1 and

kE—1+1)I(p)—1l(n—k)
1(p0) > .
(p ) = k—l+1+1ln—k)
Proof. Let I(p) = R and let p(z) = f(2)g(z) where f(z) is a polynomial of degree
k whose zeros lie in A and g(z) is a polynomial of degree n — k whose zeros lie in

Iln—k)
E—-1+1
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{z:]z] > R}. Let m = min(n — k,1). If z is a solution of the equation

(2.2 P =3 (1)a e =0

7
=0

then the Walsh Coincidence Theorem implies that there exist x1,|z1] <1 and
xa, |x2| > R such that

(23 > ;) (=) (=) =0,
=0
N (n—k)! [P i
e L ()R e e o
ie.
z—xlk_lz—xgn_k_mm ! n-t 2 =)z —xy) =
@9 Gonfemnr (), ) e e ny =0

Also z must lie in the interval [z1,22] and either z = 21 or z = 25 or z is a zero of
the polynomial

(2.6 i@ =3 ()" e

¥ —
Let w =

(N[ n—1 N

2. -~ =Y aut

(2.7) h(w) ;(z><n—k—z)w Zaw

All zeros of h(w) lie on the negative real axis and by the Enestrém-Kakeya Theorem
they satisfy the inequality

a; a;

(2.8) min <|w| < max .
0<i<m—1 @41 0<i<m—1 Q41

We have that
a; (i—l—l)(k—l—i—z’—i—l)'

2.9 =
( ) Aj41 (l—z)(n—k—z) ’
therefore

a; k—1 +1
21 = 1 =
( O) C ngnélrg—l ;41 l(n — k)
and
@211) ¢ = ai m(m+k —1)

T o<itm—1 a1 (l—=m+1l)(n—k—-m+1)

Since all zeros of h(w) lie in the interval [—&, —(], all zeros of ¢(z) lie in the interval

[4142-:_1“’ 6152-:?1 > 1. Since

. By continuity, p¥ (z) has k — [ zeros in A if Crg%
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(R 2) _
gC <+1>11e 1fRZ<1+Z)_

) These are the only zeros of p l)( ) in the disk

Crotmy

<+1

(2.12) D (0, %) -D (07 (kk__lztrlﬁ ;(ffi;)k)) .

We use Proposition 2.1 to prove the following result analogous to (1.7).

Theorem 2.2.

2 41
(2.13) If I(p) > nz, then p(n,k,k—1) <1 and I (p(k_l)) > %
Proof. 1fl =k — 1 and I(p) > 1+ (k — 1)(n — k), then, by Proposition 2.1, A con-
tains a zero of p* =V, Since 1 + (k — 1)(n — k) < k(n — k) < n?/4, the same is true
if I(p) > n?/4. Also,

(2.14)
-1 21(p) — (k=1)(n — k) I(p) I(p) 41(p)
1(p*) = 2t Dk It G-Dm—F k-8 = n?

|

Remark 2.3. We don’t know of any estimates for p(n, k, k — 1) if the isolation ratio
of p is smaller than n?/4. In applications to zero-finding we can use the classi-
cal Graeffe process of root-squaring to control the isolation ratio of a polynomial
([3],]6]). If po has zeros z1,... , z, and isolation ratio C' > 1, then the polynomial

(2.15) p1(2) = po(V2)po(—v/2)

has zeros z7,...,22 and isolation ratio C2. By iterating this process we obtain

polynomial p,, with zeros 22" ..., 22™ and isolation ratio C?" .

rn

We can also apply Proposition 2.1 to obtain an upper bound for p(n, k,1).
Theorem 2.4.

- 2l(n — 1)
2.16 k, 1)
( ) pln, 1;[ < i—1+1 >
Proof. Let us assume that the zeros of p(z) are ordered by their moduli, |z;| < |z2| <

. <|zn|. If k =n —1, then p(z) = f(2)(2 — 2zn), where f(2) is a polynomial with
zeros z;, |z;| < 1,1 <i<n—1. We have

(2.17) pW(2) = fU(2) (2 — zp) + LV (2).

By the Walsh Coincidence Theorem, if z is a zero of p)(2) it is also a zero of the
equation:

(2.18) ((z =" )z = 20) +U(z =" H V() =0
where |y] <1, i.e.,

(2.19) (2 =) (= 1)z = 2) +1(z = 7)) = 0.
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Therefore z =+ or z = ((n — 1)z, + 1v)/n. Also if |((n — 1)z, +1v)/n| > 1, then
there are exactly k — 1 — [ zeros of p () in A. This is the case if |z,| > Z—J_“i Oth-

erwise, by the Gauss-Lucas Theorem, all zeros of p(l) (z) are in the disk D (O, "—Jré)

n—

Now let’s fix K and suppose that (2.16) holds for k =n —1... K — 1. By Propo-

sition 2.1, if |zx 41| > 1+ 2l1(<"__lfl), then there are exactly K — [ zeros of p¥(z) in

A. Otherwise there are K + 1 zeros of p(z) in the disk D (0, 1+ 21(”_K)) and by

K—I+1
induction there are at least K — I zeros of p®”(z) in D(0, R), where
n—2 .
2l(n —
(2.20) R< ntl 1+ M .
n—1l -+ 1—1+1

|

Inequality (2.16) can be better in some cases than (1.4), namely if & and [ are
close to n. In the most interesting case [ = k — 1, Coppersmith and Neff gave a
lower bound on p(n, k, k—1) and also conjectured that if & > n/2, then p(n, k, k—1)
is bounded by a constant.
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