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ON SWAN CONDUCTORS FOR BRAUER GROUPS
OF CURVES OVER LOCAL FIELDS

TAKAO YAMAZAKI

(Communicated by David E. Rohrlich)

Abstract. For an element w of the Brauer group of a curve over a local field,
we define the “Swan conductor” sw(w) of w, which measures the wildness of
the ramification of w. We give a relation between sw(w) and Swan conductors
for Brauer groups of henselian discrete valuation fields defined by Kato.

1. Introduction

Let k be a complete discrete valuation field with finite residue field F of char-
acteristic p. Let Ok be the ring of integers in k. Let X be a projective smooth
geometrically connected curve over k. There is a canonical pairing (cf. [4], [5],
Section 9)

〈, 〉X : Pic(X)× Br(X)→ Q/Z,(1)

described as follows: For a closed point x ∈ X and an element w ∈ Br(X), we have
the localization wx ∈ Br(κ(x)) of w at x. Since κ(x) is a finite extension of k, we
have Corκ(x)/k(wx) ∈ Br(k) ∼= Q/Z, where the last isomorphism is given by local
class field theory. Then we define the pairing (1) by

〈
∑

x

nx[x], w〉X =
∑

x

nx Corκ(x)/k(wx) ∈ Q/Z,

where [x] denotes the class of x in Pic(X) and nx ∈ Z.
The pairing (1) induces an isomorphism

Br(X)
∼=→ Homc(Pic(X),Q/Z).

Here Homc denotes the group of all continuous homomorphisms of finite order, and
Pic(X) is endowed with a certain topology defined in [5], 9.4 (cf. Lemma 3.2).
This result was first proven by Lichtenbaum, ignoring the p-primary part when
char(k) = p > 0, and more recently the general case was proven by Saito (cf. loc.
cit.).

Taking a model of X over Ok, we can define a decreasing filtration Um Pic(X) ⊂
Pic(X) (m > 0). For w ∈ Br(X), we define the Swan conductor sw(w) of w to
be the minimal number m such that the map 〈·, w〉X annihilates Um+1 Pic(X) (cf.
Definition 3.1). This Swan conductor measures the ramification of w.

Received by the editors May 5, 1997 and, in revised form, August 8, 1997.
1991 Mathematics Subject Classification. Primary 11G20, 11S15.

c©1999 American Mathematical Society

1269



1270 TAKAO YAMAZAKI

On the other hand, for an element w of the Brauer group of a henselian discrete
valuation field Λ, Kato defined the Swan conductor swΛ(w) of w, which again
measures the ramification of w (cf. Definition 2.1). A certain description of those
Swan conductors in terms of division algebras is given in [6] (cf. Theorem 2.2).

The following is the main theorem of this note:

Theorem 1.1. Let X be a regular model of X over Ok (cf. the beginning of Section
3). For each generic point η ∈ Y = (X⊗Ok

F )red, let Kη be the fraction field of the
henselization of OX,η and eη the multiplicity of ¯{η} in the divisor X⊗F . Then, for
w ∈ Br(X) we have

sw(w) = sup{ [swKη(wKη )/eη] | η runs over the generic points of Y },
where wKη is the natural image of w in Br(Kη), and [ ] denotes the least integer
function.

The author would like to express gratitude to K. Kato and S. Saito for their
valuable advice. He also thanks K. Sato for his comments and K. Bannai who care-
fully read the manuscript. He is grateful to the referee, whose comments improved
this paper very much. He is supported by JSPS Research Fellowship for Young
Scientists.

2. Review on Swan conductors of Kato

In this section, we briefly recall Swan conductors for Brauer groups of henselian
discrete valuation fields, which were defined by Kato (cf. [3], Proposition 6.5). Let
Λ be a henselian discrete valuation field with residue field E such that char(E) =
p > 0, [E : Ep] = p, and pBr(E) 6= 0. Cup products

H1(Λ,Z/mZ(1))×H2(Λ,Z/mZ(1))→ H3(Λ,Z/mZ(2)) (m > 0)

induce a pairing

〈, 〉Λ : Λ∗ × Br(Λ)→ H3(Λ,Q/Z(2)).(2)

Here, if char(Λ) = 0, Z/mZ(q) is defined to be the usual Tate twist of the constant
sheaf Z/mZ. If char(Λ) = p, write m = psm′ with s ≥ 0, p 6 |m′. Then Z/mZ(q)
denotes the object Z/m′Z(q) ⊕ WsΩ

q
Λ,log[−q] of the derived category of abelian

sheaves on Spec(Λ)et, where Z/m′Z(q) is defined to be the usual Tate twist and
WsΩ

q
Λ,log is the logarithmic part of the de Rham-Witt complex WsΩ

q
Λ. The group

H3(Λ,Q/Z(2)) is defined as the inductive limit of H3(Λ,Z/mZ(2)).

Definition 2.1. For w ∈ Br(Λ), we define the Swan conductor swΛ(w) of w to be
the non-negative integer

inf{m | ker(〈·, w〉Λ) ⊃ U (m+1)
Λ },

where U (m)
Λ is the m-th unit group of Λ.

A description of those Swan conductors in terms of division algebras is given by
the following theorem, which was proven in [6].

Theorem 2.2. Let Λ be as above and w ∈ Br(Λ). Let Λ̂ be the completion of the
strict henselization of Λ, and D the division algebra over Λ̂ corresponding to the
natural image wΛ̂ of w in Br(Λ̂).
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(i) The order of wΛ̂ is equal to [D : Λ̂]1/2 which is equal to pn for some non-
negative integer n.

(ii) For any subset S of D∗, we write

tD(S) = inf{ordD(aba−1b−1 − 1) | a, b ∈ S},
where ordD denotes the normalized valuation on D. For j = 0, 1, . . . , n− 1, put

tj = sup{tD(D′∗) | D′ satisfies conditions below},
D′ is a division algebra,

Λ̂ ⊂ D′ ⊂ D,
[D′ : center of D′] = p2j+2,

[center of D′ : Λ̂] = pn−j−1.

Then we have

swΛ(w) =
t0
pn−1

+
n−1∑
j=1

(p− 1)tj
pn−j

.

Proof. Since the residue field of Λ̂ is separably closed, (i) is deduced from [6],
Proposition 2.1. (Note that the condition (*) in [6] is automatically satisfied.)
By [3], Lemma 6.2, we have swΛ(w) = swΛ̂(wΛ̂). (Though the Brauer group of the
residue field of Λ̂ is trivial, the definition of swΛ̂(wΛ̂) is given in [3].) Hence (ii) is
deduced from [6], Theorem 5.1.

3. Proof of Theorem 1.1

Let p, k,Ok, F and X be as in Section 1. Due to [1] and [2], there exists a scheme
X over Ok which satisfies the following property: X is a two-dimensional regular
proper flat shceme over Ok, X⊗Ok

k ∼= X and Y = (X⊗Ok
F )red is a geometrically

connected proper one-dimensional scheme over F whose irreducible components
are all regular and which has ordinary double points as singularities at worst. Let
j : X → X and i : Y → X be the inclusion morphisms.

We use the following conventions.
Let Y0 (resp. Y1) be the set of all closed (resp. generic) points of Y .
As in Theorem 1.1, for η ∈ Y1, let Kη be the fraction field of the henselization

of OX,η and eη the multiplicity of ¯{η} in the divisor X⊗ F . Similarly, for a closed
point x ∈ X0, let Kx be the fraction field of the henselization of OX,x.

Let y ∈ Y0. Let Ay be the henselization of OX,y, Ry = Ay ⊗Ok
k, and Ky be the

fraction field of Ay. Let Y y
1 denote the set of all height one prime ideals in Ay lying

over some element of Y1. (Note that the cardinality of Y y
1 is 1 or 2.) Similarly, let

Xy
0 denote the set of all closed points in X whose closure in X includes y.
For η ∈ Y1 and y ∈ ¯{η} ∩ Y0, there is a unique element ηy of Y y

1 lying over η.
Let OKηy

be the henselization of Ay at ηy, and Kηy the fraction field of OKηy
.

Now we define a decreasing filtration on Pic(X) and Pic(X). Fix a prime element
π of k. For m > 0, let Xm = X⊗Ok

(Ok/π
mOk), and let

Um Pic(X) = ker(Pic(X)→ Pic(Xm)),

Um Pic(X) = Im(Um Pic(X)→ Pic(X)).
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We define the Swan conductors of elements of Br(X):

Definition 3.1. For w ∈ Br(X), we define the Swan conductor sw(w) of w to be
the non-negative integer

inf{m | ker(〈·, w〉X ) ⊃ Um+1 Pic(X)}.
Now we begin the proof of Theorem 1.1. Let T = H1(Yet, i

∗Rj∗Gm). We have
a canonical isomorphism (cf. [5], 9.5)

T ∼= Coker(
⊕
η∈Y1

K∗
η →

⊕
y∈Y0

((
⊕

ηy∈Y y
1

K∗
ηy

)/R∗
y) ).

For each integer m > 0, let UmT be the image in T of⊕
y∈Y0

⊕
ηy∈Y y

1

(1 + πmOKηy
).

Consider the natural homomorphism

ψ : Pic(X)→ T.

Lemma 3.2. For each m > 0, ψ(Um Pic(X)) ⊂ UmT and we have

Pic(X)/Um Pic(X)
∼=→ T/UmT.

Furthermore, the homomorphism

ψc : Pic(X)→ T c = lim←−T/U
mT

induced by ψ is a homeomorphism, when we consider T c as a topological group by
taking the image of UmT in T c for m > 0 as a basis of neighborhoods at the origin.
(Hence, {Um Pic(X)}m>0 is a fundamental system of neighborhoods of Pic(X) at
the origin.)

Proof. See [5] Lemma 9.8 and 9.10.

For y ∈ Y0 and ηy ∈ Y y
1 , there exists a canonical isomorphism

H3(Kηy ,Q/Z(2)) ∼= Q/Z,(3)

which is given by two-dimensional local class field theory. Under this identification,
we have for each w ∈ Br(X) the following diagram:⊕

y∈Y0

⊕
ηy∈Y y

1
K∗

ηy

α−→ Q/Z

β ↓ ‖
Pic(X)

〈·,w〉X−→ Q/Z.

(4)

Here α is defined by

(ay,ηy ) 7→
∑
y∈Y0

∑
ηy∈Y y

1

〈ay,ηy , wKηy
〉Kηy

,

where wKηy
is the natural image of w in Br(Kηy ), and β is induced by ψc−1. This

diagram is known to be anti-commutative (cf. [5] p. 411). We will briefly review
the proof of this fact at the end of this section.

By Lemma 3.2, we have

β(
⊕
y∈Y0

⊕
ηy∈Y y

1

(1 + πmOKηy
)) = Um Pic(X) (m > 0).
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This shows that

sw(w) = sup{ [swKηy
(wKηy

)/eη] | η ∈ Y1, y ∈ ¯{η} ∩ Y0},
where ηy ∈ Y y

1 is the unique element lying over η. By [3] Lemma 6.2, if η ∈ Y1, for
any y ∈ ¯{η} ∩ Y0 we have

swKηy
(wKηy

) = swKη (wKη ),

and Theorem 1.1 follows.
From now on, we recall the proof of the anti-commutativity of (4). This is

deduced from the following three facts and the definitions of (1) and (2). First, we
have an explicit description of ψ (cf. [5], Section 7). For each y ∈ Y0, we have a
composite map

ψy :
⊕

x∈Xy
0

Z −→ Coker[K∗
y

γ→ ( (
⊕

x∈Xy
0

Z)⊕ (
⊕

ηy∈Y y
1

K∗
ηy

) )]
∼=←− (

⊕
ηy∈Y y

1

K∗
ηy

)/R∗
y.

Here γ is defined to be the sum of the natural maps K∗
y → K∗

ηy
(ηy ∈ Y y

1 ) and the
composite maps

K∗
y → K∗

x

ordKx−→ Z (x ∈ Xy
0 ),

where ordKx is the normalized valuation on Kx. Then the map ψ is equal to the
map induced by

⊕
y∈Y0

ψy on Pic(X).
Secondly, the reciprocity law (cf. [5], 2.9) shows the following fact. Similar to

(3), there exists for each closed point x ∈ X a canonical isomorphism

H3(Kx,Q/Z(2)) ∼= Q/Z,(5)

which is again given by two-dimensional local class field theory. Under identifica-
tions (3) and (5), for y ∈ Y0, w ∈ Br(Ky) and a ∈ K∗

y , we have an equation in
Q/Z ∑

x∈Xy
0

〈a, wKx〉Kx +
∑

ηy∈Y y
1

〈a, wKηy
〉Kηy

= 0,

where wKx is the natural image of w in Br(Kx).
Finally, for a closed point x ∈ X and w ∈ Br(X), we have a commutative

diagram (cf. [5], 2.7)

K∗
x

〈·,wKx 〉Kx−→ Q/Z
ordKx ↓ ‖

Z −→ Q/Z,

where the lower horizontal arrow is defined by the localization wx ∈ Br(κ(x)) ∼=
Q/Z of w at x. Here we again used the identification (5).

References

[1] Abhyankar, S., Resolution of singularities for arithmetical surfaces, In: Arithmetical Alge-
braic Geometry. New York. Harper and Row, 111-152 (1986) MR 34:171

[2] Hironaka, H, Desingularization of excellent surfaces, Lectures at Advanced Science Seminer
in Algebraic Geometry. Bowdoin College, Summer 1967, noted by Bruce Bennett.

[3] Kato, K., Swan conductors for characters of degree one in the imperfect residue field case ,
Contemporary Math. 83,101-131 (1989) MR 90g:11164

[4] Lichtenbaum, S., Duality theorems for curves over p-adic fields, Invent. Math. 7, 120-136
(1969) MR 39:4158



1274 TAKAO YAMAZAKI

[5] Saito, S., Arithmetic on two dimensional local rings, Invent. Math. 85, 379-414 (1986) MR
87j:11060

[6] Yamazaki, T., Reduced norm map of division algebras over complete discrete valuation fields
of certain type, to appear in Comp. Math.

Graduate School of Mathematical Sciences, University of Tokyo, Komaba 3-8-1,

Megro, Tokyo, 153 Japan

E-mail address: yama@ms406ss5.ms.u-tokyo.ac.jp


