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POSITIVE DIFFERENTIALS, THETA FUNCTIONS
AND HARDY H2 KERNELS

AKIRA YAMADA

(Communicated by Albert Baernstein II)

Abstract. Let R be a planar regular region whose Schottky double R̂ has

genus g and set T̂0 = {z ∈ Cg|√−1 z ∈ Rg}. For fixed a ∈ R we determine

the range of the function F (e) = θ(a − ā + e)/θ(e) (e ∈ T̂0) where θ(z) is the

Riemann theta function on R̂. Also we introduce two weighted Hardy spaces

to study the problem when the matrix (∂2 log F
∂zi∂zj

(e)) is positive definite. The

proof relies on new theta identities using Fay’s trisecants formula.

1. Introduction

Let R be a planar regular region with n (≥ 2) boundary components Γ0, . . . , Γn−1.
Its Schottky double R̂ is a compact Riemann surface of genus g = n− 1 admitting
an anti-conformal involution φ fixing the boundary ∂R of R. For simplicity we
adopt the notation that z̄ = φ(z) for z ∈ R̂ and R̄ = φ(R). The closure of the set
S is denoted by Cl(S).

In 1972 D. A. Hejhal proved for planar regular regions the inequality CB(z)2 <
πK(z, z̄) where CB(z) is the analytic capacity of R at z ∈ R and K(z, w̄) is the
Bergman kernel [2]. This inequality was derived from some identity between the
Szegö kernel and the Bergman kernel. The key point of the proof was the positive
definiteness of the matrix

(
∂2 log θ
∂zi∂zj

(0)
)
.

S. Saitoh considered an analogous problem for Hardy H2 kernel and posed an
open problem, in our context, to prove the negative definiteness of

(
∂2 log θ
∂zi∂zj

(e0)
)

[4,
p.37]. The constant e0 is determined from the critical points of Green’s function of
R whose definition will be given in section 2.

Although we were not able to prove the above conjecture for n ≥ 3, we show
in the last section its relative version such as the matrix (∂2 log F

∂zi∂zj
(e)) is positive

definite for e in some open set in T̂0 (Theorem 3.2).
By using Hejhal and Fay’s results we can easily rewrite many of Widom’s results

in the context of theta functions. In the next section we treat the extremal value
of the function F (e) = θ(a − ā + e)/θ(e) (e ∈ T̂0) (Theorem 2.1) which is in the
author’s point of view one of the essences of Widom’s paper [5].
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We fix a symmetric canonical homology basis {Ai, Bj} (i, j = 1, . . . , g) on R such
that Bj = Γj (j = 1, . . . , g) and the cycles {Ai} (i = 1, . . . , g) satisfy the relations
in H1(R̂, Z):

φ(Ai) = −Ai, φ(Bj) = Bj (i, j = 1, . . . , g).

Let u1, . . . , ug be the normalized differentials of the first kind on R̂ such that∫
Ai

uj = 2π
√−1δij (Kronecker delta); then

φ∗uj = uj (j = 1, . . . , g).(1)

The period matrix τ of R̂ is by definition the g× g matrix (
∫

Bi
uj) (i, j = 1, . . . , g).

It is well-known that τ is hermitian with Re τ < 0. In our case, however, from
symmetry (1) we see easily that τ is a real symmetric matrix.

Remark 1.1. Here it should be pointed out that our choice of the canonical homo-
logy basis is different from Fay’s lecture note [1]: we interchanged the Ai cycles
with Bj cycles. Thus some of Fay’s formulas must be modified suitably according
as the transformation law of theta functions for the change of the homology basis
[1, p. 7]. When we treat the Green’s function and the Bergman kernel, however,
our choice leads to simpler formulas than Fay’s, which will be seen later in this
paper.

The first order theta function with characteristic
[
δ
ε

]
(δ, ε ∈ Rg) is defined by

θ

[
δ
ε

]
(z) =

∑
m∈Zg

exp{1
2
(m + δ)τ(m + δ)t + (z + 2πiε)(m + δ)t}, z ∈ Cg.

For j = 1, . . . , g, θ

[
δ
ε

]
(z) satisfies the identities

θ

[
δ
ε

]
(z1, . . . , zj + 2πi, . . . , zg) = e2πiδj θ

[
δ
ε

]
(z)(2)

and

θ

[
δ
ε

]
(z1 + τj1, . . . , zg + τjg) = e−

1
2 τjj−zj−2πiεj θ

[
δ
ε

]
(z).(3)

Riemann’s theta function is denoted by θ(z) = θ

[
0
0

]
(z).

The prime-form is given by

E(x, y) =
θ[α](y − x)
hα(x)hα(y)

, x, y ∈ R̂,

where α is a non-singular odd half-period and hα is a “half-order” differential on R̂

satisfying h2
α(x) =

∑g
j=1

∂θ[α]
∂zj

(0)uj(x). For fixed x ∈ R, E(x, y) is a multiplicative
− 1

2 order differential in y with multipliers 1 and exp(− τjj

2 − ∫ y

x
uj) along the Aj

and Bj cycles respectively.
For relevant properties of theta functions and prime-forms used in this paper,

our basic reference is the excellent lecture note by J. D. Fay [1].
The author would like to thank the referee for his helpful comments on the

presentation of this paper.
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2. Positive differentials and inequalities

For any point p ∈ ∂R, a local coordinate w of a neighborhood U of p is called
symmetric if w(U ∩ ∂R) ⊂ R and w(U ∩ R) ⊂ {Im z > 0}. A differential η on R
is called positive (resp. strictly positive) when η is the restriction of some Abelian
differential η̃ on R̂ such that for any symmetric local coordinate w of a point in
∂R the function η̃(z)/dw is non-negative (resp. positive) on ∂R. For a ∈ R let Pa

be the set of positive differentials on R which is holomorphic except for a simple
pole at a. For a, b ∈ R̂ let ωa−b denote the Abelian differential of the third kind on
R̂ with poles of residue 1 and −1 at a and b respectively. The differential ωa−b is
expressed as a logarithmic derivative of the prime-form (cf. [1, p. 17]):

ωa−b(z) = d log
E(z, a)
E(z, b)

.(4)

If g(z, a) is the Green’s function on R, then it is well-known that the differential
dg(z, a) + id∗g(z, a) is extended to an Abelian differential of the third kind ωā−a

satisfying iωā−a ∈ Pa. We denote by {z∗j }g
j=1 the critical points of g(·, a) which

coincide with the zeroes of ωā−a in R.
In connection with the extremal problems on the generalized Tchebycheff poly-

nomials, H. Widom [5] studied multi-valued analytic functions on R and obtained
a result on the ranges of some extremal quantities. On the other hand, by using
theta functions, J. D. Fay [1] found that the set T̂0 = {z ∈ Cg|√−1 z ∈ Rg} gives
a parametrization of the set of positive differentials on R with one simple pole.

We shall assume throughout the paper that the divisor of the form a−ā is always
evaluated along a symmetric path of integration. That is, a− ā = (

∫
C uj)

g
j=1 where

C is a path from ā to a satisfying φ(C) = −C. This assumption assures us that by
(1) we have a− ā ∈ T̂0.

We summarize propositions useful in our paper.

Lemma 2.1 (Fay). The following hold.
1. θ(x − y − e) = θ(x̄− ȳ + e), for x, y ∈ R̂ and e ∈ T̂0,
2. E(x̄, ȳ) = E(x, y), for x, y ∈ R̂,
3. θ(e) > 0, for e ∈ T̂0,
4. η ∈ Pa if and only if, for some c > 0 and e ∈ T̂0, η is of the form

η(z) = c
θ(z − a− e)θ(z − ā + e)

E(z, a)E(z, ā)
.

Proof. See Fay [1, Chapter 6]. Here we note that, although we have chosen a
different canonical homology basis, his results remain valid in our context.

Remark 2.1. If e ∈ T+ and e′ ∈ T+ both represent the same η as in Lemma 2.1
(4), then from Riemann’s vanishing theorem we see easily that e = e′ (mod 2πiZg).
Here T+ denotes a subset of T̂0 defined in Definition 3.1.

Lemma 2.2. |E(x,y)
E(x,ȳ) | = exp(−g(x, y)), for all x, y ∈ R.

Proof. First, we must clarify the meaning of the value of the left hand side of the
lemma. By the multi-valuedness of E(x, y), for fixed y, the value of the function
h(x) = |E(x,y)

E(x,ȳ) | is meaningless unless we pose some restriction on the paths of
integration for the divisors y− x and ȳ− x. Thus we shall suppose that we always
calculate the divisor ȳ − x by decomposing ȳ − x = (ȳ − y) + (y− x). Then by our
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assumption stated above Lemma 2.1 we have ȳ − y ∈ T̂0. By using identities (2)
and (3) we see that the function h(x) is well-defined and single-valued on R. By
Lemma 2.1 (2) h(x) = 1 on ∂R. Hence both the function h(x) exp(g(x, y)) and its
reciprocal are non-vanishing continuous subharmonic functions on R which are 1
on ∂R, so that h(x) exp(g(x, y)) ≡ 1 on R as desired.

The following lemma except for equality condition was proved implicitly by H.
Widom in [5, Theorem 5.6]. He applied it to the problems on the range of a
functional associated to analytic functions with single-valued absolute value.

Lemma 2.3 (Widom). Let {zj}g
j=1 be the zeroes of a positive differential in Pa.

Then the inequality
g∑

j=1

g(zj, a) ≤
g∑

j=1

g(z∗j , a)

holds. The equality holds if and only if {zj}g
j=1 = {z∗j }g

j=1.

Proof. Let {zj}g
j=1 be the zeroes of a differential η in Pa. By the residue the-

orem we may assume that η has a simple pole at a with residue −i. Since the
functions f(z) = exp(−∑g

j=1 g(z, zj)) and f0(z) = exp(−∑g
j=1 g(z, z∗j )) satisfy

f(z) = f0(z) = 1 on ∂R, we have

1 =
1
2π

∫
∂R

η =
−1
2π

∫
∂R

η

iωā−a

∂g

∂n
|dz|

=
−1
2π

∫
∂R

∣∣∣∣ η

iωā−a

∣∣∣∣ f0

f

∂g

∂n
|dz|.

Noting that the function h(z) =
∣∣∣ η(z)
iωā−a(z)

∣∣∣ f0(z)
f(z) is continuous and subharmonic on

R ∪ ∂R, the last integral is at least the value at a of the integrand, so that

1 ≥ lim
z→a

∣∣∣∣ η(z)
iωā−a(z)

∣∣∣∣ f0(z)
f(z)

=
f0(a)
f(a)

,

which is the desired inequality. By maximum principle, equality holds if and only
if the function h(z) is harmonic. Since h(z) is locally of the form |k(z)|2 with some
single-valued analytic function k(z), we see that h(z) is harmonic if and only if
h(z) ≡ const by the Cauchy-Riemann relation. Since h(z) = η(z)

iωā−a(z) on ∂R, this
implies that η(z) = iωā−a(z) on R. Hence the equality statement is proved.

It is convenient to introduce the constants e0 =
∑g

j=1 z∗j − a − ∆ ∈ T̂0 and
e1 =

∑g
j=1 z∗j −a−∆ ∈ T̂0 where ∆ is the Riemann divisor class. For fixed a, these

constants are determined modulo 2πiZg and have the following extremal property.

Theorem 2.1. For a ∈ R and e ∈ T̂0, we have

exp
(− g∑

j=1

g(z∗j , a)
) ≤ θ(a− ā + e)/θ(e) ≤ exp

( g∑
j=1

g(z∗j , a)
)

where g(z, a) is the Green’s function of R and the set {z∗j }g
j=1 is the critical points

of g(·, a). The equality occurs on the second (resp. first) inequality if and only if
e = e0 (resp. e = e1) (mod 2πiZg).
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Proof. To begin with, we show that the first inequality is an easy consequence of
the second. Since θ(z) is an even function, we have the symmetry

θ(a− ā + e)/θ(e) = θ(e′)/θ(a− ā + e′)(5)

between e ∈ T̂0 and e′ = ā− a− e ∈ T̂0.
On the other hand, it is classical that if

∑
dj is the divisor of a meromorphic

differential on a compact Riemann surface C, then
∑

dj − 2∆ = 0 ∈ J(C), the
Jacobian variety of C [1, p. 7]. Applying this to the divisor of the differential
ωā−a we obtain

∑
z∗j +

∑
z̄∗j − a − ā = 2∆. Hence if e =

∑g
j=1 z∗j − a − ∆, then

e′ =
∑g

j=1 z∗j − a − ∆. This suffices to conclude that we need only to prove the
second inequality.

By the Jacobi Inversion Theorem, any e ∈ T̂0 can be written as

e =
∑
j∈J

zj +
∑
j∈J′

z̄j − a−∆ ∈ J(R̂)

where J is a subset of {1, 2, . . . , g}, J ′ = {1, 2, . . . , g} \ J and zj ∈ R ∪ ∂R for all
j = 1, 2, . . . , g. Then from Riemann’s vanishing theorem we obtain an identity

θ(z − a− e)
θ(z − ā + e)

= ε
∏
j∈J

E(z, zj)
E(z, z̄j)

∏
j∈J′

E(z, z̄j)
E(z, zj)

for some constant ε with absolute value 1. This is proved by observing that both
sides of the above identity have single-valued absolute value with the same divisor
and that they take absolute value 1 on ∂R. From Lemma 2.2 we have∣∣∣∣θ(z − a− e)

θ(z − ā + e)

∣∣∣∣ = exp

−∑
j∈J

g(z, zj) +
∑
j∈J′

g(z, zj)

 .

Thus

θ(e)
θ(a− ā + e)

= exp

−∑
j∈J

g(a, zj) +
∑
j∈J′

g(a, zj)


≥ exp(−

g∑
j=1

g(a, zj)) =
θ(e∗)

θ(a− ā + e∗)
,

(6)

where e∗ =
∑g

j=1 zj − a−∆ = e +
∑

j∈J′ (zj − z̄j) ∈ T̂0. By Widom’s Lemma, we
have

θ(e∗)
θ(a− ā + e∗)

≥ θ(e0)
θ(a− ā + e0)

.(7)

Combining the inequalities (6) and (7) we obtain the desired inequality. The equal-
ity statement is clear from Widom’s Lemma.

3. Hardy H2
and conjugate Hardy H2

kernels

Definition 3.1. For fixed a ∈ R let T+, T++, T− and T−− be the subsets of T̂0

given by

T+ = P − a−∆ and T++ = P0 − a−∆,

T− = P − a−∆ and T−− = P0 − a−∆,
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where P (resp. P0) is the set of zero divisors δ of degree g in R ∪ ∂R of a positive
(resp. strictly positive) differential ω in Pa such that δ + δ − a− ā = div(ω) on R̂.

Since the values of the devisors on the right hand side of the above definition
are determined only up to 2πiZg, we shall assume that T+, T++, T− and T−− are
all 2πiZg invariant. From Lemma 2.1 (4) it is easy to show that T++ is an open
subset of T̂0 and that Cl(T++) = T+. A similar assertion holds for the sets T− and
T−−.

Example 3.1 (Case g = 1). Let R be a region obtained by identifying the vertical
sides of a rectangle Q with vertices at 0, τ, τ − πi,−πi (τ < 0). Then R is doubly
connected and its Schottky double R̂ is a torus obtained by identifying the sides
of a rectangle Q ∪ Q as usual where Q denotes the reflection of Q in the real
axis. Also dz is a normalized differential of the first kind on R̂ with period matrix
(2πi, τ). It follows from the fact ∆ = τ

2 + πi ([1, p. 14]) and Lemma 2.1 (4) that,
for a = −ci ∈ R (0 < c < π), the zero of a differential in Pa has real part τ/2.
Setting e = z − a−∆ ∈ T̂0 with z = τ/2− id ∈ R (0 < d < π) we see easily that

T+ \ T++ = T− \ T−− = {(nπ + c)i |n ∈ Z}
and

T++ =
⋃
n∈Z

iI2n, T−− =
⋃
n∈Z

iI2n+1

( ⊂ iR
)

with the interval In = (nπ + c, (n + 1)π + c).

We now define two weighted Hardy spaces on R parametrized by the set T++.

Definition 3.2. For e ∈ T++ let

ωe(x) =
iθ(x− a− e)θ(x− ā + e)E(a, ā)
θ(e)θ(a − ā + e)E(x, a)E(x, ā)

(8)

be a strictly positive differential on R with simple poles of residue −i, i at a, ā.
Denote by H2

e (R) the Hilbert space of holomorphic functions f(z) on R such that
the function |f(z)|2 admits a harmonic majorant on R. For f, g ∈ H2

e (R) the
inner product is defined by 〈f, g〉e = 1

2π

∫
∂R f ḡωe. Also, denote by H2,1

e (R) the
Hilbert space of holomorphic differentials ξ(z) on R such that ξ(z)/dz ∈ H2

e (R).
For ξ, η ∈ H2,1

e (R) the inner product is defined by 〈ξ, η〉e,1 = 1
2π

∫
∂R ξη̄/ωe.

Lemma 3.1. The Hilbert spaces H2
e (R) and H2,1

e (R) possess the reproducing ker-
nels Re(x, ȳ) and R̂e(x, ȳ) respectively given by:

Re(x, ȳ) =
θ(a− ā + e)θ(x − ȳ + e)
θ(x− ā + e)θ(a− ȳ + e)

E(x, ā)E(ȳ, a)
E(ā, a)E(x, ȳ)

, x, y ∈ R,(9)

R̂e(x, ȳ) =
θ(x− ā + e)θ(a− ȳ + e)θ(x− ȳ − e)E(a, ā)

θ2(e)θ(a − ā + e)E(x, ȳ)E(x, ā)E(ȳ, a)
, x, y ∈ R.(10)

In particular,

R̂e(x, ȳ) = −Re(ȳ, x)ωe(x)ωe(ȳ).(11)

Proof. From the residue theorem a simple computation shows that both (9) and
(10) have the reproducing property of the corresponding Hilbert spaces (cf. Fay
[Proposition 6.15]). The details may be left to the reader.
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We shall call Re(x, ȳ) the Hardy H2 kernel and R̂e(x, ȳ) the conjugate Hardy H2

kernel associated with e ∈ T++ (cf. [4, Section 3 of chapter III]).

Remark 3.1. If e = e0, then Re0(x, ȳ) and R̂e0(x, ȳ) are the usual Hardy H2 kernel
and its conjugate kernel. In this special case the results in the present section were
partly obtained in the author’s report [6].

Let H2
e,a(R) be the subspace {f ∈ H2

e (R)|f(a) = 0} of H2
e (R). For f ∈ H2

e,a(R)
define the mapping l : H2

e,a(R) → H2,1
e (R) by l(f) = fωe. It follows at once that

the mapping l is a complex linear isometry from H2
e,a(R) into H2,1

e (R). Identifying
the spaces H2

e,a(R) and l(H2
e,a(R)) via l we may regard H2

e,a(R) as a subspace of
H2,1

e (R).

Lemma 3.2. The following orthogonal decomposition holds:

H2,1
e (R) = H2

e,a(R)⊕ Γ(R̂)(12)

where Γ(R̂) denotes the space of holomorphic differentials on R which extend to
Abelian differentials of the first kind on R̂.

Proof. Assume that ξ ∈ H2,1
e (R) is orthogonal to H2

e,a(R). Then, for any f ∈
H2

e (R) we have

0 = 〈(z − a)fωe, ξ〉e,1 =
1
2π

∫
∂R

(z − a)f(z)ξ(z),

since (z− a)f(z) ∈ H2
e,a(R). By the Cauchy-Read Theorem [3], there exists a holo-

morphic differential η ∈ H2,1
e (R) such that (z−a)ξ(z) = η(z), z ∈ ∂R. This means

that ξ is extended to an Abelian differential on R̂ with at most a simple pole at
ā and elsewhere regular. Since it is well-known that the sum of the residues of an
Abelian differential equals to zero, ξ belongs to Γ(R̂), as desired.

The converse is proved at once by applying the Cauchy integral theorem.

Since Re(a, ȳ) ≡ 1, the reproducing kernel of H2
e,a(R) as a subspace of H2

e (R)
is given by Re(x, ȳ)− 1. Thus, by means of the orthogonal decomposition (12) we
have

R̂e(x, ȳ) = (Re(x, ȳ)− 1)ωe(x)ωe(ȳ) +
g∑

i,j=1

cijui(x)uj(ȳ)(13)

with some positive definite matrix (cij)
g
i,j=1.

For the sake of simplicity, we introduce the notation: for x, y ∈ R̂ and e ∈ Cg

(x, y)e =
θ(x− y − e)
θ(e)E(x, y)

.

When e = 0, the expression 1
2πi(x, ȳ)0 is known to coincide with the classical Szegö

kernel K̂(x, ȳ) [1], [2]. If the subscript ‘e’ is clear from the context, we shall omit
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it. In view of this notation, formulas (8),(9) and (10) are given by

ωe(x) = i
(ā, x)(x, a)

(ā, a)
,(14)

Re(x, ȳ) =
(ā, a)(ȳ, x)
(ā, x)(ȳ, a)

,(15)

R̂e(x, ȳ) =
(ā, x)(x, ȳ)(ȳ, a)

(ā, a)
.(16)

Substituting formulas (14)-(16) to (13) we obtain

(ā, x)(x, ȳ)(ȳ, a)
(ā, a)

+
(ā, ȳ)(ȳ, x)(x, a)

(ā, a)
− (ā, x)(x, a)(ā, ȳ)(ȳ, a)

(ā, a)2
=

g∑
i,j=1

cijui(x)uj(ȳ).

(17)

To determine the matrix (cij) explicitly, we need the following addition-theorems.

Lemma 3.3 (Fay). For a, b, x, y ∈ R̂ and e ∈ Cg with θ(e) 6= 0, we have

(x, a)(y, b)− (x, b)(y, a) =
θ(x + y − a− b− e)E(x, y)E(b, a)
θ(e)E(x, a)E(x, b)E(y, a)E(y, b)

,(18)

(a, x)(x, b)
(a, b)

= ωa−b(x) −
g∑

i=1

{
∂ log θ

∂zi
(b− a + e)− ∂ log θ

∂zi
(e)

}
ui(x).(19)

Proof. (18) is Fay’s trisecant formula [1, formula (45) in p.34]. (19) is nothing but
Proposition 2.10 of his book [1, formula (38) in p.25].

Remark 3.2. As Fay pointed out in his book, formula (19) is a specialization of
(18). In fact, dividing both sides of (18) by (x, a) and then letting y → b, we obtain
(19) in view of (4) and L’Hospital’s rule.

Theorem 3.1. For a, b, x, y ∈ R̂ and e ∈ Cg with θ(e) 6= 0, we have

(20)
(a, x)(x, y)(y, b)

(a, b)
+

(a, y)(y, x)(x, b)
(a, b)

− (a, x)(x, b)(a, y)(y, b)
(a, b)2

=
g∑

i,j=1

{
∂2 log θ

∂zi∂zj
(a− b− e)− ∂2 log θ

∂zi∂zj
(e)

}
ui(x)uj(y).

Proof. Let I be the left hand side of (20) and write I = I1 + I2 − I3 in the obvious
manner. Then by (18)

I2 − I3 =
(a, y)(x, b)

(a, b)2
((a, b)(y, x)− (a, x)(y, b))

=
θ(a− y − e)θ(x− b− e)θ(y − x + a− b− e)E(a, b)

θ(e)θ2(a− b− e)E(a, x)E(y, x)E(y, b)

= − (a, x)f (x, y)f (y, b)f

(a, b)f
,

where we put f = a− b− e ∈ Cg. Using the trivial identity

(a, x)e(x, b)e

(a, b)e
=

(a, x)f (x, b)f

(a, b)f
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we have

I =
(a, x)e(x, b)e

(a, b)e

{
(x, y)e(y, b)e

(x, b)e
− (x, y)f (y, b)f

(x, b)f

}
= − (a, x)e(x, b)e

(a, b)e

g∑
j=1

{
∂

∂zj
log

θ(z + b− x)
θ(z)

∣∣∣∣
e

− ∂

∂zj
log

θ(z + b− x)
θ(z)

∣∣∣∣
f

}
uj(y)

= − (a, x)e(x, b)e

(a, b)e

g∑
j=1

∂

∂zj
log

θ(z + b− x)θ(−z + a− x)
θ(z)θ(a− b− z)

∣∣∣∣
e

uj(y)

= − (a, x)e(x, b)e

(a, b)e

g∑
j=1

∂

∂zj
log

(a, x)z(x, b)z

(a, b)z

∣∣∣∣
e

uj(y)

= −
g∑

j=1

∂

∂zj

(a, x)z(x, b)z

(a, b)z

∣∣∣∣
e

uj(y) =
g∑

i,j=1

∂2

∂zi∂zj
log

θ(z + b− a)
θ(z)

∣∣∣∣
e

ui(x)uj(y).

Note that in the second and the last equality we have applied the formula (19).
This completes the proof.

Corollary 3.1. The matrix (cij) in (13) is given by

cij =
∂2

∂zi∂zj
log

θ(a− ā + z)
θ(z)

∣∣∣∣
e

, i, j = 1, . . . , g.

Corollary 3.2. For a, b, c ∈ R̂ and e ∈ Cg with θ(e) 6= 0, we have

(a, b)(b, c)(c, a) + (a, c)(c, b)(b, a) =
g∑

i,j,k=1

∂3 log θ

∂zi∂zj∂zk
(e)ui(a)uj(b)uk(c).

Proof. Letting a → b after multiplying (a, b) to both sides of (20), we have

(b, x)(x, y)(y, b) + (b, y)(y, x)(x, b)

= lim
a→b

g∑
i,j=1

{
∂2 log θ

∂zi∂zj
(a− b− e)− ∂2 log θ

∂zi∂zj
(e)

}
ui(x)uj(y)

E(a, b)
.

Noting that lim
a→b

E(a,b)
a−b = −1 (cf. [1, p.19 (26)]) and the function ∂3 log θ

∂zi∂zj∂zk
(z) is

odd, we obtain the corollary at once from L’Hospital’s rule.

Theorem 3.2. For e ∈ T̂0 and a ∈ R let Φ be the g × g matrix

(
∂2 log θ

∂zi∂zj
(a− ā + e)− ∂2 log θ

∂zi∂zj
(e)).

Then, Φ is a real matrix and the following holds.
1. For any e ∈ T+ the matrix Φ is positive semi-definite. Φ is positive definite

for e ∈ T+ if and only if e ∈ T++ .
2. For any e ∈ T− the matrix Φ is negative semi-definite. Φ is negative definite

for e ∈ T− if and only if e ∈ T−− .

Proof. It is clear from Lemma 2.1 (3) and analyticity of θ(z) that the matrix Φ is
real for any e ∈ T̂0. By symmetry (5) item 2 follows at once from item 1.

Now we shall prove item 1. If e ∈ T++, then (13) and Corollary 3.1 show that Φ
is positive definite. Since Cl(T++) = T+, this suffices to prove the first statement
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and the only if part of the second statement. To complete the proof we need only
to show that if e ∈ T+ \ T++, then Φ is singular. Hence suppose that e ∈ T+ \ T++

and define the differential ωe as in (8). By definition ωe is a positive differential
with a zero w on ∂R. This implies (w, a) = 0. Then we have also (ā, w) = 0, since
for all x, y ∈ R̂ the identity (x, y) = −(ȳ, x̄) holds. From (17) we obtain

g∑
i,j=1

cijui(x)uj(w) = 0

for all x ∈ R̂. Since the differentials {ui(x)}g
i=1 are linearly independent, this

implies
g∑

j=1

cijuj(w) = 0

for all i = 1, . . . , g. But it is classical that uj(w) 6= 0 for some j = 1, . . . , g. Thus Φ
is singular, as desired.
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