DEGENERATIONS FOR MODULES OVER REPRESENTATION-FINITE ALGEBRAS

GRZEGORZ ZWARA

(Communicated by Ken Goodearl)

Abstract

Let A be a representation-finite algebra. We show that a finite dimensional A-module M degenerates to another A-module N if and only if the inequalities $\operatorname{dim}_{K} \operatorname{Hom}_{A}(M, X) \leq \operatorname{dim}_{K} \operatorname{Hom}_{A}(N, X)$ hold for all A-modules X. We prove also that if $\operatorname{Ext}_{A}^{1}(X, X)=0$ for any indecomposable A-module X, then any degeneration of A-modules is given by a chain of short exact sequences.

1. Introduction and main results

Let A be a finite dimensional associative K-algebra with an identity over an algebraically closed field K. If $a_{1}=1, \ldots, a_{n}$ is a basis of A over K, we have the structure constants $a_{i j k}$ defined by $a_{i} a_{j}=\sum a_{i j k} a_{k}$. The affine variety $\bmod _{A}(d)$ of d-dimensional unital left A-modules consists of n-tuples $m=\left(m_{1}, \ldots, m_{n}\right)$ of $d \times d$ matrices with coefficients in K such that m_{1} is the identity matrix and $m_{i} m_{j}=$ $\sum a_{i j k} m_{k}$ holds for all indices i and j. The general linear group $\mathrm{Gl}_{d}(K)$ acts on $\bmod _{A}(d)$ by conjugation, and the orbits correspond to the isomorphism classes of d-dimensional modules (see [11]). We shall agree to identify a d-dimensional A module M with the point of $\bmod _{A}(d)$ corresponding to it. We denote by $\mathcal{O}(M)$ the $\mathrm{Gl}_{d}(K)$-orbit of a module M in $\bmod _{A}(d)$. Then one says that a module N in $\bmod _{A}(d)$ is a degeneration of a $\operatorname{module} M$ in $\bmod _{A}(d)$ if N belongs to the Zariski closure $\overline{\mathcal{O}(M)}$ of $\mathcal{O}(M)$ in $\bmod _{A}(d)$, and we denote this fact by $M \leq_{\operatorname{deg}} N$. Thus $\leq_{\text {deg }}$ is a partial order on the set of isomorphism classes of A-modules of a given dimension. It is not clear how to characterize $\leq_{\text {deg }}$ in terms of representation theory.

There has been a work by S. Abeasis and A. del Fra [1], K. Bongartz [6], [9], [8], Ch. Riedtmann [13], and A. Skowroński and the author [15], [16], [17] and [18] connecting $\leq_{\text {deg }}$ with other partial orders $\leq_{\text {ext }}$ and \leq on the isomorphism classes in $\bmod _{A}(d)$. They are defined in terms of representation theory as follows:

- $M \leq \leq_{\text {ext }} N: \Leftrightarrow$ there are modules M_{i}, U_{i}, V_{i} and short exact sequences $0 \rightarrow$ $U_{i} \rightarrow M_{i} \rightarrow V_{i} \rightarrow 0$ in $\bmod A$ such that $M=M_{1}, M_{i+1}=U_{i} \oplus V_{i}, 1 \leq i \leq s$, and $N=M_{s+1}$ for some natural number s.
- $M \leq N: \Leftrightarrow[M, X] \leq[N, X]$ holds for all modules X.

[^0]Here and later on we abbreviate $\operatorname{dim}_{K} \operatorname{Hom}_{A}(X, Y)$ by $[X, Y]$. Then for modules M and N in $\bmod _{A}(d)$, the following implications hold:

$$
M \leq_{\mathrm{ext}} N \Longrightarrow M \leq_{\operatorname{deg}} N \Longrightarrow M \leq N
$$

(see [9], [13]). Unfortunately, the reverse implications are not true in general, and it would be interesting to find out when they are. K. Bongartz proved in [9] that it is the case for all representations of Dynkin quivers and the double arrow. Moreover, in [8] K. Bongartz proved that $\leq_{\text {deg }}$ and \leq coincide for all modules over tame concealed algebras. Recently, the author proved in $[17]$ that \leq and \leq ext are also equivalent for all modules over representation-finite blocks of group algebras, and in [18] that $\leq_{\text {ext }}$ and $\leq_{\text {deg }}$ coincide for all modules over tame concealed algebras. The main aim of this paper is to prove the following theorem.

Theorem 1. Let A be a representation-finite algebra and M, N two modules with $M \leq N$. Then there are A-modules Z, Z^{\prime}, and two exact sequences

$$
0 \rightarrow N \rightarrow M \oplus Z \rightarrow Z \rightarrow 0 \quad \text { and } \quad 0 \rightarrow Z^{\prime} \rightarrow M \oplus Z^{\prime} \rightarrow N \rightarrow 0
$$

In [13] Riedtmann proved that each of the exact sequences $0 \rightarrow N \rightarrow M \oplus Z \rightarrow$ $Z \rightarrow 0$ and $0 \rightarrow Z^{\prime} \rightarrow M \oplus Z^{\prime} \rightarrow N \rightarrow 0$ implies that $M \leq_{\operatorname{deg}} N$. Hence we get the following fact which solves a long standing problem (see [13]).

Corollary. The partial orders \leq and \leq_{deg} coincide for all modules over represen-tation-finite algebras.

We note that for a representation-finite algebra A we may deduce the dimension of the spaces $\operatorname{Hom}_{A}(M, N)$ from the Auslander-Reiten quiver of A (see [10]), and hence it is rather easy to decide when $M \leq N$ for any A-modules M and N.

There are many examples of representation-finite algebras for which the orders $\leq_{\text {deg }}$ and $\leq_{\text {ext }}$ are not equivalent (see [17]). Our second aim in this paper is to prove the following theorem.
Theorem 2. Let B be an algebra and assume that $\operatorname{Ext}_{B}^{1}(X, X)=0$ for any indecomposable B-module X. Then the partial orders $\leq, \leq_{\operatorname{deg}}$ and $\leq_{\text {ext }}$ coincide for all B-modules.

It is well-known that every representation-directed algebra [14] satisfies the above condition. Hence, Theorem 2 extends the corresponding result by Bongartz proved in [9].

The paper is organized as follows. In Section 2 we fix the notation, recall the relevant definitions and facts, and prove some preliminary results on modules which we apply in our investigations. Section 3 is devoted to the proofs of Theorems 1 and 2.

For basic background on the topics considered here we refer to [5], [9], [8], [11] and [14]. The results presented in this paper form a part of the author's doctoral dissertation written under the supervision of Professor A. Skowroński. The author gratefully acknowledges support from the Polish Scientific Grant KBN No. 2 PO3A 02008.

2. Preliminary results

2.1. Throughout the paper A denotes a fixed finite dimensional associative K algebra with an identity over an algebraically closed field K. We denote by $\bmod A$ the category of finite dimensional left A-modules and by $\operatorname{rad}(\bmod A)$ the Jacobson
radical of $\bmod A$. By an A-module we mean an object from $\bmod A$. Further, we denote by Γ_{A} the Auslander-Reiten quiver of A, and by $\tau=\tau_{A}$ and $\tau^{-}=\tau_{A}^{-}$ the Auslander-Reiten translations $D \operatorname{Tr}$ and $\operatorname{Tr} D$, respectively. We shall agree to identify the vertices of Γ_{A} with the corresponding indecomposable modules. For a module M we denote by $[M]$ the image of M in the Grothendieck group $K_{0}(A)$ of A. Thus $[M]=[N]$ if and only if M and N have the same simple composition factors including the multiplicities.
2.2. Following [13], for M, N from $\bmod A$, we set $M \leq N$ if and only if $[M, X] \leq$ $[N, X]$ for all A-modules X. The fact that \leq is a partial order on the isomorphism classes of A-modules follows from a result by M. Auslander [3] (see also [6]). Observe that, if M and N have the same dimension and $M \leq N$, then $[M]=[N]$. Moreover, M. Auslander and I. Reiten have shown in [4] that, if M and N are A-modules with $[M]=[N]$, then for all nonprojective indecomposable A-modules X and all noninjective indecomposable modules Y the following formulas hold (see [12]):

$$
\begin{aligned}
{[X, M]-[M, \tau X] } & =[X, N]-[N, \tau X] \\
{[M, Y]-\left[\tau^{-} Y, M\right] } & =[N, Y]-\left[\tau^{-} Y, N\right]
\end{aligned}
$$

Hence, if $[M]=[N]$, then $M \leq N$ if and only if $[X, M] \leq[X, N]$ for all A-modules X.
2.3. Let M and N be A-modules with $[M]=[N]$ and

$$
\Sigma: 0 \rightarrow D \rightarrow E \rightarrow F \rightarrow 0
$$

an exact sequence in $\bmod A$. Following [13] we define the additive functions $\delta_{M, N}$, $\delta_{M, N}^{\prime}$ and δ_{Σ} on A-modules X as follows:

$$
\begin{aligned}
\delta_{M, N}(X) & =[N, X]-[M, X], \\
\delta_{M, N}^{\prime}(X) & =[X, N]-[X, M], \\
\delta_{\Sigma}(X) & =\delta_{E, D \oplus F}(X)=[D \oplus F, X]-[E, X] \\
\delta_{\Sigma}^{\prime}(X) & =\delta_{E, D \oplus F}^{\prime}(X)=[X, D \oplus F]-[X, E] .
\end{aligned}
$$

From the Auslander-Reiten formulas (2.2) we get the following very useful equalities:

$$
\delta_{M, N}(X)=\delta_{M, N}^{\prime}\left(\tau^{-} X\right), \quad \delta_{M, N}(\tau X)=\delta_{M, N}^{\prime}(X)
$$

for all A-modules X. Observe also that $\delta_{M, N}(I)=0$ for any injective A-module I, and $\delta_{M, N}^{\prime}(P)=0$ for any projective A-module P. In particular, the following conditions are equivalent:
(1) $M \leq N$,
(2) $\delta_{M, N}(X) \geq 0$ for all $X \in \Gamma_{A}$,
(3) $\delta_{M, N}^{\prime}(X) \geq 0$ for all $X \in \Gamma_{A}$.
2.4. For an A-module M and an indecomposable A-module Z, we denote by $\mu(M, Z)$ the multiplicity of Z as a direct summand of M. For a noninjective indecomposable A-module U, we denote by $\Sigma(U)$ an Auslander-Reiten sequence

$$
\Sigma(U): 0 \rightarrow U \rightarrow E(U) \rightarrow \tau^{-} U \rightarrow 0
$$

We shall need the following lemma.
Lemma 2.5. Let M, N be A-modules with $[M]=[N]$ and U an indecomposable A-module. Then:
(i) If U is noninjective, then $\delta_{\Sigma(U)}(M)=\mu(M, U)$.
(ii) If $M \leq N$, then $\mu(N, U)-\mu(M, U) \leq \delta_{M, N}(U)+\delta_{M, N}^{\prime}(U)$.

Proof. If U is noninjective, then the Auslander-Reiten sequence $\Sigma(U)$ induces an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{A}\left(\tau^{-} U, M\right) \rightarrow \operatorname{Hom}_{A}(E(U), M) \rightarrow \operatorname{rad}(U, M) \rightarrow 0
$$

and hence we get

$$
\left[U \oplus \tau^{-} U, M\right]-[E(U), M]=[U, M]-\operatorname{dim}_{K} \operatorname{rad}(U, M)=\mu(M, U)
$$

This implies (i). Similarly, we have

$$
\left[U \oplus \tau^{-} U, N\right]-[E(U), N]=\mu(N, U)
$$

Then we obtain

$$
\begin{aligned}
\mu(N, U)-\mu(M, U) & =\left(\left[U \oplus \tau^{-} U, N\right]-\left[U \oplus \tau^{-} U, M\right]\right)-([E(U), N]-[E(U), M]) \\
& =\delta_{M, N}^{\prime}(U)+\delta_{M, N}^{\prime}\left(\tau^{-} U\right)-\delta_{M, N}^{\prime}(E(U)) \\
& \leq \delta_{M, N}^{\prime}(U)+\delta_{M, N}^{\prime}\left(\tau^{-} U\right)=\delta_{M, N}^{\prime}(U)+\delta_{M, N}(U)
\end{aligned}
$$

Assume now that U is injective. Then $\operatorname{Hom}_{A}(U / \operatorname{soc}(U), M) \simeq \operatorname{rad}(U, M)$, and so

$$
[U, M]-[U / \operatorname{soc}(U), M]=\mu(M, U)
$$

Similarly, we have

$$
[U, N]-[U / \operatorname{soc}(U), N]=\mu(N, U)
$$

Therefore, we get

$$
\begin{aligned}
\mu(N, U)-\mu(M, U) & =([U, N]-[U, M])-([U / \operatorname{soc}(U), N]-[U / \operatorname{soc}(U), M]) \\
& =\delta_{M, N}^{\prime}(U)-\delta_{M, N}^{\prime}(U / \operatorname{soc}(U)) \leq \delta_{M, N}^{\prime}(U) \\
& =\delta_{M, N}^{\prime}(U)+\delta_{M, N}(U)
\end{aligned}
$$

Hence, (ii) also holds.
We shall need also the following Lemma $(3+3+2)$ from $[2,(2.1)]$ and its direct consequence.

Lemma 2.6. Let

$$
\begin{aligned}
& \Sigma_{1}: 0 \rightarrow M_{1} \xrightarrow{\left[\begin{array}{l}
u_{1} \\
f_{1}
\end{array}\right]} M_{2} \oplus N_{1} \xrightarrow{\left[f_{2}, u_{2}\right]} N_{2} \rightarrow 0, \\
& \Sigma_{2}: 0 \rightarrow M_{2} \xrightarrow{\left[\begin{array}{l}
v_{1} \\
f_{2}
\end{array}\right]} M_{3} \oplus N_{2} \xrightarrow{\left[f_{3}, v_{2}\right]} \quad N_{3} \rightarrow 0
\end{aligned}
$$

be short exact sequences in $\bmod A$. Then the sequence

$$
\Sigma_{3}: 0 \rightarrow M_{1} \xrightarrow{\left[\begin{array}{c}
v_{1} u_{1} \\
f_{1}
\end{array}\right]} M_{3} \oplus N_{1} \xrightarrow{\left[f_{3},-v_{2} u_{2}\right]} N_{3} \rightarrow 0
$$

is exact. Moreover, we have $\delta_{\Sigma_{3}}=\delta_{\Sigma_{1}}+\delta_{\Sigma_{2}}$.
2.7. A short exact sequence

$$
0 \rightarrow U \xrightarrow{f} W \xrightarrow{g} V \rightarrow 0
$$

is said to be without isomorphism provided $f \in \operatorname{rad}(U, W)$ and $g \in \operatorname{rad}(W, V)$. Let $\Sigma: 0 \rightarrow U \xrightarrow{f} W \xrightarrow{g} V \rightarrow 0$ be any exact sequence. It is easy to see that if $f \in \operatorname{rad}(U, W)$, then there is an exact sequence without isomorphism $0 \rightarrow U \rightarrow$ $W^{\prime} \rightarrow V^{\prime} \rightarrow 0$ such that $W=W^{\prime} \oplus Y$ and $V=V^{\prime} \oplus Y$ for some A-modules W^{\prime}, V^{\prime} and Y. Dually, if $g \in \operatorname{rad}(W, V)$, then there is an exact sequence without isomorphism $0 \rightarrow U^{\prime} \rightarrow W^{\prime} \rightarrow V \rightarrow 0$ such that $U=U^{\prime} \oplus Z$ and $W=W^{\prime} \oplus Z$ for some A-modules U^{\prime}, W^{\prime} and Z. Moreover, if Σ is nonsplittable, then there is a nonsplittable exact sequence without isomorphism $0 \rightarrow U^{\prime} \rightarrow W^{\prime} \rightarrow V^{\prime} \rightarrow 0$ such that $U=U^{\prime} \oplus Y, W=W^{\prime} \oplus Y \oplus Z$ and $V=V^{\prime} \oplus Z$ for some A-modules U^{\prime}, W^{\prime}, V^{\prime}, Y and Z.
Lemma 2.8. Let $\Sigma: 0 \rightarrow U \xrightarrow{f} W \xrightarrow{g} V \rightarrow 0$ be an exact sequence without isomorphism. Then:
(i) For any nonzero direct summand U^{\prime} of $U, \delta_{\Sigma}\left(U^{\prime}\right)>0$ holds.
(ii) For any nonzero direct summand V^{\prime} of $V, \delta_{\Sigma}^{\prime}\left(V^{\prime}\right)>0$ holds.

Proof. (i) Let U^{\prime} be a nonzero direct summand of U. The sequence Σ induces an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{A}\left(V, U^{\prime}\right) \rightarrow \operatorname{Hom}_{A}\left(W, U^{\prime}\right) \xrightarrow{f^{*}} \operatorname{Hom}_{A}\left(U, U^{\prime}\right)
$$

Assume that f^{*} is an epimorphism. Then there is a homomorphism of A-modules $h: W \rightarrow U^{\prime}$ such that $f^{*}(h)=h f: U \rightarrow U^{\prime}$ is a projection. But then $f \notin$ $\operatorname{rad}(U, W)$, which yields a contradiction. Hence, $\left[V, U^{\prime}\right]-\left[W, U^{\prime}\right]+\left[U, U^{\prime}\right]>0$, and consequently $\delta_{\Sigma}\left(U^{\prime}\right)>0$.

The proof of (ii) is dual.
As a consequence of the above lemma, we get the following fact.
Lemma 2.9. Let $\Sigma: 0 \rightarrow U \rightarrow W \rightarrow V \rightarrow 0$ be a nonsplittable exact sequence. Then $\delta_{\Sigma}(U)>0$ and $\delta_{\Sigma}^{\prime}(V)>0$.

Lemma 2.10. Let X be an A-module and $\Sigma: 0 \rightarrow U \rightarrow W \rightarrow V \rightarrow 0$ a nonsplittable short exact sequence of A-modules.
(i) If $\delta_{\Sigma}(X)>0$, then there exists a nonsplittable exact sequence of A-modules

$$
\Phi: 0 \rightarrow X \rightarrow Y \rightarrow V \rightarrow 0
$$

such that $\delta_{\Phi} \leq \delta_{\Sigma}$.
(ii) If $\delta_{\Sigma}^{\prime}(X)>0$, then there exists a nonsplittable exact sequence of A-modules

$$
\Phi: 0 \rightarrow U \rightarrow Z \rightarrow X \rightarrow 0
$$

such that $\delta_{\Phi} \leq \delta_{\Sigma}$.
Proof. (i) The first part of the proof is due to U. Markolf (see the proof of Theorem 4 in [7]). Let X be an A-module such that $\delta_{\Sigma}(X)>0$. Then the last map in the following exact sequence
$0 \rightarrow \operatorname{Hom}_{A}(V, X) \rightarrow \operatorname{Hom}_{A}(W, X) \rightarrow \operatorname{Hom}_{A}(U, X) \rightarrow \operatorname{Ext}_{A}^{1}(V, X) \rightarrow \operatorname{Ext}_{A}^{1}(W, X)$
is not a monomorphism. Therefore, we find a nonsplittable exact sequence of A modules $\Phi: 0 \rightarrow X \rightarrow Y \rightarrow V \rightarrow 0$, whose pullback under $W \rightarrow V$ is a splittable
sequence. Thus we get the following commutative diagram with exact rows and columns:

So, we have an exact sequence $\Theta: 0 \rightarrow U \rightarrow X \oplus W \rightarrow Y \rightarrow 0$. Observe that $\delta_{\Sigma}=\delta_{\Phi}+\delta_{\Theta}$. This implies that $\delta_{\Phi} \leq \delta_{\Sigma}$.

The proof of (ii) is dual.
Lemma 2.11. If $M<_{\operatorname{deg}} N$, then $\delta_{M, N}(N)>0$ and $\delta_{M, N}^{\prime}(N)>0$.
Proof. Suppose that $\delta_{M, N}^{\prime}(N)=0$. By Theorem 2.4 in [9], we know that if a module U embeds into N and $[U, N]=[U, M]$, then U also embeds into M. Applying this fact for $U=N$, we obtain that N embeds into M. But the modules M and N have the same dimension. This implies that M is isomorphic to N, which gives a contradiction. Hence, $\delta_{M, N}^{\prime}(N)>0$ and $\delta_{M, N}(N)>0$ by duality.

3. Proof of Theorems 1 and 2

Throughout this section A denotes a representation-finite algebra.
Lemma 3.1. Let M and N be two A-modules with $M<N$, and let

$$
\Sigma: 0 \rightarrow U \rightarrow W \rightarrow V \rightarrow 0
$$

be a short exact sequence without isomorphism in $\bmod A$ such that $\delta_{\Sigma} \leq \delta_{M, N}$. Then there exists a short exact sequence without isomorphism in $\bmod A$

$$
\Phi: 0 \rightarrow U \rightarrow Y \rightarrow Z \rightarrow 0
$$

such that $\delta_{\Sigma} \leq \delta_{\Phi} \leq \delta_{M, N}$ and $\delta_{\Phi}(Y)=\delta_{M, N}(Y)$.
Proof. Let

$$
\Sigma: 0 \rightarrow U \rightarrow W \rightarrow V \rightarrow 0
$$

be a short exact sequence of A-modules without isomorphism such that $\delta_{\Sigma} \leq \delta_{M, N}$. Take a short exact sequence without isomorphism in $\bmod A$,

$$
\Phi: 0 \rightarrow U \rightarrow Y \rightarrow Z \rightarrow 0
$$

such that $\delta_{\Sigma} \leq \delta_{\Phi} \leq \delta_{M, N}$, and which is maximal in the following sense. For any short exact sequence without isomorphism Φ^{\prime} in $\bmod A$ starting at U and satisfying inequalities $\delta_{\Phi} \leq \delta_{\Phi^{\prime}} \leq \delta_{M, N}$, we have $\delta_{\Phi}=\delta_{\Phi^{\prime}}$. Since $\sum_{X \in \Gamma_{A}} \delta_{M, N}(X)$ is finite, such a sequence Φ exists. Assume now that $Y=Y_{1} \oplus Y_{2}$, where Y_{1} is indecomposable with $\delta_{\Phi}\left(Y_{1}\right)<\delta_{M, N}\left(Y_{1}\right)$. Then Y_{1} is noninjective and we have an Auslander-Reiten sequence

$$
\Sigma\left(Y_{1}\right): 0 \rightarrow Y_{1} \xrightarrow{h} E \rightarrow \tau^{-} Y_{1} \rightarrow 0,
$$

and of course

$$
\Phi: 0 \rightarrow U \rightarrow Y_{1} \oplus Y_{2} \xrightarrow{\left(f_{1}, f_{2}\right)} Z \rightarrow 0
$$

Since $f_{1} \in \operatorname{rad}\left(Y_{1}, Z\right)$, the push out of the Auslander-Reiten sequence $\Sigma\left(Y_{1}\right)$ is a splittable sequence, so we obtain the following commutative diagram with exact rows:

This implies that there exists a nonsplittable exact sequence

$$
\Psi: 0 \rightarrow Y_{1} \xrightarrow{\binom{h}{f_{1}}} E \oplus Z \rightarrow \tau^{-} Y_{1} \oplus Z \rightarrow 0
$$

Applying Lemma 2.6 for Φ and Ψ, we get a new exact sequence

$$
0 \rightarrow U \xrightarrow{\imath} Y_{2} \oplus E \rightarrow Z \oplus \tau^{-} Y_{1} \rightarrow 0
$$

Since Φ is a sequence without isomorphism, we have $\imath \in \operatorname{rad}\left(U, Y_{2} \oplus E\right)$. Hence, there is a sequence without isomorphism in $\bmod A$

$$
\Theta: 0 \rightarrow U \rightarrow \bar{Y} \rightarrow \bar{Z} \rightarrow 0
$$

with $Y_{2} \oplus E=\bar{Y} \oplus \bar{W}$ and $Z \oplus \tau^{-} Y_{1}=\bar{Z} \oplus \bar{W}$ for some A-module \bar{W}. Thus, by Lemmas 2.6 and 2.5(i), for any A-module X we have

$$
\delta_{\Theta}(X)=\delta_{\Phi}(X)+\delta_{\Psi}(X)=\delta_{\Phi}(X)+\delta_{\Sigma\left(Y_{1}\right)}(X)=\delta_{\Phi}(X)+\mu\left(X, Y_{1}\right)
$$

Since $\delta_{\Phi} \leq \delta_{M, N}$ and $\delta_{\Phi}\left(Y_{1}\right) \leq \delta_{M, N}\left(Y_{1}\right)-1$, we get $\delta_{\Sigma} \leq \delta_{\Theta} \leq \delta_{M, N}$. This gives a contradiction with our choice of the sequence Φ. Hence, $\delta_{\Phi}(Y)=\delta_{M, N}(Y)$, and this finishes the proof.

Lemma 3.2. If $M<N$, then $\delta_{M, N}(N)>0$ and $\delta_{M, N}^{\prime}(N)>0$.
Proof. We proceed by induction on $\sum_{X \in \Gamma_{A}} \delta_{M, N}(X)>0$. Applying equalities (2.3), we obtain $\sum_{X \in \Gamma_{A}} \delta_{M, N}(X)=\sum_{X \in \Gamma_{A}} \delta_{M, N}^{\prime}(X)$. Assume $M<N$ and that $\delta_{M, N}(N)=0$ or $\delta_{M, N}^{\prime}(N)=0$. By duality, we may assume that $\delta_{M, N}^{\prime}(N)=0$ and moreover, the modules M and N have no nonzero common direct summand. Let \mathcal{F} be the set of all modules in Γ_{A} which are a direct summands of N. Take $Y \in \mathcal{F}$. By Lemma 2.5(ii), we get

$$
\mu(N, Y)=\mu(N, Y)-\mu(M, Y) \leq \delta_{M, N}(Y)+\delta_{M, N}^{\prime}(Y)=\delta_{M, N}(Y)
$$

So, the module Y is noninjective and there is an Auslander-Reiten sequence $\Sigma(Y)$. We define a new exact sequence without isomorphism

$$
\Sigma: 0 \rightarrow N \rightarrow E(N) \rightarrow \tau^{-} N \rightarrow 0
$$

where $E(N)=\bigoplus_{Y \in \mathcal{F}} E(Y)^{\mu(N, Y)}$ and $\tau^{-} N=\bigoplus_{Y \in \mathcal{F}}\left(\tau^{-} Y\right)^{\mu(N, Y)}$. Applying Lemma 2.5(i), we obtain

$$
\delta_{\Sigma}(Y)=\mu(N, Y) \leq \delta_{M, N}(Y)
$$

for any $Y \in \Gamma_{A}$. Consequently $\delta_{\Sigma} \leq \delta_{M, N}$ and, from Lemma 3.1, there is an exact sequence without isomorphism

$$
\Phi: 0 \rightarrow N \rightarrow W \rightarrow V \rightarrow 0
$$

with $\delta_{\Phi} \leq \delta_{M, N}$ and $\delta_{\Phi}(W)=\delta_{M, N}(W)$. Then $M \oplus V \leq W$ and $\delta_{M \oplus V, W}(W)=0$. Observe that $\delta_{M, N}-\delta_{M \oplus V, W}=\delta_{\Phi}$ and, from Lemma 2.9, $\delta_{\Phi}(N)>0$. This leads to

$$
\sum_{X \in \Gamma_{A}} \delta_{M \oplus V, W}(X)<\sum_{X \in \Gamma_{A}} \delta_{M, N}(X) .
$$

It follows from our inductive assumption that the modules $M \oplus V$ and W are isomorphic. Then the sequence Φ has the form

$$
0 \rightarrow N \rightarrow V \oplus M \rightarrow V \rightarrow 0
$$

and this implies that $M<{ }_{\operatorname{deg}} N$, by Proposition 3.4 in [13]. Applying Lemma 2.11, we get $\delta_{M, N}^{\prime}(N)>0$, and hence a contradiction. This finishes the proof.
3.3. Proof of Theorem 1. Let M and N be A-modules with $M \leq N$. We may assume that $M<N$. Let $r(X)=\min \left\{\delta_{M, N}(X), \mu(N, X)\right\}$, for any $X \in \Gamma_{A}$, and let \mathcal{F} be the set of all vertices of Γ_{A} with $r(X)>0$. The set \mathcal{F} does not contain injective A-modules and is nonempty, by Lemma 3.2. Let $N^{\prime}=\bigoplus_{X \in \mathcal{F}} X^{r(X)}=$ $\oplus_{X \in \Gamma_{A}} X^{r(X)}$ and $N^{\prime \prime}=\oplus_{X \in \Gamma_{A}} X^{\mu(N, X)-r(X)}$. Then $N=N^{\prime} \oplus N^{\prime \prime}$. We define a new exact sequence without isomorphism

$$
\Sigma: 0 \rightarrow \bigoplus_{X \in \mathcal{F}} X^{r(X)} \rightarrow \bigoplus_{X \in \mathcal{F}} E(X)^{r(X)} \rightarrow \bigoplus_{X \in \mathcal{F}}\left(\tau^{-} X\right)^{r(X)} \rightarrow 0
$$

Applying Lemma 2.5(i), we obtain $\delta_{\Sigma}(X)=r(X) \leq \delta_{M, N}(X)$, for any $X \in \Gamma_{A}$. Consequently, $\delta_{\Sigma} \leq \delta_{M, N}$ and, by Lemma 3.1, there is an exact sequence without isomorphism

$$
\Phi: 0 \rightarrow N^{\prime} \rightarrow W \rightarrow Z \rightarrow 0
$$

with $\delta_{\Sigma} \leq \delta_{\Phi} \leq \delta_{M, N}$ and $\delta_{\Phi}(W)=\delta_{M, N}(W)$. Then $M \oplus Z \leq N^{\prime \prime} \oplus W$ and $\delta_{M \oplus Z, N^{\prime \prime} \oplus W}(W)=0$. Let N_{1} be any indecomposable direct summand of $N^{\prime \prime}$. Then $r\left(N_{1}\right)<\mu\left(N, N_{1}\right)$, and this leads to $\delta_{\Sigma}\left(N_{1}\right)=r\left(N_{1}\right)=\delta_{M, N}\left(N_{1}\right)$. Hence,

$$
\delta_{M \oplus Z, N^{\prime \prime} \oplus W}\left(N_{1}\right)=\delta_{M, N}\left(N_{1}\right)-\delta_{\Phi}\left(N_{1}\right)=\delta_{\Sigma}\left(N_{1}\right)-\delta_{\Phi}\left(N_{1}\right) \leq 0 .
$$

So, $\delta_{M \oplus Z, N^{\prime \prime} \oplus W}\left(N_{1}\right)=0$. This implies that $\delta_{M \oplus Z, N^{\prime \prime} \oplus W}\left(N^{\prime \prime}\right)=0$, and furthermore $\delta_{M \oplus Z, N^{\prime \prime} \oplus W}\left(N^{\prime \prime} \oplus W\right)=0$. Hence, $M \oplus Z \simeq N^{\prime \prime} \oplus W$, by Lemma 3.2. Finally, the sequence Φ induces an exact sequence $0 \rightarrow N^{\prime} \oplus N^{\prime \prime} \rightarrow N^{\prime \prime} \oplus W \rightarrow Z \rightarrow 0$, which has the form $0 \rightarrow N \rightarrow M \oplus Z \rightarrow Z \rightarrow 0$. In a similar way we obtain an exact sequence $0 \rightarrow Z^{\prime} \rightarrow M \oplus Z^{\prime} \rightarrow N \rightarrow 0$.

Lemma 3.4. Let M, N and X be A-modules such that $M<N$ and $X \in \Gamma_{A}$. Then we have:
(i) If $\delta_{M, N}^{\prime}(X)>0$, then there exist an indecomposable direct summand N_{1} of N and a nonsplittable exact sequence $\Phi: 0 \rightarrow N_{1} \rightarrow Y \rightarrow X \rightarrow 0$ without isomorphism such that $\delta_{\Phi} \leq \delta_{M, N}$.
(ii) If $\delta_{M, N}(X)>0$, then there exist an indecomposable direct summand N_{1} of N and a nonsplittable exact sequence $\Phi: 0 \rightarrow X \rightarrow Y \rightarrow N_{1} \rightarrow 0$ without isomorphism such that $\delta_{\Phi} \leq \delta_{M, N}$.
Proof. (i) Assume that $\delta_{M, N}^{\prime}(X)>0$. Applying Theorem 1 we get the exact sequence $\Sigma: 0 \rightarrow N \rightarrow M \oplus Z \rightarrow Z \rightarrow 0$, in mod A. Further, applying Lemma 2.10(ii), we obtain a nonsplittable exact sequence $\Psi: 0 \rightarrow N \rightarrow W \rightarrow X \rightarrow 0$ with $\delta_{\Psi} \leq \delta_{\Sigma}=\delta_{M, N}$. Then, by Lemma 2.9, there is an indecomposable direct summand
N_{1} of N with $\delta_{\Psi}\left(N_{1}\right)>0$. Finally, by Lemma $2.10(\mathrm{i})$, we obtain a nonsplittable exact sequence $\Phi: 0 \rightarrow N_{1} \rightarrow Y \rightarrow X \rightarrow 0$ with $\delta_{\Phi} \leq \delta_{\Psi} \leq \delta_{M, N}$.

We obtain (ii) by duality.
3.5. Proof of Theorem 2. Let B be an algebra and assume that $\operatorname{Ext}_{B}^{1}(X, X)=0$ for any indecomposable B-module X . It is well-known that then B is representationfinite. Let M and N be two B-modules with $M \leq N$. We shall show that $M \leq$ ext N. We proceed by induction on $[N, N]-[M, M] \geq 0$. If $[N, N]-[M, M]=0$, then by Lemma 1.2 in [9], M is isomorphic to N. Hence, we may assume that $M<N$, and that M and N have no common nonzero direct summand. Take any indecomposable direct summand N_{1} of N. Applying Lemma 2.5(ii), we obtain that $\delta_{M, N}\left(N_{1}\right)+\delta_{M, N}^{\prime}\left(N_{1}\right)>0$. Without loss of generality, we may assume that $\delta_{M, N}\left(N_{1}\right)>0$. Now applying Lemma 3.4, we get a nonsplittable exact sequence

$$
\Sigma: 0 \rightarrow N_{1} \rightarrow Y \rightarrow N_{2} \rightarrow 0
$$

with $\delta_{\Sigma} \leq \delta_{M, N}$, for some A-module Y and some indecomposable direct summand N_{2} of N. Since $\operatorname{Ext}_{B}^{1}\left(N_{1}, N_{1}\right)=0$, the modules N_{1} and N_{2} are not isomorphic. Thus, $N=N_{1} \oplus N_{2} \oplus N_{3}$, for some A-module N_{3}. Moreover, $M \leq Y \oplus N_{3}<_{\text {ext }} N$. This implies that $\left[Y \oplus N_{3}, Y \oplus N_{3}\right]<[N, N]$, by Lemma 1.2 in [9]. Then

$$
\left[Y \oplus N_{3}, Y \oplus N_{3}\right]-[M, M]<[N, N]-[M, M]
$$

and $M \leq \leq_{\text {ext }} Y \oplus N_{3}$, by our inductive assumption. Finally, we obtain $M<_{\text {ext }} N$, and this finishes the proof.

References

[1] S. Abeasis and A. del Fra, Degenerations for the representations of a quiver of type \mathbb{A}_{m}, J. Algebra 93 (1985), 376-412. MR 86j:16028
[2] I. Assem and A. Skowroński, Minimal representation-infinite coil algebras, Manuscripta Math. 67 (1990), 305-331.
[3] M. Auslander, Representation theory of finite dimensional algebras, Contemp. Math. 13 (AMS 1982), 27-39. MR 84b: 16031
[4] M. Auslander and I. Reiten, Modules determined by their composition factors, Illinois J. Math. 29 (1985), 280-301. MR 86i:16032
[5] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge University Press (1995). MR 96c:16015
[6] K. Bongartz, A generalization of a theorem of M. Auslander, Bull. London Math. Soc. 21 (1989), 255-256. MR 90b:16031
[7] K. Bongartz, Minimal singularities for representations of Dynkin quivers, Commentari Math. Helvetici 69 (1994), 575-611. MR 96f:16016
[8] K. Bongartz, Degenerations for representations of tame quivers, Ann. Sci. École Normale Sup. 28 (1995), 647-668. MR 96i:16020
[9] K. Bongartz, On degenerations and extensions of finite dimensional modules, Advances Math. 121 (1996), 245-287. CMP 96:16
[10] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378. MR 84i:16030
[11] H. Kraft, Geometric methods in representation theory, in: Representations of Algebras, Springer Lecture Notes in Math. 944 (1982), 180-258. MR 84c:14007
[12] I. Reiten, A. Skowroński and S. O. Smalø, Short chains and short cycles of modules, Proc. Amer. Math. Soc. 117 (1993), 343-354. MR 93d:16013
[13] C. Riedtmann, Degenerations for representations of quivers with relations, Ann. Sci. École Normale Sup. 4 (1986), 275-301. MR 88b:16051
[14] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099 (Springer 1984). MR 87f:16027
[15] A. Skowroński and G. Zwara, On degenerations of modules with nondirecting indecomposable summands, Canad. J. Math. 48 (1996), 1091-1120. CMP 97:02
[16] G. Zwara, Degenerations in the module varieties of generalized standard Auslander-Reiten components, Colloq. Math. 72 (1997), 281-303.
[17] G. Zwara, Degenerations for modules over representation-finite biserial algebras, J. Algebra 198 (1997), 563-581. CMP 98:06
[18] G. Zwara, Degenerations for representations of extended Dynkin quivers, Comment. Math. Helvetici 73 (1998), 71-88. CMP 98:09

Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

E-mail address: gzwara@mat.uni.torun.pl

[^0]: Received by the editors May 6, 1997 and, in revised form, August 28, 1997.
 1991 Mathematics Subject Classification. Primary 14L30, 16G60, 16G70.

