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THE MAXIMAL IDEAL SPACE OF H∞(D)
WITH RESPECT TO THE HADAMARD PRODUCT

HERMANN RENDER

(Communicated by Albert Baernstein II)

Abstract. It is shown that the space of all regular maximal ideals in the Ba-
nach algebra H∞(D) with respect to the Hadamard product is isomorphic to
N0. The multiplicative functionals are exactly the evaluations at the n-th Tay-
lor coefficient. It is a consequence that for a given function f(z) =

∑∞
n=0 anzn

in H∞(D) and for a function F (z) holomorphic in a neighborhood U of 0 with
F (0) = 0 and an ∈ U for all n ∈ N0 the function g(z) =

∑∞
n=0 F (an)zn is in

H∞(D).

Introduction

Let D := {z ∈ C : |z| < 1} be the open unit disk and let f(z) =
∑∞

n=0 anzn and
g(z) =

∑∞
n=0 bnzn be power series on D. Then the Hadamard product of f and g is

defined by f∗g(z) =
∑∞

n=0 anbnzn. The Hadamard product on the space H(D) of all
holomorphic functions on D is continuous with respect to the topology of compact
convergence. In [1] R. Brooks has shown that the space of all maximal ideals in the
space H(D) is isomorphic to the Stone-Čech-compactification βN0 of N0 := N∪{0}
and the multiplicative functionals on H(D) are given by the coefficient functionals
δn : H(D) → C defined by δn(f) := an (where f(z) =

∑∞
n=0 anzn in |z| < 1 and

n ∈ N0). In this note we discuss the subalgebra H∞(D) of all bounded holomorphic
functions which has been considered for example in [3]. Our main result states that
the non-trivial multiplicative functionals on H∞(D) are of the form δn, n ∈ N0 (as
in the case of H(D)). In contrast to the algebra H(D) the space H∞(D) is even a
Banach algebra with respect to the supremum norm which is denoted by ||f ||∞ for
f ∈ H∞(D). It follows that the maximal modular ideals of H∞(D) are the kernels
of the multiplicative functionals and therefore the space of all maximal modular
ideals of H∞(D) is isomorphic to N0. Note that H(D) possesses a unit element
γ(z) = 1

1−z =
∑∞

n=0 zn which is not in the subalgebra H∞(D).

The results

Let B be the space of all f(z) =
∑∞

n=0 anzn such that
∑∞

n=0 |an| < ∞; clearly,
‖f‖∞ ≤ ∑∞

n=0 |an|, so B ⊂ H∞(D). We note that if f =
∑∞

n=0 anzn ∈ H∞(D),
then

∑∞
n=0 |an|2 = ‖f‖2

2 ≤ ‖f‖2
∞ < ∞, where ||f ||2 :=

√∑∞
n=0 |an|2. Hence for

any f, g ∈ H∞(D), we have f ∗ g ∈ B, since
∑∞

n=0 |anbn| ≤ ‖f‖2‖g‖2 by the
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Cauchy- Schwarz inequality; this also shows that H∞(D) is a Banach algebra under
Hadamard multiplication.

Proposition 1. Let A be the Banach algebra obtained by adjoining a unit to H∞(D).
If f =

∑∞
n=0 anzn ∈ B, then σA(f) = {an : n ∈ N0} ∪ {0}.

Proof. We must show that if λ /∈ {an : n ∈ N0} and λ 6= 0, then λ− f is invertible

in A (the other inclusion is easy). Let g(z) =
∞∑

n=0

an

λ− an
zn; since |an| < |λ|/2 for

sufficiently large n, we have |an/(λ − an)| ≤ (2/|λ|)|an| for sufficiently large n, so
g ∈ B ⊂ H∞(D). Since

λg − f =
∞∑

n=0

λan − λan + a2
n

λ− an
zn = f ∗ g,

we see that (λ− f) ∗ (1 + g) = λ, so λ− f is invertible in A.

The next result is the main step of our proof. Although we need it only for
Banach algebras, it is valid for the larger class of all Fréchet algebras, cf. [4] for
definition. We denote by ∆A the set of all continuous multiplicative non-trivial
functionals.

Theorem 2. If A is a unital Frechet algebra, and S is a countable subset of ∆A

with the property that σA(f2) = {ϕ(f2) : ϕ ∈ S} for all f ∈ A, then S = ∆A.

Proof. Let S = {ϕn : n ∈ N}. Suppose that there exists ϕ ∈ ∆A \ S. As ϕ 6= ϕn

for all n ∈ N, the sets An := ker(ϕn − ϕ) and Bn := ker(ϕn + ϕ) are closed
hyperplanes, in particular they are nowhere dense. By the Baire category theorem
there exists f ∈ A such that f /∈ An and f /∈ Bn for all n ∈ N. This means that
ϕn(f) 6= ϕ(f) and ϕn(f) 6= −ϕ(f) for all n ∈ N. On the other hand we know that
λ := ϕ(f) ∈ σA(f) since ϕ is multiplicative. Hence λ2 ∈ σA(f2). By assumption
there exists n ∈ N with λ2 = ϕn(f2) = (ϕn(f))2. Hence λ = ϕn(f) or λ = −ϕn(f),
a contradiction.

Theorem 3. The non-trivial multiplicative functionals on H∞(D) are of the form
δn, n ∈ N0.

Proof. By the above, f2 ∈ B for all f ∈ H∞(D). Now apply Proposition 1 and
Theorem 2.

Theorem 4. Let U be an open neighborhood of zero and F : U → C holomorphic
with F (0) = 0. If f(z) =

∑∞
n=0 anzn is in H∞(D) and an ∈ U for all n ∈ N0, then

F (f)(z) :=
∑∞

n=0 F (an)zn is in H∞(D).

Proof. This is just the functional calculus for Banach algebras (without unit ele-
ment) using the fact that σA(f) ⊂ U by Theorem 3.

Remark 5. There is no continuous functional calculus on H∞(D). Consider for ex-
ample F (x) = |x|. Let g(z) = (1− z)−i =

∑∞
n=0 bnzn. Then F (g) =

∑∞
n=0 |bn|zn is

not bounded since |bn| ≥ 1
n and

∑∞
n=0 |bn| is divergent; cf. [5, p. 68].

One should observe that analyticity plays no role, other than in the proof that
H∞(D) is a Banach algebra under Hadamard multiplication; since H∞(D) is iso-
metrically imbedded in L∞(T), and the Hadamard product is just convolution, one
can just as easily state and prove the corresponding theorem for L∞(T), or any of
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its subspaces having the form E = {f ∈ L∞(T) : f̂n = 0 for all n /∈ S}, where f̂n is
the nth Fourier coefficient of f , and S is any subset of Z. Of course, H∞(D) is the
special case of S = N0. Each such E is a Banach algebra under convolution, and
every nontrivial homomorphism of E to C has the form f 7→ f̂n for some n ∈ S.
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