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APPLICATIONS OF MICHAEL’S CONTINUOUS SELECTION
THEOREM TO OPERATOR EXTENSION PROBLEMS

M. ZIPPIN

(Communicated by Dale Alspach)

Abstract. A global approach and Michael’s continuous selection theorem are
used to prove a slightly improved version of the Lindenstrauss - Pe lczyński
extension theorem for operators from subspaces of c0 into C(K) spaces.

1. Introduction

J. Lindenstrauss and A. Pe lczyński proved in [L-P] the following result: Let E
be a subspace of c0, let K be a compact Hausdorff space and let T be an operator
from E into C(K). Then for every ε > 0, there is an extension T̂ : c0 → C(K) of
T with ‖T̂‖ ≤ (1 + ε)‖T ‖.

The original proof [L-P] is based on a construction of a sequence {Tn}∞n=1 of
extensions Tn : En → C(K) of T , where E = E0 ⊂ E1 ⊂ · · · ,⋃∞n=1En = c0 and
dim(En/En−1) = 1.

The following simple observation (see e.g. [Z] Proposition 2) suggests a different
approach to the above extension theorem.

The Extension Criterion: Let ε > 0 and let E be a subspace of X. Then the
following are equivalent :
(1.1) For every compact Hausdorff space K and every operator T : E → C(K)

there is an extension T̂ : X → C(K) with ‖T̂‖ ≤ (1 + ε)‖T ‖.
(1.2) There is a ω∗ continuous function ϕ : Ball(E∗) → (1 + ε) Ball(X∗) such that

ϕ(e∗)(e) = e∗(e) for all e ∈ E and e∗ ∈ Ball(E∗).
We include the simple proof for the sake of completeness:
Assume (1.1) and let K = Ball(E∗) under the ω∗ topology. Let J : E → C(K)

be the natural isometric embedding, i.e., (Je)(e∗) = e∗(e) for every e ∈ E and
e∗ ∈ Ball(E∗). By (1.1), given ε > 0, J admits an extension Ĵ : X → C(K) with
‖Ĵ‖ < 1 + ε. Identifying e∗ ∈ Ball(E∗) with the corresponding point evaluation
functional δ(e∗) ∈ C(K)∗ (determined by δ(e∗)(f) = f(e∗) for all f ∈ C(K)) we
obtain the desired w∗ continuous function ϕ : Ball(E∗) → (1 + ε) Ball(X∗) defined
by ϕ(e∗) = Ĵ∗δ(e∗). Conversely, assume (1.2) and let T : E → C(K) be an operator
of norm ‖T ‖ = 1. Let ϕT : K → Ball(E∗) be defined by ϕT (k)(e) = (Te)(k) for
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every k ∈ K. Then, clearly, ϕT is w∗ continuous, and because ϕ : Ball(E∗) →
(1 + ε) Ball(X∗) is w∗ continuous, so is the composite mapping ψT = ϕ ◦ϕT : K →
(1 + ε) Ball(X∗). Now define T̂ : X → C(K) by (T̂ x)(k) = ψT (k)(x). Then T̂ is
linear because ψT (k) is a linear functional, ‖T̂‖ = sup{|(T̂ x)(k)| : ‖x‖ ≤ 1, k ∈
K} ≤ sup{‖ψT (k)‖‖x‖ : ‖x‖ ≤ 1, k ∈ K} ≤ 1 + ε and T̂ extends T because
ϕ(e∗)(e) = e∗(e) for all e∗ ∈ Ball(E∗) and e ∈ E.

The purpose of this note is to show that Michael’s continuous selection theorem
[M] implies the following

Theorem 1.1. Let E be a subspace of c0. Then for every ε > 0 there is a ω∗

continuous function ϕ : Ball(E∗) → (1 + ε) Ball(c∗0) such that

ϕ(e∗)(e) = e∗(e) for every e ∈ E and e∗ ∈ Ball(E∗)(1.3)

and

‖ϕ(e∗)‖ ≤ (1 + ε)‖e∗‖ for all e∗ ∈ Ball(E∗).(1.4)

In view of the Extension Criterion, Theorem 1.1 clearly yields the Lindenstrauss-
Pe lczyński extension theorem and condition (1.4) adds the following two features
to it:

Corollary 1.2. Let T be an operator from a subspace E of c0 into a C(K) space Y .
Let G ⊂ K and assume that, for every k ∈ G and e ∈ Ball(E), |(Te)(k)| ≤ η. Then,
for every ε > 0, there is an extension T̂ : c0 → Y of T such that ‖T̂‖ ≤ (1 + ε)‖T ‖
and |(T̂ x)(k)| < (1 + ε)η for all x ∈ Ball(X) and k ∈ G.

Corollary 1.3. Let Xi = c0 for i = 1, 2, . . . and put X =
( ∞∑

i=1

⊕Xi

)
lp

, where

1 < p < ∞. For each i ≥ 1 let Ei be a subspace of Xi and let E =
( ∞∑

i=1

⊕Ei

)
lp

.

Let T : E → C(K) be any operator of norm 1. Then, for every ε > 0, T admits an
extension T̂ : X → C(K) with ‖T̂‖ ≤ 1 + ε.

Proof of Corollary 1.2. Assume ‖T ‖ ≤ 1, define ψT : K → Ball(E∗) by ψT (k)(e) =
(Te)(k) and let ϕ : Ball(E∗) → (1 + ε) Ball(c∗0) be the function the existence of
which is guaranteed by the theorem. Put ψ = ϕ ◦ ψT and define T̂ by (T̂ x)(k) =
ψ(k)(x). It is easy to check that T̂ extends T and ‖T̂‖ ≤ (1 + ε)‖T ‖. Suppose that
|(Te)(k)| ≤ η for all k ∈ G and e ∈ Ball(E); then ‖ψT (k)‖ ≤ η for k ∈ G. Hence
‖ψ(k)‖ = ‖(ϕ ◦ ψT )(k)‖ ≤ (1 + ε)‖ψT (k)‖ ≤ (1 + ε)η and so, for any x ∈ Ball(c0)
and k ∈ G, |(Tx)(k)| = |ψ(k)(x)| ≤ ‖ψ(k)‖ ≤ (1 + ε)η.

Proof of Corollary 1.3. By Theorem 1.1, given ε > 0, for each i ≥ 1 there is a w∗

continuous function ϕi : Ball(E∗i ) → (1 + ε) Ball(X∗i ) with ϕi(e∗i )(ei) = e∗i (ei) for
all e∗i ∈ Ball(E∗i ) and ei ∈ Ei and ‖ϕi(e∗i )‖ ≤ (1 + ε)‖e∗i ‖.

Since E∗ = (
∑∞

i=1⊕E∗i )lq and X∗ = (
∑∞

i=1⊕X∗i )lq , where p−1 + q−1 = 1,
we define ϕ : Ball(E∗) → (1 + ε) Ball(X∗) as follows: If e∗ =

∑∞
i=1 e

∗
i , where

e∗i ∈ Ball(E∗i ) and
∑∞

i=1 ‖e∗i ‖q ≤ 1, put ϕ(e∗) =
∑∞

i=1 ϕi(e∗i ). The function ϕ is well
defined because ‖e∗‖q =

∑∞
i=1 ‖e∗i ‖q and, for each i ≥ 1, ‖ϕi(e∗i )‖q ≤ (1 + ε)q‖e∗i ‖q.

It is easy to check that ϕ(e∗) is w∗ continuous and that ϕ(e∗)(e) = e∗(e) for all
e ∈ E and e∗ ∈ Ball(E∗). Hence, the Extension Criterion ensures the existence of
an extension T̂ : X → C(K) of T with ‖T̂‖ ≤ 1 + ε.
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Remark 1.4. The above Corollary 1.3 can be extended to more general direct sums
of c0 in the obvious way.

The proof of Theorem 1.1. is based on E. Michael’s continuous selection theorem.
We consider the set function ψ : Ball(E∗) → (1 + ε) Ball(c∗0) defined by

ψ(e∗) =

 {0} if e∗ = 0,
{x∗ ∈ (1 + ε) Ball(c∗0) : x∗ extends e∗

and ‖x∗‖ < (1 + ε)‖e∗‖ }, if e∗ 6= 0.
(1.5)

Under the ω∗ topology, ψ(e∗) is a convex subset of the ω∗ compact and metrizable
set (1+ε) Ball(c∗0). Consequently, in order to prove Theorem 1.1, it suffices to prove
the following

Theorem 1.5. The carrier ψ is ω∗ l.s.c.

Indeed, if we prove that the carrier ψ(e∗) is ω∗ l.s.c., it then easily follows that
ψ̄(e∗) is ω∗ l.s.c., where ψ̄(e∗) denotes the ω∗ closure of ψ(e∗) for every e∗ ∈
Ball(E∗). Hence, by Michael’s continuous selection theorem [M] there exists a
ω∗ continuous function ϕ : Ball(E∗) → (1 + ε) Ball(c∗0) such that, for every e∗ ∈
Ball(E∗), ϕ(e∗) ∈ ψ̄(e∗). It follows that ϕ(e∗) is an extension of e∗ and ‖ϕ(e∗)‖ ≤
(1 + ε)‖e∗‖.

Theorem 1.5 will be proved in Section 3. Let us remark that carrier ψ seems to
be the first example of its kind which is ω∗ l.s.c.

Notation. We use standard Banach space theory notation as can be found in [L-T].

2. Preliminaries

We start with an easy fact which allows us to reduce the extension problem to
subspaces F ⊂ c0 which are positioned in c0 in a convenient way.

Lemma 2.1. Let X be a Banach space with a basis {xn}∞n=1 and let F be a subspace
of X. Then, for every 1 > ε > 0, there is an automorphism J on X so that
‖I − J−1‖ < ε and so that the vectors in J(F ) with finite expansion with respect to
the basis are dense in J(F ).

Proof. We may clearly assume that ‖xn‖ = 1 for all n ≥ 1. Let {fk}∞k=1 be a
dense sequence in Ball(F ) and let {δn}∞n=1 be a sequence of positive numbers with
∞∑

n=1
δn < µ−1ε, where µ is the basis’ constant. We will construct by induction

an increasing sequence {i(k)}∞k=1 of integers and a sequence {yn}∞n=1 ⊂ X such
that ‖yn − xn‖ ≤ δn for all n ≥ 1 and, for each k ≥ 1, fk ∈ [yn]i(k)

n=1. This is
done as follows: Suppose that {i(k)}m

k=1 and {yn}i(m)
n=1 have been chosen so that

‖yn − xn‖ ≤ δn for 1 ≤ n ≤ i(m) and, for each 1 ≤ k ≤ m, fk ∈ [yn]i(k)
n=1. Clearly, if

ε is small enough, then {yn}i(m)
n=1 ∪{xn}∞n=i(m)+1 is a basis of X . Consider fm+1 : if,

for someN , fm+1 ∈
[
{yn}i(m)

n=1 ∪ {xn}N
n=i(m)+1

]
, then put i(m+1) = N and yn = xn

for all i(m) < n ≤ i(m + 1). On the other hand, if fm+1 =
i(m)∑
j=1

ajyj +
∞∑

j=1

bjxj

is an infinite expansion, pick j(m + 1) > i(m) for which bj(m+1) 6= 0 and let

i(m+ 1) > j(m+ 1) be so large that |bj(m+1)|−1 · ‖
∞∑

h=i(m+1)

bhxh‖ < δj(m+1). Now



1374 M. ZIPPIN

define

yj(m+1) = xj(m+1) + (
∞∑

h=i(m+1)+1

bhxh)b−1
j(m+1)

and, for all i(m) < n < j(m+1) and j(m+1) < n < i(m+1) let yn = xn. It follows

that ‖yn − xn‖ ≤ δn for all 1 ≤ n ≤ i(m+ 1) and fm+1 =
i(m)∑
j=1

ajyj +
i(m+1)∑

j=i(m)+1

bjyj.

This completes the induction step and the construction of yn. Clearly, if ε is
small enough, then the map J defined by Jyn = xn is an automorphism on X
with ‖I − J−1‖ ≤ ε. Let F0 denote the linear span of {fk}. The construction of
{yn}∞n=1 ensures that F0 ⊂ linear span of {yn}∞n=1; hence J(F0) ⊂ linear span of
{xn}∞n=1.

Notation. Throughout the paper {un}∞n=1 will denote the unit vector basis of c0,
U = linear span of {un}∞n=1, and, for each n ≥ 1, Pn = the n-th basis projection
and Un = Pn(c0).

Our next step is the following

Proposition 2.2. Let E0 be a subspace of U and let En = E0 ∩ Un. Then, for
every δ > 0 and every integer M ≥ 1 there is an integer N > M such that whenever
e ∈ E0 and ‖e‖ = 1 there is a v ∈ E0 satisfying the following four conditions:

v ∈ EN ,(2.1)

‖v‖ < 1 + δ,(2.2)

‖PM (e− v)‖ < δ,(2.3)

and

‖e− v‖ < 1 + δ.(2.4)

Proof. Let n(0) be the smallest integer ≥ M for which En(0) 6= {0}. We construct
the integers n(0) < n(1) < n(2) < · · · inductively as follows: having defined n(k)
we let 0 < θ < 1

4 min{δ, 1} and pick a θ
2 -net

Pn(k)y1, Pn(k)y2, · · · , Pn(k)ym(k) in Pn(k)(BallE0).

For each 1 ≤ j ≤ m(k) let cj = inf{‖z‖ : z ∈ E0 and ‖Pn(k)z − Pn(k)yj‖ < θ
2}.

Clearly, because ‖yj‖ ≤ 1 also cj ≤ 1. Choose zj ∈ E0 such that ‖zj‖ <

(1 + θ
2 )cj ≤ 1 + θ

2 and ‖Pn(k)(yj − zj)‖ ≤ θ
2 . Then, clearly, {Pn(k)zj}m(k)

j=1 is a
θ-net in Pn(k)(BallE0). Since each zj is a finite linear combination of {un}∞n=1, we
can find n(k + 1) > n(k) so large that, for all 1 ≤ j ≤ m(k), (I − Pn(k+1))zj = 0.
It follows that if e ∈ E0 and ‖e‖ = 1, then there is an integer 1 ≤ j(k) ≤ m(k)
so that ‖Pn(k)zj(k) − Pn(k)e‖ < θ while the definition of cj ensures that ‖zj(k)‖ ≤
(1 + θ

2 )‖e‖ = 1 + θ
2 .

We are now ready to select N and v which appear in the statement of the
proposition. Let m > 4δ−1, m > k and put N = n(m+1) and v = m−1

∑m
k=1 zj(k).

Because N ≥ n(k+1) and because zj(k) ∈ En(k+1) we have that v ∈ EN . Also, each
‖zj(k)‖ < 1 + θ

2 ; hence ‖v‖ ≤ m−1
∑m

k=1 ‖zj(k)‖ ≤ 1 + θ
2 < 1 + δ. This establishes

(2.1) and (2.2). Since ‖Pn(k)zj(k) − Pn(k)e‖ < θ and n(1) > M

‖PMzj(k) − PMe‖ < θ for all 1 ≤ k ≤ m and therefore
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‖PM (v − e)‖ ≤ m−1
m∑

k=1

‖PM (zj(k) − e)‖ < θ < δ, proving (2.3).

Finally, to prove (2.4), we use an argument of E. Odell: Note that each zj(k) can
be expressed by Pn(k)zj(k) + (Pn(k+1) − Pn(k))zj(k) where

‖(Pn(k+1) − Pn(k))zj(k)‖ < 1 +
θ

2
and ‖Pn(k)zj(k) − Pn(k)e‖ < θ.

The elements {(Pn(k+1) − Pn(k))zj(k)}m
k=1 are disjointly supported with respect to

the natural basis of c0; therefore

‖
m∑

k=1

(Pn(k+1) − Pn(k))zj(k)‖ = max
1≤k≤m

‖(Pn(k+1) − Pn(k))zj(k)‖.

It follows that

‖e − v‖ = ‖m−1
m∑

k=1

(e− zj(k))‖

≤ ‖m−1
m∑

k=1

(e − Pn(k)zj(k))‖+ ‖m−1
m∑

k=1

(Pn(k+1) − Pn(k))zj(k)‖

≤ m−1
m∑

k=1

‖Pn(k)(e − zj(k))‖+m−1‖
m∑

k=1

(I − Pn(k))e‖+m−1 max
1≤k≤m

‖zj(k)‖

≤ θ + 1 +m−1(1 + θ) < 1 + δ.

An immediate consequence of Proposition 2.2 is the following

Corollary 2.3. Under the assumptions of Proposition 2.2, given η > 0 and an
integer M there is an integer N such that whenever e∗ ∈ E∗0 , ‖e∗‖ = 1 and
‖e∗|EN‖ < η

3 , any Hahn-Banach extension y∗ ∈ c∗0 of e∗ satisfies the inequality

‖P ∗My∗‖ < η.(2.7)

Proof. Let δ = η
6 and choose an integer N > M so that the conclusion of Proposi-

tion 2.2 holds. Let e∗ ∈ E∗0 be a functional of norm 1 and assume that ‖e∗|EN‖ <
η
3 . Pick e ∈ BallE0 for which e∗(e) > 1 − η

3 . By Proposition 2.2, there is a
v ∈ EN so that conditions (2.1) - (2.4) hold. It follows from (2.1) and (2.2) that
e∗(e − v) = e∗(e) − e∗(v) ≥ 1 − η

3 − η
3 (1 + δ) > 1 − 2η

3 (1 + η
6 ). Let y∗ ∈ c∗0

be any Hahn-Banach extension of e∗, then y∗(e − v) = e∗(e − v) > 1 − δ. Since
‖P ∗My∗‖ + ‖(I − P ∗M )y∗‖ = ‖y∗‖ = 1, if ‖P ∗My∗‖ > η, then ‖(I − P ∗M )y∗‖ < 1 − η
and we get by (2.3) the contradiction

1− 2
(

1 +
η

6

) η
3

≤ y∗(e− v) ≤ |PMy∗(e− v)|+ |(I − P ∗M )y∗(e− v)|
≤ ‖PM (e− v)‖ + ‖(I − P ∗M )(y∗)‖‖e− v‖
≤ η

6
+ (1− η)‖e− v‖

≤ η

6
+ (1− η)(1 +

η

6
)

≤ 1 +
η

3
− η(1 +

η

6
).
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3. Proof of Theorem 1.5

In view of Lemma 2.1 we may assume that E0 = E ∩ (linear span of {un}∞n=1) is
dense in E. We must prove that the carrier ψ is ω∗ l.s.c. Let us start by establishing
the ω∗ lower semicontinuity of ψ at 0. Recall that ψ(0) = {0} and let V be any
ω∗ neighborhood of 0 in (1 + ε) Ball(c∗0). Then, there exist η > 0 and M so that
(1 + ε) Ball(c∗0) ∩ [

η(1 + ε) Ball(c∗0) + ([ui]Mi=1)⊥
] ⊂ V . Choose N so large that the

conclusion of Corollary 2.3 holds. Now let e∗ε(Ball(E∗0 )) ∩ (η
3 Ball(E∗0 ) + E⊥N ) and

choose any Hahn-Banach extension y∗ ∈ c∗0 of e∗. By Corollary 2.3, y∗ ∈ V ∩ψ(e∗).
This establishes the ω∗ lower semi continuity of ψ at 0.

Let us now show that ψ is ω∗ l.s.c. at e∗0 6= 0. Given a ω∗ neighborhood V of 0
in λBall(c∗0), where λ = 1 + ε, we may assume that there is a β > 0 so that

V = (λ Ball(c∗0)) ∩ (
β λ Ball(c∗0) + ([ui]Mi=1)⊥

)
.

Pick x∗0 ∈ ψ(e∗0); then ‖x∗0‖ < λ‖e∗0‖. Let 0 < δ < 20−1 min{λ‖e∗0‖ − ‖x∗0‖, β, 1}
and pick e0 ∈ Ball(E0) so that e∗0(e0) > (1 − δ)‖e∗0‖. Choose M so large that
PMe0 = e0 and

∑∞
i=M+1 |x∗0(ui)| = ‖(I − P ∗M )x∗0‖ < δ. Choose N > M so large

that the conclusions of Proposition 2.2 and Corollary 2.3 with δ‖e∗0‖ = η hold. Let

e∗ ∈ (Ball(E∗0 )) ∩
(η

3
Ball(E∗0 ) + E⊥N

)
and assume that ‖e∗0+e∗‖ ≤ 1. Pick e ∈ Ball(E0) so that e∗(e) > (1−η)‖e∗‖. Using
Proposition 2.3 we find v ∈ EN so that conditions (2.1) – (2.4) are satisfied and let
x∗ ∈ c∗0 be any Hahn-Banach extension of e∗. By Corollary 2.3, ‖P ∗Mx∗‖ < δ‖e∗0‖.
We use here the fact that e0 and e− v are almost disjointly supported as elements
of c0 and x∗0 and x∗ are almost disjointly supported as elements of l1. We have
that ‖e0 + e − v‖ ≤ 1 + 2δ and (1 + 2δ)‖e∗0 + e∗‖ ≥ (e∗0 + e∗)(e0 + e − v) ≥
e∗0(e) + e∗(e− v)− δ‖e∗0‖ − δ‖e∗‖ ≥ ‖e∗0‖(1− 2δ) + ‖e∗‖(1− 2δ). This yields

‖e∗‖ ≤ (1− 2δ)−1((1 + 2δ)‖e∗0 + e∗‖ − (1− 2δ)‖e∗0‖) .(3.1)

We also have

‖e∗0 + e∗‖ ≥ (e∗0 + e∗)(e0) ≥ (1− δ)‖e∗0‖ − δ‖e∗0‖ = (1− 2δ)‖e∗0‖ .
(3.2)

Clearly, x∗0 + x∗ extends e∗0 + e∗ and, by Corollary 2.3, x∗ ∈ V . Moreover, by (3.1)
and (3.2),

‖x∗0‖+ ‖x∗‖ < λ‖e∗0‖ − 20δ + ‖e∗‖
≤ (λ− 20δ)‖e∗0‖+ (1 + 4δ)[(1 + 4δ)‖e∗0 + e∗‖ − (1− 2δ)‖e∗0‖]
≤ (1 + 4δ)2‖e∗0 + e∗‖+ [λ− 20δ − (1 + 2δ − 8δ2)] ‖e∗0‖
≤ [(1 + 4δ)2 + (λ− 1− 20δ)(1 + 4δ)] ‖e∗0 + e∗‖ < λ‖e∗0 + e∗‖ .

It follows that x∗0 + x∗ ∈ ψ(e∗0 + e∗) and hence ψ is w∗ l.s.c. at e∗0.

4. Concluding remarks

Remark 4.1. This work was done a long time ago but has not been prepared for
publication until now. Theorem 1.1 was used, unfortunately without any explana-
tion or reference, in the proof of Theorem 4 of [J-Z].
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Remark 4.2. Let E be a subspace of c0 and let X be any separable space containing
E. Our proof can be slightly modified to show that, for every ε > 0, the carrier
ψ : Ball(E∗) → (2 + ε) Ball(X∗) defined by ψ(0) = {0} and, for e∗ 6= 0, ψ(e∗) =
{x∗ ∈ (2+ε) Ball(X∗) : x∗ extends e∗ and ‖x∗‖ < (2+ε)‖e∗‖} is ω∗ l.s.c. However,
this does not provide us with any new information beyond Corollary 2 of [L-P] and
the corresponding additional features analogous to Corollary 1.2 and Corollary 1.3.

The proof is similar to that of Theorem 1.5 but uses the following corollary of
Proposition 2.2.

Corollary 4.3. Under the assumptions of Proposition 2.2, for any 1 > µ, ε > 0
and every 0 6= e∗0 ∈ Ball(E∗0 ) there are a δ > 0 and an integer N so that if
e∗ ∈ Ball(E∗0 ) ∩ (δ Ball(E∗0 ) + E⊥N ) and ‖e∗0 + e∗‖ ≤ 1, then

‖e∗‖ ≤ (1 + ε)(‖e∗0 + e∗‖ − (1 − µ)‖e∗0‖)(2.5)

and

‖e∗0‖ ≤ (1 − ε)−1‖e∗0 + e∗‖ .(2.6)

Proof. Let δ > 0 be so small that (1 + δ)(1 − δ)−1 < 1 + ε, δ < 1
2ε‖e∗0‖ and

(1 + δ)−1((1 − δ)‖e∗0‖ − 5δ) > (1 − µ)‖e∗0‖ and find e0 ∈ BallE0 so that e∗0(e0) >
‖e∗0‖(1− δ). Pick M so large that e0 ∈ EM . Now choose N > M so large that the
conclusion of Proposition 2.2 holds. Since e∗ ∈ (BallE∗0 ) ∩ (δBallE∗0 + E⊥N ), we
have that |e∗(e0)| < δ and so

‖e∗0 + e∗‖ ≥ |(e∗0 + e∗)(e0)| ≥ e∗0(e0)− δ ≥ ‖e∗0‖ − 2δ > ‖e∗0‖(1− ε)

which proves (2.6). To prove (2.5), let e ∈ BallE0 be an element satisfying e∗(e) >
‖e∗‖(1− δ). Let v ∈ EN be an element satisfying conditions (2.1)- (2.4). It follows
that

e∗(e− v) = e∗(e)− e∗(v) ≥ ‖e∗‖(1− δ)− δ(1 + δ) ,

|e∗0(e− v)| < δ + δ(1 + δ) ,

‖e0 + e− v‖ ≤ 1 + δ

and hence

(1 + δ)‖e∗0 + e∗‖ > (e∗0 + e∗)(e0 + e− v)
≥ e∗0(e0) + e∗(e− v)− δ(3 + δ)
≥ ‖e∗0‖(1− δ) + ‖e∗‖(1− δ)− 5δ.

The choice of δ ensures that

(1 + δ)‖e∗0 + e∗‖ > (1− µ)(1 + δ)‖e∗0‖+ ‖e∗‖(1− δ)

and therefore,

‖e∗‖ ≤ (1 − δ)−1(1 + δ)(‖e∗0 + e∗‖ − (1 − µ)‖e∗0‖)
≤ (1 + ε)(‖e∗0 + e∗‖ − (1 − µ)‖e∗0‖).
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