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ABSTRACT. Let A be a representation-finite algebra. We show that a finite
dimensional A-module M degenerates to another A-module N if and only if the
inequalities dimg Hom 4 (M, X) < dimg Hom 4 (N, X) hold for all A-modules
X. We prove also that if Ext}q(X7 X) = 0 for any indecomposable A-module
X, then any degeneration of A-modules is given by a chain of short exact
sequences.

1. INTRODUCTION AND MAIN RESULTS

Let A be a finite dimensional associative K-algebra with an identity over an
algebraically closed field K. If a; = 1,... ,a, is a basis of A over K, we have the
structure constants a;j;, defined by a;a; =Y a;jrar. The affine variety moda(d) of
d-dimensional unital left A-modules consists of n-tuples m = (mq,... ,m,) of dxd-
matrices with coefficients in K such that m; is the identity matrix and m;m; =
>~ aijrmy holds for all indices ¢ and j. The general linear group Gls(K) acts on
moda(d) by conjugation, and the orbits correspond to the isomorphism classes of
d-dimensional modules (see [11]). We shall agree to identify a d-dimensional A-
module M with the point of mod4(d) corresponding to it. We denote by O(M)
the Glg(K)-orbit of a module M in mod(d). Then one says that a module N in
mod 4 (d) is a degeneration of a module M in mod4(d) if N belongs to the Zariski
closure O(M) of O(M) in moda(d), and we denote this fact by M <geg N. Thus
<deg is a partial order on the set of isomorphism classes of A-modules of a given
dimension. It is not clear how to characterize <qeg in terms of representation theory.

There has been a work by S. Abeasis and A. del Fra [1], K. Bongartz [6], [9],
[8], Ch. Riedtmann [13], and A. Skowronski and the author [15], [16], [17] and [18]
connecting <qeg With other partial orders <.y and < on the isomorphism classes
in mod4(d). They are defined in terms of representation theory as follows:

o M <. N: < there are modules M;, U;, V; and short exact sequences 0 —

U; — M; —V; — 0in mod A such that M = My, M;11 =U; ®V;, 1 <i<s,
and N = M, for some natural number s.
e M <N: & [M,X] <[N,X] holds for all modules X.
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Here and later on we abbreviate dimyx Hom4(X,Y) by [X,Y]. Then for modules
M and N in mod4(d), the following implications hold:

M <ext N = M <geg N = M < N

(see [9], [13]). Unfortunately, the reverse implications are not true in general, and it
would be interesting to find out when they are. K. Bongartz proved in [9] that it is
the case for all representations of Dynkin quivers and the double arrow. Moreover,
in [8] K. Bongartz proved that <ge; and < coincide for all modules over tame
concealed algebras. Recently, the author proved in [17] that < and <. are also
equivalent for all modules over representation-finite blocks of group algebras, and
in [18] that <.y and <deg coincide for all modules over tame concealed algebras.
The main aim of this paper is to prove the following theorem.

Theorem 1. Let A be a representation-finite algebra and M, N two modules with
M < N. Then there are A-modules Z, Z', and two exact sequences

0O-N—-M&Z—-2Z—-0 and 02 - MedZ — N —0.

In [13] Riedtmann proved that each of the exact sequences 0 = N — M & Z —
Z—0and0— 2" - M®Z — N — 0 implies that M <4, N. Hence we get the
following fact which solves a long standing problem (see [13]).

Corollary. The partial orders < and <4eg coincide for all modules over represen-
tation-finite algebras.

We note that for a representation-finite algebra A we may deduce the dimension
of the spaces Hom (M, N) from the Auslander-Reiten quiver of A (see [10]), and
hence it is rather easy to decide when M < N for any A-modules M and N.

There are many examples of representation-finite algebras for which the orders
<deg and <y are not equivalent (see [17]). Our second aim in this paper is to
prove the following theorem.

Theorem 2. Let B be an algebra and assume that Exth (X, X) = 0 for any inde-
composable B-module X. Then the partial orders <, <geg and <ex; coincide for all
B-modules.

It is well-known that every representation-directed algebra [14] satisfies the above
condition. Hence, Theorem 2 extends the corresponding result by Bongartz proved
in [9].

The paper is organized as follows. In Section 2 we fix the notation, recall the
relevant definitions and facts, and prove some preliminary results on modules which
we apply in our investigations. Section 3 is devoted to the proofs of Theorems 1
and 2.

For basic background on the topics considered here we refer to [5], [9], [8], [11]
and [14]. The results presented in this paper form a part of the author’s doctoral
dissertation written under the supervision of Professor A. Skowronski. The author
gratefully acknowledges support from the Polish Scientific Grant KBN No. 2 PO3A
020 08.

2. PRELIMINARY RESULTS

2.1. Throughout the paper A denotes a fixed finite dimensional associative K-
algebra with an identity over an algebraically closed field K. We denote by mod A
the category of finite dimensional left A-modules and by rad(mod A) the Jacobson
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radical of mod A. By an A-module we mean an object from mod A. Further, we
denote by I'4 the Auslander-Reiten quiver of A, and by 7 = 74 and 77 = 7,
the Auslander-Reiten translations D Tr and Tr D, respectively. We shall agree to
identify the vertices of I'4 with the corresponding indecomposable modules. For
a module M we denote by [M] the image of M in the Grothendieck group Ky(A)
of A. Thus [M] = [N] if and only if M and N have the same simple composition
factors including the multiplicities.

2.2. Following [13], for M, N from mod A, we set M < N if and only if [M, X] <
[N, X] for all A-modules X. The fact that < is a partial order on the isomorphism
classes of A-modules follows from a result by M. Auslander [3] (see also [6]). Observe
that, if M and N have the same dimension and M < N, then [M] = [N]. Moreover,
M. Auslander and I. Reiten have shown in [4] that, if M and N are A-modules
with [M] = [N], then for all nonprojective indecomposable A-modules X and all
noninjective indecomposable modules Y the following formulas hold (see [12]):

[X7M] - [MaTX] = [XaN] - [NvTX]a
[M,Y]|-[7"Y,M]=[N,Y] - [r"Y,N].
Hence, if [M] = [N], then M < N if and only if [X, M] < [X, N] for all A-modu-
les X.

2.3. Let M and N be A-modules with [M] = [N] and
>: 0—-D—-E—-F—0

an exact sequence in mod A. Following [13] we define the additive functions o, v,
63y and ds on A-modules X as follows:

on,N (X) =[N, X] = [M, X],
My (X) = [X,N] - [X, M],
0n(X) =dp.per(X) =D F,X] - [E, X],
05(X) = 0, per(X) = [X, D& F| - [X, E].
From the Auslander-Reiten formulas (2.2) we get the following very useful equali-
ties:
SN (X) =0y n(T"X),  dun(TX) =y n(X)
for all A-modules X. Observe also that dp,n(I) = 0 for any injective A-module

I, and (5?\/11 ~(P) = 0 for any projective A-module P. In particular, the following
conditions are equivalent:

(1) M <N,
(2) dpn(X) >0 forall X € T4,
(3) O n(X) >0 forall X €Ty,

2.4. For an A-module M and an indecomposable A-module Z, we denote by
w(M, Z) the multiplicity of Z as a direct summand of M. For a noninjective
indecomposable A-module U, we denote by ¥(U) an Auslander-Reiten sequence

YU): 0-U—EU)—-71U=-—0.
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We shall need the following lemma.

Lemma 2.5. Let M, N be A-modules with [M] = [N] and U an indecomposable
A-module. Then:

(i) If U is noninjective, then dsy(M) = pu(M,U).
(ii) If M < N, then u(N,U) = u(M,U) < dp,n(U) + 83y, 5 (U).

Proof. If U is noninjective, then the Auslander-Reiten sequence ¥(U) induces an
exact sequence

0 — Homa (77U, M) — Homa (E(U), M) — rad(U, M) — 0,
and hence we get
Ut UM]|-[EU),M] =[U,M] - dimgrad(U, M) = u(M,U).
This implies (i). Similarly, we have
[Ua T UN]—[EU),N]=u(N,U).
Then we obtain
p(N,U) = (M, U) = (U@ U,N| = [Uer U M) - ([EU),N] - [EU), M])
= Sy (U) + 84y (7 U) = Sy (D))
<Oy N(U) + 0y n(T7U) = 84y n(U) + a8 (U).
Assume now that U is injective. Then Hom4(U/ soc(U), M) ~ rad(U, M), and so
[U,M] —[U/soc(U), M| = u(M,U).
Similarly, we have
[U,N] - [U/soc(U),N] = u(N,U).
Therefore, we get
W(N,U) = u(M,U) = ([U, N] = [U, M]) — ([U/ soc(U), N] — [U/ soc(U), M])
= 0y, n (U) = 0y (U/ s0c(U)) < 8y n(U)
=0y nU) + o).
Hence, (ii) also holds. O

We shall need also the following Lemma (3 4+ 3+ 2) from [2, (2.1)] and its direct
consequence.

Lemma 2.6. Let

7]

1: 0-M) —— My®& N MN2—>01
[2] [f3,v2]
22: 0—>M2 —>M3@N2 = N3—>0

be short exact sequences in mod A. Then the sequence

ViUl
Y3: 0— M M Mo N, L2l

is exact. Moreover, we have ds, = ds, + Jx,.

N3—>0
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2.7. A short exact sequence
0-U-Lw-Lv_o

is said to be without isomorphism provided f € rad(U,W) and g € rad(W,V).
Lt 2: 0> U-LW-5V —0be any exact sequence. It is easy to see that if
f € rad(U, W), then there is an exact sequence without isomorphism 0 — U —
W' — V' — 0 such that W = W @Y and V = V' @ Y for some A-modules
W', V' and Y. Dually, if g € rad(W, V), then there is an exact sequence without
isomorphism 0 — U’ - W' -V —w Osuchthat U=U'"®Z and W =W' @ Z
for some A-modules U’, W’ and Z. Moreover, if ¥ is nonsplittable, then there is a
nonsplittable exact sequence without isomorphism 0 — U’ — W' — V' — 0 such
that U=U" @Y, W=W dY ®Z and V =V’ @® Z for some A-modules U’, W',
V', Y and Z.

Lemma 2.8. Let ¥ : 0 — U LW 2V = 0 be an ezact sequence without iso-
morphism. Then:

(i) For any nonzero direct summand U’ of U, dx(U") > 0 holds.

(ii) For any nonzero direct summand V' of V, 65(V') > 0 holds.

Proof. (i) Let U’ be a nonzero direct summand of U. The sequence ¥ induces an
exact sequence

0 — Hom(V,U’) — Homa(W, U’) 1 Homu(U,U").
Assume that f* is an epimorphism. Then there is a homomorphism of A-modules
h : W — U’ such that f*(h) = hf : U — U’ is a projection. But then f &
rad(U, W), which yields a contradiction. Hence, [V,U'] — [W,U’] + [U,U’] > 0, and
consequently dx(U’) > 0.
The proof of (ii) is dual. |

As a consequence of the above lemma, we get the following fact.

Lemma 2.9. Let X : 0 - U — W — V — 0 be a nonsplittable exact sequence.
Then 0x(U) > 0 and 65(V) > 0.

Lemma 2.10. Let X be an A-module and ¥ : 0 - U — W — V — 0 a nonsplit-
table short exact sequence of A-modules.

(i) If 62(X) > 0, then there exists a nonsplittable exact sequence of A-modules
P:0—-X—-Y =V -0,

such that do < Ox.
(ii) If 6&(X) > 0, then there exists a nonsplittable exact sequence of A-modules

:0-U—-2Z2—-X—0,
such that d¢ < Oy;.

Proof. (i) The first part of the proof is due to U. Markolf (see the proof of Theorem
4 in [7]). Let X be an A-module such that 0x(X) > 0. Then the last map in the
following exact sequence

0 — Hom(V, X) — Hom (W, X) — Homu (U, X) — Ext!(V, X) — Ext! (W, X)

is not a monomorphism. Therefore, we find a nonsplittable exact sequence of A-
modules ® : 0 - X — Y — V — 0, whose pullback under W — V is a splittable
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sequence. Thus we get the following commutative diagram with exact rows and
columns:

0 0
i i)
U = U
! !
00— X — XoW — W —0
I ! !
0— X — Y — V =0
i i)
0 0

So, we have an exact sequence © : 0 - U — X ®W — Y — 0. Observe that
0y, = 0¢ + do. This implies that do < dx.
The proof of (ii) is dual. O

Lemma 2.11. If M <geg N, then dpr,n(N) > 0 and 5y, y(N) > 0.

Proof. Suppose that 83, r(N) = 0. By Theorem 2.4 in [9], we know that if a module
U embeds into N and [U, N] = [U, M], then U also embeds into M. Applying this
fact for U = N, we obtain that N embeds into M. But the modules M and N
have the same dimension. This implies that M is isomorphic to N, which gives a
contradiction. Hence, 6}, (V) > 0 and a5 (N) > 0 by duality. O

3. PROOF OF THEOREMS 1 AND 2
Throughout this section A denotes a representation-finite algebra.
Lemma 3.1. Let M and N be two A-modules with M < N, and let
:0-U—-W->V-—-0

be a short evact sequence without isomorphism in mod A such that ds; < dprN-
Then there exists a short exact sequence without isomorphism in mod A

P:0-U—-Y—-2—-0
such that ds < de < oy n and da(Y) = o n(Y).
Proof. Let

:0=-U—-W-=V—=0

be a short exact sequence of A-modules without isomorphism such that és; < dar,n.
Take a short exact sequence without isomorphism in mod A,

P:0-U—-Y—>2—-0

such that dx, < d¢ < dpr,nv, and which is maximal in the following sense. For any
short exact sequence without isomorphism ®’ in mod A starting at U and satisfying
inequalities d¢ < dgr < dpsN, we have g = dgr. Since ZXGFA Oa,v(X) is finite,
such a sequence ® exists. Assume now that Y = Y;®Y5, where Y7 is indecomposable
with 05 (Y1) < 0ar,n(Y1). Then Y] is noninjective and we have an Auslander-Reiten
sequence

2(Y1): 0>V S E v —0,
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and of course

3 0-U—V,aY, 2?7 0.

Since fi € rad(Y1, Z), the push out of the Auslander-Reiten sequence (Y1) is a
splittable sequence, so we obtain the following commutative diagram with exact

rows:
0— Y N E — 777 —0
1A ! ||
0— 2 — T91e6Z — 17Y17 —0.

This implies that there exists a nonsplittable exact sequence

)

vV:0-Y, — E®Z—->7 Y102 —0.
Applying Lemma 2.6 for ® and ¥, we get a new exact sequence
0-U-"Y20FE—Z®77 Y —0.

Since ® is a sequence without isomorphism, we have ¢+ € rad(U, Y2 ® E). Hence,
there is a sequence without isomorphism in mod A

©:0-U—-Y —>Z—0,

with Y, ®E=Y ®W and Z@® 7Y, = Z® W for some A-module W. Thus, by
Lemmas 2.6 and 2.5(i), for any A-module X we have
5@(X) = 5¢(X) + 5\1;(X) = 5¢(X) + 52(y1)(X) = 5¢(X) + /L(X, Yl)

Since dp < 5M,N and 5@()/1) < 5M,N(Y1) — 1, we get 0y < dg < 5M,N- This gives
a contradiction with our choice of the sequence ®. Hence, dg(Y) = dpr n(Y), and
this finishes the proof. O

Lemma 3.2. If M < N, then dpr,n(N) > 0 and ), y(N) > 0.

Proof. We proceed by induction on ZXGFA dm,n(X) > 0. Applying equalities
(2.3), we obtain } v cp oM N(X) =D xer, Oy n(X). Assume M < N and that
dm,N(N) =0 or 8} n(N) = 0. By duality, we may assume that ¢}, (V) = 0 and
moreover, the modules M and N have no nonzero common direct summand. Let
F be the set of all modules in I'4 which are a direct summands of N. Take Y € F.
By Lemma 2.5(ii), we get
(N, Y) = p(N,Y) = (M, Y) <5 n(Y) + 6y n(Y) = n(Y).
So, the module Y is noninjective and there is an Auslander-Reiten sequence (V).
We define a new exact sequence without isomorphism
¥:0-N—->EN)—-7 N-—-O0,

where E(N) = @YefE(Y)“(N’Y) and 7N = @Ye}-(T_Y)“(N’Y). Applying
Lemma 2.5(i), we obtain
In(Y) = p(N,Y) < omn(Y),

for any Y € I'4. Consequently ds; < dpr,n and, from Lemma 3.1, there is an exact
sequence without isomorphism

P:0—-N—-W->V -0
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with dg < 5M,N and 5¢(W) = 5M7N(W) Then MV < W and 5M€BV,W(W) =0.
Observe that dy, v — dmev,w = 0o and, from Lemma 2.9, d5(N) > 0. This leads
to

Z 5M€BV,W(X)< Z 6M7N(X)

X€T 4 Xl 4
It follows from our inductive assumption that the modules M & V and W are
isomorphic. Then the sequence ® has the form

0O-=N—-=VeM-—->V —0,

and this implies that M <qeg N, by Proposition 3.4 in [13]. Applying Lemma 2.11,
we get 6y, (V) > 0, and hence a contradiction. This finishes the proof. O

3.3. Proof of Theorem 1. Let M and N be A-modules with M < N. We may
assume that M < N. Let r(X) = min{oa n(X), u(N, X)}, for any X € T'y4, and
let F be the set of all vertices of 'y with 7(X) > 0. The set F does not contain
injective A-modules and is nonempty, by Lemma 3.2. Let N’ = @y X" =
Byer, XX and N” = P yp, XN Then N = N’ @ N”. We define
a new exact sequence without isomorphism

2:0- P XN - P EX)E - PErx) —o.
XeF XeF XeF
Applying Lemma 2.5(i), we obtain dx(X) = r(X) < dy,n(X), for any X € T'4.
Consequently, s, < dpr,y and, by Lemma 3.1, there is an exact sequence without
isomorphism

P:0-N —-W—->27Z—-0

with 0x, < §p < 5M,N and 5{)(W) = 5M,N(W)- Then M @& Z < N”" @ W and
dmozn eow (W) = 0. Let Ny be any indecomposable direct summand of N”.
Then r(N1) < u(N, N1), and this leads to dx(N1) = r(N1) = dar,n(N1). Hence,

Svmoznreow (N1) = 0am,n(N1) — 6a(N1) = ds(N1) — da(N1) < 0.

SO, 5M®Z7N”€BW(N1) = (0. This implies that 5M@Z)NN@W(NH) = 07 and further-
more dprez nvaw (N ®@W) = 0. Hence, M@®Z ~ N” ®W, by Lemma 3.2. Finally,
the sequence ® induces an exact sequence 0 - N’ ® N”" — N oW — Z — 0,
which has the form 0 = N - M & Z — Z — 0. In a similar way we obtain an
exact sequence 0 — 2/ - M ® Z' — N — 0. O

Lemma 3.4. Let M, N and X be A-modules such that M < N and X € T'4.
Then we have:

(i) If 0y n(X) > 0, then there exist an indecomposable direct summand Ny of
N and a nonsplittable exact sequence ® : 0 — Ny — Y — X — 0 without
isomorphism such that 6o < dpr N .

(i) If dpr,n(X) > 0, then there exist an indecomposable direct summand Ny of
N and a nonsplittable exact sequence ® : 0 - X — Y — N; — 0 without
isomorphism such that 6o < dpr N .

Proof. (i) Assume that &3, y(X) > 0. Applying Theorem 1 we get the exact se-
quence 2 : 0 = N - M@ Z — Z — 0, in mod A. Further, applying Lemma
2.10(ii), we obtain a nonsplittable exact sequence ¥ : 0 — N — W — X — 0 with
0y < s = dp,n. Then, by Lemma 2.9, there is an indecomposable direct summand
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Ni of N with §¢(N1) > 0. Finally, by Lemma 2.10(i), we obtain a nonsplittable
exact sequence @ : 0 —» Ny — Y — X — 0 with do < g < 0 .
We obtain (ii) by duality. O

3.5. Proof of Theorem 2. Let B be an algebra and assume that Ext} (X, X) = 0 for
any indecomposable B-module X. It is well-known that then B is representation-
finite. Let M and N be two B-modules with M < N. We shall show that M <.
N. We proceed by induction on [N, N] — [M,M] > 0. If [N,N] — [M,M] = 0,
then by Lemma 1.2 in [9], M is isomorphic to N. Hence, we may assume that
M < N, and that M and N have no common nonzero direct summand. Take
any indecomposable direct summand Ny of N. Applying Lemma 2.5(ii), we obtain
that dar v (N1) + 5}\/[) N (IN1) > 0. Without loss of generality, we may assume that
da,n(N1) > 0. Now applying Lemma 3.4, we get a nonsplittable exact sequence

Y:0—-N —-Y >Ny, —0

with dy; < dpr, N, for some A-module Y and some indecomposable direct summand
Ny of N. Since Ext}g(Nl,Nl) = 0, the modules N7 and N> are not isomorphic.
Thus, N = N1 ® Ny & N3, for some A-module N3. Moreover, M <Y & N3 <ext N.
This implies that [Y" @& N3,Y @ N3] < [N, N], by Lemma 1.2 in [9]. Then

[Y @© N3, Y @ N3] — [M, M] < [N, N] — [M, M]

and M < Y @ N3, by our inductive assumption. Finally, we obtain M <gy IV,
and this finishes the proof. O
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