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Abstract. A surface in R3 has Hamiltonian stationary normal bundle if and
only if it is either minimal, a part of a round sphere, or a part of a cone with
vertex angle π/2.

0. Introduction

Let N be an n-dimensional Kähler manifold with the Kähler form Ω. A La-
grangian submanifold M in N is an n-dimensional submanifold in N such that
Ω|M = 0. A Lagrangian submanifold in a Kähler manifold is called Hamilton-
ian stationary if it is a critical point of the volume functional for all Hamiltonian
deformations (cf. [2]). Of course, any minimal Lagrangian submanifold is Hamil-
tonian stationary. In fact, a Lagrangian submanifold with parallel mean curvature
is Hamiltonian stationary (cf. Section 1).

On the other hand, let M be a submanifold in Rn. The normal bundle T⊥M of
M may be naturally immersed in Rn×Rn by the immersion ψ : T⊥M → Rn×Rn

defined by ψ(νx) = (x, νx). We consider the complex structure J on Cn = Rn×Rn

defined by J(X,Y ) = (−Y,X). Then it is known that ψ(T⊥M) is a Lagrangian
submanifold in Cn = Rn ×Rn (cf. [1, III.3.C]).

So it is natural to ask which submanifolds in Rn have Hamiltonian stationary
normal bundles. In this paper we discuss the case of surfaces in R3.

Theorem. Let S be a surface in R3. Then ψ(T⊥S) is Hamiltonian stationary if
and only if S is either minimal, a part of a round sphere, or a part of a cone with
vertex angle π/2.

In the proof of the theorem, we can find that the normal bundles of a round
sphere and a cone with vertex angle π/2 in R3 have non-parallel mean curvature.

Remark. Harvey and Lawson determined submanifolds in Rn with minimal normal
bundles (see [1, III. Th. 3.11, Prop. 2.17]). In particular, they showed that a surface
S in Rn has minimal normal bundle if and only if S is minimal.
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1. Preliminaries

Let N be an n-dimensional Kähler manifold with the complex structure J and
the Kähler metric g. The Kähler form Ω of N is defined by Ω(X,Y ) = g(JX, Y ) for
X , Y ∈ TxN . Let M be a Lagrangian submanifold in N , that is, an n-dimensional
submanifold in N such that Ω|M = 0. Then J becomes a bijection between TxM
and T⊥x M for x ∈M .

A normal vector field V along M is called a Hamiltonian variation if V =
J(grad(f)) for some compactly supported function f on M . Let i : M → N be
the inclusion map. A compactly supported deformation φt : M → N (−ε < t <
ε, φ0 = i) of M is called a Hamiltonian deformation if its variation vector field is
a Hamiltonian variation. We say that M is Hamiltonian stationary if it satisfies

d

dt

∣∣∣∣
t=0

vol(φt(M)) = 0

for all Hamiltonian deformations φt. The Euler-Lagrange equation is given as
follows:

Proposition (cf. [2]). Let N be a Kähler manifold with the complex structure J . A
Lagrangian submanifold M in N is Hamiltonian stationary if and only if its mean
curvature vector H satisfies div(JH) = 0 on M .

From this proposition, we can see that a Lagrangian submanifold with parallel
mean curvature in a Kähler manifold is Hamiltonian stationary.

2. Proof of the Theorem

Let x = x(t1, t2), (t1, t2) ∈ D, be a local parametrization of S, where D is an
open domain on R2. Let

I = E(dt1)2 + 2Fdt1 dt2 +G(dt2)2

and

II = L(dt1)2 + 2Mdt1 dt2 +N(dt2)2

be the first and second fundamental forms of S, respectively. As our argument
is local in nature, we may assume that either S has no umbilic points or S is
totally umbilic. In the case where S has no umbilic points, we may choose the local
parametrization so that the parameter curves are lines of curvature, and F = M =
0. It is possible to choose the local parametrization such that F = M = 0 also in
the case where S is totally umbilic. So we assume that F = M = 0 in the following.

The principal curvatures a and b of S are given by a = L/E and b = N/G. By
the Codazzi equation, we have

∂a

∂t2
=
b− a

2E
∂E

∂t2
,

∂b

∂t1
=
a− b

2G
∂G

∂t1
.(1)

Let ν denote the unit normal vector along S. Let f : D × R → R3 × R3 be
defined by

f(t1, t2, t3) = (x(t1, t2), t3ν(t1, t2)),

which is the parametrization of the immersion ψ : T⊥S → R3 × R3 in the intro-
duction.
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Set

e1 = (E(1 + t23a
2))−1/2 ∂

∂t1
,

e2 = (G(1 + t23b
2))−1/2 ∂

∂t2
, e3 =

∂

∂t3
.

(2)

Then we have

f∗e1 = (E(1 + t23a
2))−1/2

(
∂x

∂t1
,−t3a ∂x

∂t1

)
,

f∗e2 = (G(1 + t23b
2))−1/2

(
∂x

∂t2
,−t3b ∂x

∂t2

)
, f∗e3 = (0, ν),

(3)

which are orthonormal. So {e1, e2, e3} is an orthonormal frame on D × R with
respect to the metric induced by f .

Let J be the complex structure on C3 = R3×R3 defined by J(X,Y ) = (−Y,X).
Set

e4 = J(f∗e1) = (E(1 + t23a
2))−1/2

(
t3a

∂x

∂t1
,
∂x

∂t1

)
,

e5 = J(f∗e2) = (G(1 + t23b
2))−1/2

(
t3b

∂x

∂t2
,
∂x

∂t2

)
,

e6 = J(f∗e3) = (−ν, 0).

(4)

Then {e4, e5, e6} is a normal orthonormal frame.
The second fundamental form hα

ij of f is defined by hα
ij = 〈ei(f∗ej), eα〉 for 1 ≤ i,

j ≤ 3, 4 ≤ α ≤ 6. Using (2), (3), (4) and (1), we get

h4
11 = −t3E−1/2(1 + t23a

2)−3/2 ∂a

∂t1
,

h4
22 = −t3E−1/2(1 + t23a

2)−1/2(1 + t23b
2)−1

(
a− b

2G
∂G

∂t1

)
= −t3E−1/2(1 + t23a

2)−1/2(1 + t23b
2)−1 ∂b

∂t1
,

h5
11 = −t3G−1/2(1 + t23a

2)−1(1 + t23b
2)−1/2

(
b− a

2E
∂E

∂t2

)
= −t3G−1/2(1 + t23a

2)−1(1 + t23b
2)−1/2 ∂a

∂t2
,

h5
22 = −t3G−1/2(1 + t23b

2)−3/2 ∂b

∂t2
,

h6
11 = −a(1 + t23a

2)−1, h6
22 = −b(1 + t23b

2)−1,

h4
33 = h5

33 = h6
33 = 0.
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Set

P = E−1/2(1 + t23a
2)−3/2 ∂a

∂t1

+ E−1/2(1 + t23a
2)−1/2(1 + t23b

2)−1 ∂b

∂t1
,

Q = G−1/2(1 + t23a
2)−1(1 + t23b

2)−1/2 ∂a

∂t2

+G−1/2(1 + t23b
2)−3/2 ∂b

∂t2
,

R = a(1 + t23a
2)−1 + b(1 + t23b

2)−1.

(5)

Then the mean curvature vector H of f is given by

H = −(t3Pe4 + t3Qe5 +Re6).(6)

By (6) and (4),

JH = t3P (f∗e1) + t3Q(f∗e2) +R(f∗e3),

and we have

div(JH) =
3∑

i=1

〈(ei(JH))T , f∗ei〉 =
3∑

i=1

〈ei(JH), f∗ei〉

= t3(e1P ) + t3Q〈e1(f∗e2), f∗e1〉+R〈e1(f∗e3), f∗e1〉
+ t3P 〈e2(f∗e1), f∗e2〉+ t3(e2Q) +R〈e2(f∗e3), f∗e2〉
+ t3P 〈e3(f∗e1), f∗e3〉+ t3Q〈e3(f∗e2), f∗e3〉+ e3R.

(7)

Here (ei(JH))T denotes the tangential part of ei(JH), and the seventh and eighth
terms of the right hand side are zero.

(i) If S is minimal, then a + b = 0. By (5) and (6) we have H = 0, and
div(JH) = 0.

(ii) If S is a part of a round sphere, then a = b which is constant. By (5),
P = Q = 0 and R = 2a(1 + t23a

2)−1. Using (7), (2) and (3), we can see that
div(JH) = 0.

(iii) In what follows, we assume that S is neither minimal nor a part of a round
sphere. Then we may assume that a2 6= b2.

(iii)1 We assume further that S is non-flat. Then we may assume that a 6= 0 and
b 6= 0. Using (7), (5), (2) and (3), we can find that

(1 + t23a
2)3(1 + t23b

2)3 div(JH)

= t3

{
(1 + t23a

2)A1 − 3a
E

(
∂a

∂t1

)2

t23(1 + t23b
2)3

}
(8)

= t3

{
(1 + t23b

2)B1 − 3b
G

(
∂b

∂t2

)2

t23(1 + t23a
2)3

}
(9)

for some functions A1, B1 on D ×R, which are polynomial with respect to t3.
If div(JH) = 0, then (8) and (9) are identically zero, which are true also as

polynomials for t3 ∈ C. So by letting t3 =
√−1/a and

√−1/b in (8) and (9)
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respectively, we get

∂a

∂t1
=

∂b

∂t2
= 0.(10)

By (5) and (10),

P = E−1/2(1 + t23a
2)−1/2(1 + t23b

2)−1 ∂b

∂t1
,

Q = G−1/2(1 + t23a
2)−1(1 + t23b

2)−1/2 ∂a

∂t2
.

(11)

Again by using (7), (11), (5), (2), (3) and (1), we have

(1 + t23a
2)2(1 + t23b

2)2 div(JH)

= t3(1 + t23a
2)A2 + t3(1 + t23b

2)

{
1 + a(2a− b)t23

(b− a)G

(
∂a

∂t2

)2

− a3(1 + t23b
2)

}(12)

= t3(1 + t23b
2)B2 + t3(1 + t23a

2)

{
1 + b(2b− a)t23

(a− b)E

(
∂b

∂t1

)2

− b3(1 + t23a
2)

}(13)

for some functions A2 and B2 on D × R, which are polynomials with respect to
t3. As we assume that div(JH) = 0, (12) and (13) are identically zero, also as
polynomials for t3 ∈ C. So by letting t3 =

√−1/a and
√−1/b in (12) and (13)

respectively, we get

G =
1

a2(a2 − b2)

(
∂a

∂t2

)2

6= 0,(14)

E =
1

b2(b2 − a2)

(
∂b

∂t1

)2

6= 0.(15)

Inserting (14) into (1), and noting (10), (15), we have a contradiction.
Thus in this case (iii)1, div(JH) cannot be identically zero.
(iii)2 We assume that S is flat. Then we may assume that a = 0 and b 6= 0 on

S. By (5),

P = E−1/2(1 + t23b
2)−1 ∂b

∂t1
,

Q = G−1/2(1 + t23b
2)−3/2 ∂b

∂t2
, R = b(1 + t23b

2)−1.

(16)

Using (7), (16), (2) and (3), we have

(1 + t23b
2)3 div(JH) = t3

{
(1 + t23b

2)B3 − 3b
G

(
∂b

∂t2

)2

t23

}
(17)

for some function B3 on D ×R, which is a polynomial with respect to t3.
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If div(JH) = 0, then the right side of (17) is identically zero, also as a polynomial
for t3 ∈ C. Thus we have ∂b/∂t2 = 0. So Q = 0 by (16). Again by using (7), (16),
(2), (3) and (1), we get

div(JH) = t3E
−1

[
b−1(1 + t23b

2)−2

{(
∂b

∂t1

)2

− Eb4

}

+(1 + t23b
2)−1

{
∂2b

∂t21
− 2
b

(
∂b

∂t1

)2

− 1
2E

∂E

∂t1

∂b

∂t1

}]
.

(18)

As we assume that div(JH) = 0, by (18), we have

E =
1
b4

(
∂b

∂t1

)2

6= 0,(19)

∂2b

∂t21
− 2
b

(
∂b

∂t1

)2

− 1
2E

∂E

∂t1

∂b

∂t1
= 0,(20)

where we note that (19) implies (20) automatically. By (1) and that b depends only
on t1,

G =
c

b2
, N =

c

b

for some positive function c depending only on t2. Thus we have

I =
1
b4

(
∂b

∂t1

)2

(dt1)2 +
c

b2
(dt2)2, II =

c

b
(dt2)2.

Noting that c > 0 and ∂b/∂t1 6= 0, we change the parameters as follows:

t̃1 =
1
b
, t̃2 =

∫ √
c dt2.

Then we have

I = (dt̃1)2 + t̃21(dt̃2)
2, II = t̃1(dt̃2)2.(21)

The cone parametrized by

x(t1, t2) =
1√
2
(t1 cos(

√
2t2), t1 sin(

√
2t2), t1)(22)

has the first and second fundamental forms (21) without tilde, with respect to the
suitable unit normal vector field. So by the fundamental theorem, up to congruence,
S must be a part of the cone with vertex angle π/2.

Conversely, let S be a part of a cone with vertex angle π/2. Then we may assume
that S is parametrized by (22), and (21) without tilde is valid. With respect to
this parametrization, (18) may be applied, where E = 1 and b = 1/t1. By (18) we
can see that S has Hamiltonian stationary normal bundle.

Thus the proof is complete.
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