PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 5, Pages 1337–1338 S 0002-9939(99)04701-2 Article electronically published on January 28, 1999

REMARKS ON COMMUTING EXPONENTIALS IN BANACH ALGEBRAS

CHRISTOPH SCHMOEGER

(Communicated by Theodore W. Gamelin)

ABSTRACT. Suppose that a and b are elements of a complex unital Banach algebra such that the spectra of a and b are $2\pi i$ -congruence-free. E.M.E. Wermuth has shown that then

$$e^a e^b = e^b e^a$$
 implies that $ab = ba$.

In this note we use two elementary facts concerning inner derivations on Banach algebras to give a very short proof of Wermuth's result.

Let \mathcal{A} denote a complex unital Banach algebra. For $x \in \mathcal{A}$ the spectrum of x is denoted by $\sigma(x)$. The map $\delta_x : \mathcal{A} \to \mathcal{A}$, defined by

$$\delta_x(c) = cx - xc \qquad (c \in \mathcal{A}),$$

is called the *inner derivation determined by* x. From $\|\delta_x(c)\| \le 2\|c\| \|x\|$ it follows that δ_x is a bounded linear operator on \mathcal{A} . Proposition 6.4.8 in [1] shows that

(1)
$$\sigma(\delta_x) \subseteq \{\lambda - \mu : \lambda, \mu \in \sigma(x)\}\$$

and

(2)
$$e^{\delta_x}(c) = e^{-x}ce^x \text{ for all } c \in \mathcal{A}.$$

Define the entire function $f: \mathbb{C} \to \mathbb{C}$ by

$$f(\lambda) = \begin{cases} \lambda^{-1}(e^{\lambda} - 1), & \text{if } \lambda \neq 0, \\ 1, & \text{if } \lambda = 0. \end{cases}$$

Since $\lambda f(\lambda) = f(\lambda)\lambda = e^{\lambda} - 1$, we obtain for $x \in \mathcal{A}$

$$f(\delta_x)\delta_x = e^{\delta_x} - I$$
:

hence, by (2),

(3)
$$(f(\delta_x)\delta_x)(c) = e^{-x}ce^x - c \text{ for all } c \in \mathcal{A}.$$

A set $\Omega \subseteq \mathbb{C}$ is called $2\pi i$ -congruence-free if $\lambda_1, \lambda_2 \in \Omega$ and $\lambda_1 \equiv \lambda_2 \pmod{2\pi i}$ implies that $\lambda_1 = \lambda_2$.

Theorem. Let $a, b \in \mathcal{A}$. Suppose that $\sigma(a)$ and $\sigma(b)$ are $2\pi i$ -congruence-free and that $e^a e^b = e^b e^a$. Then ab = ba.

Received by the editors August 5, 1997.

1991 Mathematics Subject Classification. Primary 46H99.

Key words and phrases. Commuting exponentials.

Proof. Let $x \in \{a, b\}$. Since $\sigma(x)$ is $2\pi i$ -congruence-free, (1) shows that f does not vanish on $\sigma(\delta_x)$; hence $f(\delta_x)$ is bijective. From (3) it follows that

(4)
$$\delta_x(c) = f(\delta_x)^{-1} (e^{-x} c e^x - c) \text{ for all } c \in \mathcal{A}.$$

Therefore we get

$$\delta_a(e^b) = f(\delta_a)^{-1}(e^{-a}e^be^a - e^b) = f(\delta_a)^{-1}(e^{-a}e^ae^b - e^b) = 0.$$

Thus $ae^b = e^b a$. Use (4) again to obtain

$$\delta_b(a) = f(\delta_b)^{-1}(e^{-b}ae^b - a) = f(\delta_b)^{-1}(e^{-b}e^ba - a) = 0;$$

hence
$$ab = ba$$
.

Corollary 1. Suppose that \mathcal{H} is a complex Hilbert space and \mathcal{A} is the Banach algebra of all bounded linear operators on \mathcal{H} . For self-adjoint operators $A, B \in \mathcal{A}$ the following assertions are equivalent:

- (i) $e^A e^B = e^B e^A$.
- (ii) $e^A e^B = e^{A+B}$.
- (iii) AB = BA.

Proof. It is clear that (iii) implies (i) and (ii). Since $\sigma(A)$, $\sigma(B) \subseteq \mathbb{R}$, it follows that $\sigma(A)$ and $\sigma(B)$ are $2\pi i$ -congruence-free, and so (i) implies (iii). If (ii) holds, we get $e^B e^A = (e^B)^* (e^A)^* = (e^A e^B)^* = (e^{A+B})^* = e^{A+B} = e^A e^B$, and thus (i) holds. \square

Corollary 2. Suppose that A is as in Corollary 1 and that the spectrum of $A \in A$ is $2\pi i$ -congruence-free. Then

$$e^A$$
 is normal if and only if A is normal.

Proof. If A is normal, then $e^A e^{A^*} = e^{A+A^*} = e^{A^*} e^A$; thus e^A is normal.

Now suppose that e^A is normal. Since $\sigma(A^*) = \{\bar{\lambda} : \lambda \in \sigma(A)\}$, it follows that $\sigma(A)$ and $\sigma(A^*)$ are $2\pi i$ -congruence-free. The theorem gives $AA^* = A^*A$.

Corollary 3. Suppose that A is as in Corollary 1. If $A \in A$ and $||A|| < \pi$, then e^A is normal if and only if A is normal.

Proof. $||A|| < \pi$ implies that $\sigma(A)$ is $2\pi i$ -congruence-free. Now use Corollary 2. \square

References

- T.W. Palmer: Banach algebras and the general theory of *-algebra, Vol. I. Cambridge, 1994.
 MR 95c:46002
- [2] E.M.E. Wermuth: A remark on commuting operator exponentials, Proc. Amer. Math. Soc. 125 (1997), 1685–1688. MR 97g:39011

 $\label{eq:many_mathematisches} \begin{tabular}{ll} Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany $E-mail\ address: $ christoph.schmoeger@math.uni-karlsruhe.de \\ \end{tabular}$