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DEGENERATIONS FOR MODULES
OVER REPRESENTATION-FINITE ALGEBRAS

GRZEGORZ ZWARA

(Communicated by Ken Goodearl)

Abstract. Let A be a representation-finite algebra. We show that a finite
dimensional A-module M degenerates to another A-module N if and only if the
inequalities dimK HomA(M, X) ≤ dimK HomA(N, X) hold for all A-modules
X. We prove also that if Ext1A(X, X) = 0 for any indecomposable A-module
X, then any degeneration of A-modules is given by a chain of short exact
sequences.

1. Introduction and main results

Let A be a finite dimensional associative K-algebra with an identity over an
algebraically closed field K. If a1 = 1, . . . , an is a basis of A over K, we have the
structure constants aijk defined by aiaj =

∑
aijkak. The affine variety modA(d) of

d-dimensional unital left A-modules consists of n-tuples m = (m1, . . . , mn) of d×d-
matrices with coefficients in K such that m1 is the identity matrix and mimj =∑

aijkmk holds for all indices i and j. The general linear group Gld(K) acts on
modA(d) by conjugation, and the orbits correspond to the isomorphism classes of
d-dimensional modules (see [11]). We shall agree to identify a d-dimensional A-
module M with the point of modA(d) corresponding to it. We denote by O(M)
the Gld(K)-orbit of a module M in modA(d). Then one says that a module N in
modA(d) is a degeneration of a module M in modA(d) if N belongs to the Zariski
closure O(M) of O(M) in modA(d), and we denote this fact by M ≤deg N . Thus
≤deg is a partial order on the set of isomorphism classes of A-modules of a given
dimension. It is not clear how to characterize≤deg in terms of representation theory.

There has been a work by S. Abeasis and A. del Fra [1], K. Bongartz [6], [9],
[8], Ch. Riedtmann [13], and A. Skowroński and the author [15], [16], [17] and [18]
connecting ≤deg with other partial orders ≤ext and ≤ on the isomorphism classes
in modA(d). They are defined in terms of representation theory as follows:

• M ≤ext N : ⇔ there are modules Mi, Ui, Vi and short exact sequences 0 →
Ui → Mi → Vi → 0 in mod A such that M = M1, Mi+1 = Ui ⊕ Vi, 1 ≤ i ≤ s,
and N = Ms+1 for some natural number s.

• M ≤ N : ⇔ [M, X ] ≤ [N, X ] holds for all modules X .
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Here and later on we abbreviate dimK HomA(X, Y ) by [X, Y ]. Then for modules
M and N in modA(d), the following implications hold:

M ≤ext N =⇒ M ≤deg N =⇒ M ≤ N

(see [9], [13]). Unfortunately, the reverse implications are not true in general, and it
would be interesting to find out when they are. K. Bongartz proved in [9] that it is
the case for all representations of Dynkin quivers and the double arrow. Moreover,
in [8] K. Bongartz proved that ≤deg and ≤ coincide for all modules over tame
concealed algebras. Recently, the author proved in [17] that ≤ and ≤ext are also
equivalent for all modules over representation-finite blocks of group algebras, and
in [18] that ≤ext and ≤deg coincide for all modules over tame concealed algebras.
The main aim of this paper is to prove the following theorem.

Theorem 1. Let A be a representation-finite algebra and M , N two modules with
M ≤ N . Then there are A-modules Z, Z ′, and two exact sequences

0 → N → M ⊕ Z → Z → 0 and 0 → Z ′ → M ⊕ Z ′ → N → 0.

In [13] Riedtmann proved that each of the exact sequences 0 → N → M ⊕ Z →
Z → 0 and 0 → Z ′ → M ⊕Z ′ → N → 0 implies that M ≤deg N . Hence we get the
following fact which solves a long standing problem (see [13]).

Corollary. The partial orders ≤ and ≤deg coincide for all modules over represen-
tation-finite algebras.

We note that for a representation-finite algebra A we may deduce the dimension
of the spaces HomA(M, N) from the Auslander-Reiten quiver of A (see [10]), and
hence it is rather easy to decide when M ≤ N for any A-modules M and N .

There are many examples of representation-finite algebras for which the orders
≤deg and ≤ext are not equivalent (see [17]). Our second aim in this paper is to
prove the following theorem.

Theorem 2. Let B be an algebra and assume that Ext1B(X, X) = 0 for any inde-
composable B-module X. Then the partial orders ≤, ≤deg and ≤ext coincide for all
B-modules.

It is well-known that every representation-directed algebra [14] satisfies the above
condition. Hence, Theorem 2 extends the corresponding result by Bongartz proved
in [9].

The paper is organized as follows. In Section 2 we fix the notation, recall the
relevant definitions and facts, and prove some preliminary results on modules which
we apply in our investigations. Section 3 is devoted to the proofs of Theorems 1
and 2.

For basic background on the topics considered here we refer to [5], [9], [8], [11]
and [14]. The results presented in this paper form a part of the author’s doctoral
dissertation written under the supervision of Professor A. Skowroński. The author
gratefully acknowledges support from the Polish Scientific Grant KBN No. 2 PO3A
020 08.

2. Preliminary results

2.1. Throughout the paper A denotes a fixed finite dimensional associative K-
algebra with an identity over an algebraically closed field K. We denote by mod A
the category of finite dimensional left A-modules and by rad(mod A) the Jacobson
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radical of mod A. By an A-module we mean an object from modA. Further, we
denote by ΓA the Auslander-Reiten quiver of A, and by τ = τA and τ− = τ−A
the Auslander-Reiten translations D Tr and Tr D, respectively. We shall agree to
identify the vertices of ΓA with the corresponding indecomposable modules. For
a module M we denote by [M ] the image of M in the Grothendieck group K0(A)
of A. Thus [M ] = [N ] if and only if M and N have the same simple composition
factors including the multiplicities.

2.2. Following [13], for M , N from mod A, we set M ≤ N if and only if [M, X ] ≤
[N, X ] for all A-modules X . The fact that ≤ is a partial order on the isomorphism
classes of A-modules follows from a result by M. Auslander [3] (see also [6]). Observe
that, if M and N have the same dimension and M ≤ N , then [M ] = [N ]. Moreover,
M. Auslander and I. Reiten have shown in [4] that, if M and N are A-modules
with [M ] = [N ], then for all nonprojective indecomposable A-modules X and all
noninjective indecomposable modules Y the following formulas hold (see [12]):

[X, M ]− [M, τX ] = [X, N ]− [N, τX ],

[M, Y ]− [τ−Y, M ] = [N, Y ]− [τ−Y, N ].

Hence, if [M ] = [N ], then M ≤ N if and only if [X, M ] ≤ [X, N ] for all A-modu-
les X .

2.3. Let M and N be A-modules with [M ] = [N ] and

Σ : 0 → D → E → F → 0

an exact sequence in modA. Following [13] we define the additive functions δM,N ,
δ′M,N and δΣ on A-modules X as follows:

δM,N (X) = [N, X ]− [M, X ],

δ′M,N (X) = [X, N ]− [X, M ],

δΣ(X) = δE,D⊕F (X) = [D ⊕ F, X ]− [E, X ],

δ′Σ(X) = δ′E,D⊕F (X) = [X, D ⊕ F ]− [X, E].

From the Auslander-Reiten formulas (2.2) we get the following very useful equali-
ties:

δM,N (X) = δ′M,N (τ−X), δM,N (τX) = δ′M,N (X)

for all A-modules X . Observe also that δM,N(I) = 0 for any injective A-module
I, and δ′M,N (P ) = 0 for any projective A-module P . In particular, the following
conditions are equivalent:

(1) M ≤ N ,
(2) δM,N (X) ≥ 0 for all X ∈ ΓA,
(3) δ′M,N (X) ≥ 0 for all X ∈ ΓA.

2.4. For an A-module M and an indecomposable A-module Z, we denote by
µ(M, Z) the multiplicity of Z as a direct summand of M . For a noninjective
indecomposable A-module U , we denote by Σ(U) an Auslander-Reiten sequence

Σ(U) : 0 → U → E(U) → τ−U → 0.
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We shall need the following lemma.

Lemma 2.5. Let M , N be A-modules with [M ] = [N ] and U an indecomposable
A-module. Then:

(i) If U is noninjective, then δΣ(U)(M) = µ(M, U).
(ii) If M ≤ N , then µ(N, U)− µ(M, U) ≤ δM,N (U) + δ′M,N (U).

Proof. If U is noninjective, then the Auslander-Reiten sequence Σ(U) induces an
exact sequence

0 → HomA(τ−U, M) → HomA(E(U), M) → rad(U, M) → 0,

and hence we get

[U ⊕ τ−U, M ]− [E(U), M ] = [U, M ]− dimK rad(U, M) = µ(M, U).

This implies (i). Similarly, we have

[U ⊕ τ−U, N ]− [E(U), N ] = µ(N, U).

Then we obtain

µ(N, U)− µ(M, U) = ([U ⊕ τ−U, N ]− [U ⊕ τ−U, M ])− ([E(U), N ]− [E(U), M ])

= δ′M,N (U) + δ′M,N(τ−U)− δ′M,N(E(U))

≤ δ′M,N (U) + δ′M,N(τ−U) = δ′M,N(U) + δM,N (U).

Assume now that U is injective. Then HomA(U/ soc(U), M) ' rad(U, M), and so

[U, M ]− [U/ soc(U), M ] = µ(M, U).

Similarly, we have

[U, N ]− [U/ soc(U), N ] = µ(N, U).

Therefore, we get

µ(N, U)− µ(M, U) = ([U, N ]− [U, M ])− ([U/ soc(U), N ]− [U/ soc(U), M ])

= δ′M,N (U)− δ′M,N(U/ soc(U)) ≤ δ′M,N(U)

= δ′M,N (U) + δM,N(U).

Hence, (ii) also holds.

We shall need also the following Lemma (3 + 3 + 2) from [2, (2.1)] and its direct
consequence.

Lemma 2.6. Let

Σ1 : 0 → M1

[ u1
f1

]
−−−−→ M2 ⊕N1

[f2,u2]−−−−→ N2 → 0,

Σ2 : 0 → M2

[ v1
f2

]
−−−−→ M3 ⊕N2

[f3,v2]−−−−→ N3 → 0

be short exact sequences in mod A. Then the sequence

Σ3 : 0 → M1

[ v1u1
f1

]
−−−−→ M3 ⊕N1

[f3,−v2u2 ]−−−−−−−→ N3 → 0

is exact. Moreover, we have δΣ3 = δΣ1 + δΣ2 .
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2.7. A short exact sequence

0 → U
f−→W

g−→ V → 0

is said to be without isomorphism provided f ∈ rad(U, W ) and g ∈ rad(W, V ).
Let Σ : 0 → U

f−→W
g−→ V → 0 be any exact sequence. It is easy to see that if

f ∈ rad(U, W ), then there is an exact sequence without isomorphism 0 → U →
W ′ → V ′ → 0 such that W = W ′ ⊕ Y and V = V ′ ⊕ Y for some A-modules
W ′, V ′ and Y . Dually, if g ∈ rad(W, V ), then there is an exact sequence without
isomorphism 0 → U ′ → W ′ → V → 0 such that U = U ′ ⊕ Z and W = W ′ ⊕ Z
for some A-modules U ′, W ′ and Z. Moreover, if Σ is nonsplittable, then there is a
nonsplittable exact sequence without isomorphism 0 → U ′ → W ′ → V ′ → 0 such
that U = U ′ ⊕ Y , W = W ′ ⊕ Y ⊕ Z and V = V ′ ⊕ Z for some A-modules U ′, W ′,
V ′, Y and Z.

Lemma 2.8. Let Σ : 0 → U
f−→W

g−→ V → 0 be an exact sequence without iso-
morphism. Then:

(i) For any nonzero direct summand U ′ of U , δΣ(U ′) > 0 holds.
(ii) For any nonzero direct summand V ′ of V , δ′Σ(V ′) > 0 holds.

Proof. (i) Let U ′ be a nonzero direct summand of U . The sequence Σ induces an
exact sequence

0 → HomA(V, U ′) → HomA(W, U ′)
f∗
−→ HomA(U, U ′).

Assume that f∗ is an epimorphism. Then there is a homomorphism of A-modules
h : W → U ′ such that f∗(h) = hf : U → U ′ is a projection. But then f 6∈
rad(U, W ), which yields a contradiction. Hence, [V, U ′]− [W, U ′] + [U, U ′] > 0, and
consequently δΣ(U ′) > 0.

The proof of (ii) is dual.

As a consequence of the above lemma, we get the following fact.

Lemma 2.9. Let Σ : 0 → U → W → V → 0 be a nonsplittable exact sequence.
Then δΣ(U) > 0 and δ′Σ(V ) > 0.

Lemma 2.10. Let X be an A-module and Σ : 0 → U → W → V → 0 a nonsplit-
table short exact sequence of A-modules.

(i) If δΣ(X) > 0, then there exists a nonsplittable exact sequence of A-modules

Φ : 0 → X → Y → V → 0,

such that δΦ ≤ δΣ.
(ii) If δ′Σ(X) > 0, then there exists a nonsplittable exact sequence of A-modules

Φ : 0 → U → Z → X → 0,

such that δΦ ≤ δΣ.

Proof. (i) The first part of the proof is due to U. Markolf (see the proof of Theorem
4 in [7]). Let X be an A-module such that δΣ(X) > 0. Then the last map in the
following exact sequence

0 → HomA(V, X) → HomA(W, X) → HomA(U, X) → Ext1A(V, X) → Ext1A(W, X)

is not a monomorphism. Therefore, we find a nonsplittable exact sequence of A-
modules Φ : 0 → X → Y → V → 0, whose pullback under W → V is a splittable
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sequence. Thus we get the following commutative diagram with exact rows and
columns:

0 0
↓ ↓
U = U
↓ ↓

0 → X −→ X ⊕W −→ W → 0
|| ↓ ↓

0 → X −→ Y −→ V → 0
↓ ↓
0 0

So, we have an exact sequence Θ : 0 → U → X ⊕ W → Y → 0. Observe that
δΣ = δΦ + δΘ. This implies that δΦ ≤ δΣ.

The proof of (ii) is dual.

Lemma 2.11. If M <deg N , then δM,N (N) > 0 and δ′M,N (N) > 0.

Proof. Suppose that δ′M,N(N) = 0. By Theorem 2.4 in [9], we know that if a module
U embeds into N and [U, N ] = [U, M ], then U also embeds into M . Applying this
fact for U = N , we obtain that N embeds into M . But the modules M and N
have the same dimension. This implies that M is isomorphic to N , which gives a
contradiction. Hence, δ′M,N (N) > 0 and δM,N (N) > 0 by duality.

3. Proof of Theorems 1 and 2

Throughout this section A denotes a representation-finite algebra.

Lemma 3.1. Let M and N be two A-modules with M < N , and let

Σ : 0 → U → W → V → 0

be a short exact sequence without isomorphism in mod A such that δΣ ≤ δM,N .
Then there exists a short exact sequence without isomorphism in mod A

Φ : 0 → U → Y → Z → 0

such that δΣ ≤ δΦ ≤ δM,N and δΦ(Y ) = δM,N (Y ).

Proof. Let

Σ : 0 → U → W → V → 0

be a short exact sequence of A-modules without isomorphism such that δΣ ≤ δM,N .
Take a short exact sequence without isomorphism in mod A,

Φ : 0 → U → Y → Z → 0

such that δΣ ≤ δΦ ≤ δM,N , and which is maximal in the following sense. For any
short exact sequence without isomorphism Φ′ in modA starting at U and satisfying
inequalities δΦ ≤ δΦ′ ≤ δM,N , we have δΦ = δΦ′ . Since

∑
X∈ΓA

δM,N (X) is finite,
such a sequence Φ exists. Assume now that Y = Y1⊕Y2, where Y1 is indecomposable
with δΦ(Y1) < δM,N (Y1). Then Y1 is noninjective and we have an Auslander-Reiten
sequence

Σ(Y1) : 0 → Y1
h−→E → τ−Y1 → 0,
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and of course

Φ : 0 → U → Y1 ⊕ Y2
(f1,f2)−→ Z → 0.

Since f1 ∈ rad(Y1, Z), the push out of the Auslander-Reiten sequence Σ(Y1) is a
splittable sequence, so we obtain the following commutative diagram with exact
rows:

0 → Y1
h−→ E −→ τ−Y1 → 0

↓ f1 ↓ ||
0 → Z −→ τ−Y1 ⊕ Z −→ τ−Y1 → 0.

This implies that there exists a nonsplittable exact sequence

Ψ : 0 → Y1

 h
f1


−→ E ⊕ Z → τ−Y1 ⊕ Z → 0.

Applying Lemma 2.6 for Φ and Ψ, we get a new exact sequence

0 → U
ı−→ Y2 ⊕ E → Z ⊕ τ−Y1 → 0.

Since Φ is a sequence without isomorphism, we have ı ∈ rad(U, Y2 ⊕ E). Hence,
there is a sequence without isomorphism in modA

Θ : 0 → U → Y → Z → 0,

with Y2 ⊕ E = Y ⊕W and Z ⊕ τ−Y1 = Z ⊕W for some A-module W . Thus, by
Lemmas 2.6 and 2.5(i), for any A-module X we have

δΘ(X) = δΦ(X) + δΨ(X) = δΦ(X) + δΣ(Y1)(X) = δΦ(X) + µ(X, Y1).

Since δΦ ≤ δM,N and δΦ(Y1) ≤ δM,N (Y1) − 1, we get δΣ ≤ δΘ ≤ δM,N . This gives
a contradiction with our choice of the sequence Φ. Hence, δΦ(Y ) = δM,N (Y ), and
this finishes the proof.

Lemma 3.2. If M < N , then δM,N (N) > 0 and δ′M,N (N) > 0.

Proof. We proceed by induction on
∑

X∈ΓA
δM,N(X) > 0. Applying equalities

(2.3), we obtain
∑

X∈ΓA
δM,N (X) =

∑
X∈ΓA

δ′M,N (X). Assume M < N and that
δM,N(N) = 0 or δ′M,N(N) = 0. By duality, we may assume that δ′M,N (N) = 0 and
moreover, the modules M and N have no nonzero common direct summand. Let
F be the set of all modules in ΓA which are a direct summands of N . Take Y ∈ F .
By Lemma 2.5(ii), we get

µ(N, Y ) = µ(N, Y )− µ(M, Y ) ≤ δM,N(Y ) + δ′M,N(Y ) = δM,N (Y ).

So, the module Y is noninjective and there is an Auslander-Reiten sequence Σ(Y ).
We define a new exact sequence without isomorphism

Σ : 0 → N → E(N) → τ−N → 0,

where E(N) =
⊕

Y ∈F E(Y )µ(N,Y ) and τ−N =
⊕

Y ∈F (τ−Y )µ(N,Y ). Applying
Lemma 2.5(i), we obtain

δΣ(Y ) = µ(N, Y ) ≤ δM,N (Y ),

for any Y ∈ ΓA. Consequently δΣ ≤ δM,N and, from Lemma 3.1, there is an exact
sequence without isomorphism

Φ : 0 → N → W → V → 0
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with δΦ ≤ δM,N and δΦ(W ) = δM,N(W ). Then M ⊕ V ≤ W and δM⊕V,W (W ) = 0.
Observe that δM,N − δM⊕V,W = δΦ and, from Lemma 2.9, δΦ(N) > 0. This leads
to ∑

X∈ΓA

δM⊕V,W (X) <
∑

X∈ΓA

δM,N (X).

It follows from our inductive assumption that the modules M ⊕ V and W are
isomorphic. Then the sequence Φ has the form

0 → N → V ⊕M → V → 0,

and this implies that M <deg N , by Proposition 3.4 in [13]. Applying Lemma 2.11,
we get δ′M,N (N) > 0, and hence a contradiction. This finishes the proof.

3.3. Proof of Theorem 1. Let M and N be A-modules with M ≤ N . We may
assume that M < N . Let r(X) = min{δM,N(X), µ(N, X)}, for any X ∈ ΓA, and
let F be the set of all vertices of ΓA with r(X) > 0. The set F does not contain
injective A-modules and is nonempty, by Lemma 3.2. Let N ′ =

⊕
X∈F Xr(X) =⊕

X∈ΓA
Xr(X) and N ′′ =

⊕
X∈ΓA

Xµ(N,X)−r(X). Then N = N ′ ⊕ N ′′. We define
a new exact sequence without isomorphism

Σ : 0 →
⊕
X∈F

Xr(X) →
⊕
X∈F

E(X)r(X) →
⊕
X∈F

(τ−X)r(X) → 0.

Applying Lemma 2.5(i), we obtain δΣ(X) = r(X) ≤ δM,N(X), for any X ∈ ΓA.
Consequently, δΣ ≤ δM,N and, by Lemma 3.1, there is an exact sequence without
isomorphism

Φ : 0 → N ′ → W → Z → 0

with δΣ ≤ δΦ ≤ δM,N and δΦ(W ) = δM,N(W ). Then M ⊕ Z ≤ N ′′ ⊕ W and
δM⊕Z,N ′′⊕W (W ) = 0. Let N1 be any indecomposable direct summand of N ′′.
Then r(N1) < µ(N, N1), and this leads to δΣ(N1) = r(N1) = δM,N (N1). Hence,

δM⊕Z,N ′′⊕W (N1) = δM,N (N1)− δΦ(N1) = δΣ(N1)− δΦ(N1) ≤ 0.

So, δM⊕Z,N ′′⊕W (N1) = 0. This implies that δM⊕Z,N ′′⊕W (N ′′) = 0, and further-
more δM⊕Z,N ′′⊕W (N ′′⊕W ) = 0. Hence, M⊕Z ' N ′′⊕W , by Lemma 3.2. Finally,
the sequence Φ induces an exact sequence 0 → N ′ ⊕ N ′′ → N ′′ ⊕W → Z → 0,
which has the form 0 → N → M ⊕ Z → Z → 0. In a similar way we obtain an
exact sequence 0 → Z ′ → M ⊕ Z ′ → N → 0.

Lemma 3.4. Let M , N and X be A-modules such that M < N and X ∈ ΓA.
Then we have:

(i) If δ′M,N (X) > 0, then there exist an indecomposable direct summand N1 of
N and a nonsplittable exact sequence Φ : 0 → N1 → Y → X → 0 without
isomorphism such that δΦ ≤ δM,N .

(ii) If δM,N (X) > 0, then there exist an indecomposable direct summand N1 of
N and a nonsplittable exact sequence Φ : 0 → X → Y → N1 → 0 without
isomorphism such that δΦ ≤ δM,N .

Proof. (i) Assume that δ′M,N(X) > 0. Applying Theorem 1 we get the exact se-
quence Σ : 0 → N → M ⊕ Z → Z → 0, in mod A. Further, applying Lemma
2.10(ii), we obtain a nonsplittable exact sequence Ψ : 0 → N → W → X → 0 with
δΨ ≤ δΣ = δM,N . Then, by Lemma 2.9, there is an indecomposable direct summand
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N1 of N with δΨ(N1) > 0. Finally, by Lemma 2.10(i), we obtain a nonsplittable
exact sequence Φ : 0 → N1 → Y → X → 0 with δΦ ≤ δΨ ≤ δM,N .

We obtain (ii) by duality.

3.5. Proof of Theorem 2. Let B be an algebra and assume that Ext1B(X, X) = 0 for
any indecomposable B-module X. It is well-known that then B is representation-
finite. Let M and N be two B-modules with M ≤ N . We shall show that M ≤ext

N . We proceed by induction on [N, N ] − [M, M ] ≥ 0. If [N, N ] − [M, M ] = 0,
then by Lemma 1.2 in [9], M is isomorphic to N . Hence, we may assume that
M < N , and that M and N have no common nonzero direct summand. Take
any indecomposable direct summand N1 of N . Applying Lemma 2.5(ii), we obtain
that δM,N (N1) + δ′M,N(N1) > 0. Without loss of generality, we may assume that
δM,N(N1) > 0. Now applying Lemma 3.4, we get a nonsplittable exact sequence

Σ : 0 → N1 → Y → N2 → 0

with δΣ ≤ δM,N , for some A-module Y and some indecomposable direct summand
N2 of N . Since Ext1B(N1, N1) = 0, the modules N1 and N2 are not isomorphic.
Thus, N = N1⊕N2⊕N3, for some A-module N3. Moreover, M ≤ Y ⊕N3 <ext N .
This implies that [Y ⊕N3, Y ⊕N3] < [N, N ], by Lemma 1.2 in [9]. Then

[Y ⊕N3, Y ⊕N3]− [M, M ] < [N, N ]− [M, M ]

and M ≤ext Y ⊕N3, by our inductive assumption. Finally, we obtain M <ext N ,
and this finishes the proof.
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